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1 Linear Methods for Discrimination

See Ripley (1996); Venables and Ripley (2002); Maindonald & Braun (2007, Section 12.2).
The methods discussed here may be contrasted with the strongly non-parametric tree-based

methods that are discussed in Maindonald & Braun (2007, Section 11.7, with a brief overview of
Sections 11.1–11.6).

Notation

Observations are rows of a matrix X with p columns. The vector x, is a row of X, but in column
vector form. The outcome is categorical, one of g classes. The matrix W estiamtes the within
class variance-covariance matrix, while B estimates the between class variance-covariance matrix.
Details of the estimators used are not immediately important. Note however that they may differ
somewhat between computer programs.

Methods discussed here will all work with linear functions of the columns of X. By allowing
columns that are non-linear functions of the initial variables, additive non-linear effects can be
accommodated.

1.1 Canonical discriminant analysis

Fisher’s linear disciminant analysis was a version of canonical discriminant analysis that used a
single discriminant axis. The more general case, where there can be as many as r = min(g−1, p)
discriminant functions, is described here.

In this context it is convenient to use a version of X that does not have an initial column of
ones. The discussion is simplified if a linear transformation is applied to the data so that the
estimate of the within class variance-covariance matrix becomes the identify matrix. This can be
achieved by replacing x by

z = U′−1x

where U is an upper triangular matrix such that U′U = W. [The usual estimate of the variance-
covariance matrices is positive definite, providing that the same observations are used in calcu-
lating all elements in the variance-covariance matrix and no variable is redundant.]

The between classes variance-covariance matrix becomes

B̃ = U′−1BU−1

The ratio of between to within class variance of the linear combination α′z is then

α′B̃α/α̃′α̃

The matrix B̃ admits the principal components decomposition

B̃ = λ1u1u′1 + λ2u2u′2 + . . .+ λruru′r

The choice α = u1 maximizes the ratio of the between to the within group variance, a fraction
λ1 of the total. The choice α = u2 accounts for the next largest proportion λ2, and so on.
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The vectors v1, . . . vr are known as “linear discriminants” or “canonical variates”. Scores,
which are conveniently centered about the mean over the data as a whole, are available on each
observation for each discriminant. These locate the observations in r-dimensional space, where
r is at most min(g− 1, p). A simple rule is to assign observations to the group to which they are
nearest, i..e., the distance dc is smallest in a Euclidean distance sense.

Fewer than the maximum number of discriminants may be used, depending on the effect on
discriminatory power. If there are more than three groups, it is pertinent to inquire whether the
two-dimensional representation that uses the first two discriminants misses non-trivial informa-
tion.

Variables have been scaled so that within group variance-covariance matrix is the identity.
Hence the variance should be the same in every direction. An equal scaled plot should therefore
be used to plot the scores.

1.2 lda() and qda()

The functions lda() and qda() in the MASS package implement a Bayesian decision theory
approach.

• A prior probability πc is assigned to the cth class (i = 1, . . . g).

• The density p(x|c) of x, conditional on the class c, is assumed multivariate normal, i.e.,
rows of X are sampled independently from a multivariate normal distribution.

• For linear discrimination, classes are assumed to have a common covariance matrix Σ. For
quadratic discrimination, different p(x|c) are allowed for different classes.

• Use Bayes’ rule to derive p(c|x). The allocation rule that gives the largest expected accuracy
chooses the class with maximal p(c|x); this is the Bayes’ rule.

• More generally, assign cost Lij to allocating a case of class i to class j, and choose c to
minimize

∑
i Licp(i|x).

• The Bayes rule requires knowledge of p(c|x). These are unknown; hence a parametric
family p(c|x; θ) is assumed. For g = 2 classes, a logistic model is assumed, while for g > 2
a multinomial loglinear model is assumed.

• For estimation of the posterior probabilities, the simplest approach is to replace p(c|x; θ)
by p(c|x; θ̂) for calculation of posterior probabilities (the ‘plug-in’ rule). The functions
predict.lda() and predict.qda() offer the alternative estimate method="predictive",
which takes account of uncertainty in p(c|x; θ̂). Note also method="debiased", which may
be a reasonable compromise between method="plugin" and method="predictive"

Note that lda() and qda() use the prior weights, if specified, as weights in combining the
within class variance-covariance matrices.

