
Data Analysis with R Laboratories – Sets of Exercises, with R

Code

John Maindonald

August 24, 2007

Laboratory exercises make extensive use of datasets from the DAAG and DAAGxtras packages.
Make sure that they are installed.

For background to laboratory exercises I – II, see the document: The R System – An Introduction
and Overview.
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Part I

R Basics

1 Data Input

Exercise 1
Ensure that the DAAGxtras package is installed. From the R command line, attach it, and type
dataFile(c("molclock1", "molclock2")), thus:

> library(DAAGxtras)

> dataFile(c("molclock1", "molclock2")) # NB dataFile, not datafile

This places the files molclock1.txt and molclock2.txt in the working directory. Use file.show()
to examine the contents of each of these files. Alternatively, you can use R’s script editor (under
Windows, go to File | Open script...), or use another editor such as the Windows tinn-R editor that
is designed to interface to R.
Use read.table() to read each of them into R. Check carefully whether you need header=TRUE.
Then display the data frame and check that the data have been input correctly.
Note: If the file is located in a directory other than the working directory a fully specified file name,
including the path, is necessary. For example, to input a file travelbooks.txt that has been placed
in the directory c:/datafiles/, type

> travelbooks <- read.table("c:/datafiles/travelbooks.txt")

For input to R functions, forward slashes replace backslashes.

2 Data Input from a Web Page

Exercise 2
Files can be read directly from a web page, providing that there is a live internet connection, Here
are examples:

> webfolder <- "http://www.maths.anu.edu.au/~johnm/datasets/text/"

> webpage <- paste(webfolder, "molclock.txt", sep="")

> molclock <- read.table(url(webpage))

Use this approach to input the file travelbooks.txt that is available from this same web page.

3 The paste() Function; Further Details

Exercise 3
Here are further examples that illustrate the use of paste():

> paste("Leo", "the", "lion")

> paste("a", "b")

> paste("a", "b", sep="")

> paste(1:5)

> paste(1:5, collapse="")
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4 Missing Values

Exercise 4
The following counts, for each species, the number of missing values for the column root of the data
frame rainforest (DAAG):

> library(DAAG)

> with(rainforest, table(complete.cases(root), species))

For each species, how many rows are “complete”, i.e., have no values that are missing?

Exercise 5
For each column of the data frame Pima.tr2 (MASS ), determine the number of missing values.

5 Subsets of Dataframes

Exercise 6
Use head() to check the names of the columns, and the first few rows of data, in the data frame
rainforest (DAAG). Use table(rainforest$species) to check the names and numbers of each
species that are present in the data. The following extracts the rows for the species Acmena smithii

> library(DAAG)

> Acmena <- subset(rainforest, species=="Acmena smithii")

The following extracts the rows for the species Acacia mabellae and Acmena smithii

> AcSpecies <- subset(rainforest, species %in% c("Acacia mabellae",

+ "Acmena smithii"))

Now extract the rows for all species except C. fraseri.

Exercise 7
Extract the following subsets from the data frame ais (DAAG):

(a) Extract the data for the rowers.

(b) Extract the data for the rowers, the netballers and the tennis players.

(c) Extract the data for the female basketabllers and rowers.

6 Scatterplots

Exercise 8
Using the Acmena data from the data frame rainforest, plot wood (wood biomass) vs dbh (diameter
at breast height), trying both untransformed scales and logarithmic scales. Here is suitable code:
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Exercise 8, continued

> Acmena <- subset(rainforest, species=="Acmena smithii")

> plot(wood ~ dbh, data=Acmena)

> plot(wood ~ dbh, data=Acmena, log="xy")

Use of the argument log="xy" gives logarithmic scales on both the x and y axes. For purposes of
adding additional features to the plot, note that logarithms to base 10 are used.
For the second plot, add a fitted line, thus:

> plot(wood~dbh, data=Acmena, log="xy")

> ## The lm() command will fit a line; more details later

> ## abline() then plots this line.

> Acmena10.lm <- lm(log10(wood) ~ log10(dbh), data=Acmena)

> abline(Acmena10.lm)

> ## Now print the coefficents, for a log10 scale

> coef(Acmena10.lm)

> ## For comparison, print the coefficients for a natural log scale

> Acmena.lm <- lm(log(wood) ~ log(dbh), data=Acmena)

> coef(Acmena.lm)

Write down the equation that gives the fitted relationship between wood and dbh.

Exercise 9
The orings data frame gives data on the damage that had occurred in US space shuttle launches
prior to the disastrous Challenger launch of January 28, 1986. Only the observations in rows 1, 2,
4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether to proceed with
the launch. Add a new column to the data frame that identifies rows that were included in the
pre-launch charts. Now make three plots of Total incidents against Temperature:

(a) Plot only the rows that were included in the pre-launch charts.

(b) Plot all rows.

(c) Plot all rows, using different symbols or colors to indicate whether or not points were included
in the pre-launch charts.

Comment, for each of the first two graphs, whether and open or closed symbol is preferable. For
the third graph, comment on the your reasons for choice of symbols.

Use the following to identify rows that hold the data that were presented in the pre-launch charts:

> orings$Included <- logical(23) # orings has 23 rows

> orings$Included[c(1,2,4,11,13,18)] <- TRUE

The construct logical(23) creates a vector of length 23 in which all values are FALSE. The following
are two possibilities for the third plot; can you improve on these choices of symbols and/or colors?

> plot(Total ~ Temperature, data=orings, pch=orings$included+1)

> plot(Total ~ Temperature, data=orings, col=orings$Included+1)
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Exercise 10
Using the data frame oddbooks, use graphs to investigate the relationships between:

(a) weight and volume;

(b) density and volume;

(c) density and page area.

7 Factors

Exercise 11
Investigate the use of the functions as.character() and unclass() with a factor argument. Com-
ment on their use in the following code:

> par(mfrow=c(1,2), pty="s")

> plot(weight ~ volume, pch=unclass(cover), data=allbacks)

> plot(weight ~ volume, data=allbacks, type="n")

> with(allbacks, text(weight ~ volume, labels=as.character(cover)))

> par(mfrow=c(1,1))

[The setting mfrow=c(1,2) gives side by side plots. The setting pty="s" gives a square plotting
region.]

Exercise 12
Run the following code:

> gender <- factor(c(rep("female", 91), rep("male", 92)))

> table(gender)

> gender <- factor(gender, levels=c("male", "female"))

> table(gender)

> gender <- factor(gender, levels=c("Male", "female")) # Note the mistake

> # The level was "male", not "Male"

> table(gender)

> rm(gender) # Remove gender

Explain the output from the final table(gender).
The output is

gender
female male

91 92

> table(gender)

> gender <- factor(gender, levels=c("Male", "female")) # Note the mistake

> # The level was "male", not "Male"

> table(gender)

> rm(gender) # Remove gender
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8 Stripcharts (base graphics) and Stripplots (lattice)

Exercise 13
Look up the help for the lattice function dotplot().
Compare the following:

> ## First, use the regular graphics function stripchart()

> with(ant111b, stripchart(harvwt ~ site))

> ## Next, use lattice graphics

> library(lattice)

> stripplot(site ~ harvwt, data=ant111b)

> ## Next, use lattice graphics, but switch the x and y axes

> library(lattice)

> stripplot(site ~ harvwt, data=ant111b)

Note the differences in syntax between the two graphics systems.

Exercise 14
Check the class of each of the columns of the data frame cabbages (MASS ). Do side by side plots
of HeadWt against Date, for each of the levels of Cult.

> stripplot(Date ~ HeadWt | Cult, data=cabbages)

As the lattice graphics stripplot() function allows you to do a lot more than stripchart(), and
as the lattice syntax is highly consistent across the different lattice functions, it seems best to use
stripplot().