1.2.1 Connection with Fisherian linear discriminant analysis

The theory underlying lda() assigns x to the class that maximizes the likelihood. This is
equivalent to choosing the class c that minimizes dc + log(πc), where if the same estimates are
used for W are B, dc is the distance as defined for Fisherian linear discriminant analysis. Recall
that πc is the prior probability of class c.

The output from lda() includes the list element scaling, which is a matrix with one row for
each column of X and one column for each discriminant function that is calculated. This gives
the discriminant(s) as functions of the values in the matrix X.
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1.2.2 Calculations using lda() from R’s MASS package

The data frame fgl in the MASS gives 10 measured physical characteristics for each of 214 glass
fragments that are classified into 6 different types. The following may help make sense of the
information in the list element scaling.

library(MASS}
fgl.lda <- lda(type ~ ., data=fgl)
scores <- predict(fgl.lda, dimen=5)$x # Default is dimen=2
## Now calculate scores from other output information
checkscores <- as.matrix(fgl[, -10])%*%fgl.lda$scaling
## Center columns about mean
checkscores <- scale(checkscores, center=TRUE, scale=FALSE)
plot(scores[,1], checkscores[,1]) # Repeat for remaining columns
## Check other output information
fgl.lda

93% of the information, as measured by the trace, is in the first two discriminants.

1.3 Logistic Regression

This may be handled using R’s function glm(). Logistic regression is a special case of a Gener-
alized Linear Model (GLM). The approach is to model p(c|x; θ̂) using a parametric model that
may be the same logistic model as for linear and quadratic discriminant analysis.

In this context it is convenient to change notation slightly, and give X an initial column of
ones. In the linear model and generalized linear model contexts, X has the name “model matrix”.

The vector mathbfx is a row of X, but in column vector form. Then if π is the probability
of membershipin the second group, the model assumes that

log(π/(1− π) = β′x

where d is a constant.
Compare logistic regression with linear discriminant analysis:

• Inference is conditional on the observed x. A model for p(x|c) is not required. Results are
therefore more robust against the distribution p(x|c).

• Parametric models with “links” other than the logit f(π) = log(π/(1 − π) are available.
Where there are sufficient data to check whether one of these other links may be more
appropriate, this should be done. Or there may be previous experience with comparable
data that suggests use of a link other than the logit.

• Observations can be given prior weights.

• There is no provision to adjust predictions to take account of prior probabilities.

• The fitting procedure minimizes the deviance, which is twice the difference between the
loglikelihood for the model that is fitted and the loglikelihood for a ‘saturated’ model in
which predicted values from the model equal observed values. This does not necessarily
maximize predictive accuracy.

• Standard errors and Wald statistics (roughly comparable to t-statistics) are provided for
parameter estimates. These are based on approximations that may fail if predicted propor-
tions are close to 0 or 1 and/or the sample size is small.
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1.4 Model choice, and comparison with highly non-parametric ap-
proaches

The linearity assumptions are restrictive, even allowing for the use of regression spline terms
to model non-linear effects. It is not obvious how to choose the appropriate degree for each of
a number of terms. The attempt to investigate and allow for interaction effects adds further
complications. In order to make progress with the analysis, it may be expedient to rule out
any but the most obvious interaction effects. These issues affect regression methods (including
GLMs) as well as discriminant methods.

On a scale in which highly parametric methods lie at one end and highly non-parametric
methods at the other, linear discriminant methods lie at the parametric end, and tree-based
methods and random forests at the non-parametric extreme. An attraction of tree-based methods
and random forests is that model choice can be pretty much automated.

1.5 Visualization

In linear discriminant analysis, discriminant scores in as many dimensions as seem necessary are
used to classify the points, and thus emerge directly from the analysis. Each pair of dimensions
gives a two-dimensional projection of the data. If there are three groups and at least two ex-
planatory variables, the two-dimensional plot is a complete summary of the analysis. Even where
higher numbers of dimensions are required, it may capture most of the information. This can be
checked.

With most other methods, a low-dimensional representation does not arise so directly from
the analysis. The following approach, which can be used directly with random forests, can be
adapted for use with other methods. The proportion of trees in which any pair of points appear
together at the same node may be used as a measure of the “proximity” between that pair of
points. Then, using 1-proximity as a measure of distance, an ordination method can be used to
find a representation of those points in a low-dimensional space.

1.6 Reference
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