Exercise 15
In the data frame nsw74psid3, use stripplot() to compare, between levels of trt, the continuous
variables age, educ, re74 and re75
It is possible to generate all the plots at once, side by side. A simplified version of the plot is:

> stripplot(trt ~ age + educ, data=nsw74psid1, outer=T, scale="free")

What are the respective effects of scale = "free", and outer = TRUE? (Try leaving these at their
defaults.)

9 Tabulation

Exercise 16
In the data set nsw74psid3, compare for each of the two levels of trt:

(a) the relative numbers of black;

(b) the relative numbers of hispanics (hisp);

(c) the relative numbers of married (marr).



10 SORTING 10

10 Sorting

Exercise 17
Sort the rows in the data frame Acmena in order of increasing values of dbh.
[Hint: Use the function order(), applied to age to determine the order of row numbers required to
sort rows in increasing order of age. Reorder rows of Acmena to appear in this order.]

> Acmena <- subset(rainforest, species=="Acmena smithii")

> ord <- order(Acmena$dbh)

> acm <- Acmena[ord, ]

Sort the row names of possumsites (DAAG) into alphanumeric order. Reorder the rows of pos-
sumsites in order of the row names.

11 Use of a For Loop

Exercise 18

(a) Create a for loop that, given a numeric vector, prints out one number per line, with its square
and cube alongside.

(b) Look up help(while). Show how to use a while loop to achieve the same result.

(c) Show how to achieve the same result without the use of an explicit loop.

12 A Function

Exercise 19
The following function calculates the mean and standard deviation of a numeric vector.

> meanANDsd <- function(x){

+ av <- mean(x)

+ sdev <- sd(x)

+ c(mean=av, sd = sdev) # The function returns this vector

+ }

Modify the function so that: (a) the default is to use rnorm() to generate 20 random normal
numbers, and return the standard deviation; (b) if there are missing values, the mean and standard
deviation are calculated for the remaining values.
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Part II

Practice with R

1 Information about the Columns of Data Frames

Exercise 1
Functions that may be used to get information about data frames include str(), dim(),
row.names() and names(). Try each of these functions with the data frames allbacks, ant111b
and tinting (all in DAAG).
For getting information about the class of each column use e.g.

> library(DAAG)

> sapply(ant111b, class)

or

> unlist(sapply(ant111b, class))

This applies the function class() to each column of the data frame.
For each of these data frames, use table() to tabulate the number of values for each level.

2 Data Input

Exercise 2
The function read.csv() is a variant of read.table() that is designed to read in comma delimited
files such as may be obtained from Excel. Use this function to read in the file crx.data that is
available from the web page http://mlearn.ics.uci.edu/databases/credit-screening/.
Check the file crx.names to see which columns should be numeric, which categorical and which
logical. Make sure that the numbers of missing values in each column are the number given in the
file crx.names

For a first pass at reading in the data, try:

> crxpage <- "http://mlearn.ics.uci.edu/databases/credit-screening/crx.data"

> crx <- read.csv(url(crxpage), header=TRUE)

Exercise 3
For a challenging data input task, input the data from the file bostonc.txt. You can create this
by attaching the DAAG package and entering datafile("bostonc") thus:

> datafile("bostonc")

Examine the contents of the initial lines of the file carefully before trying to read it in. You will
need to change the parameters comment.char and skip from their defaults.

3 A Tabulation Exercise

Exercise 4
Tabulate the number of observations in each of the different districts in the data frame rockArt
(DAAGxtras). Create a factor groupDis in which all Districts with less than 5 observations are
grouped together into the category other.
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> library(DAAGxtras)

> groupDis <- as.character(rockArt$District)

> tab <- table(rockArt$District)

> le4 <- rockArt$District %in% names(tab)[tab <= 4]

> groupDis[le4] <- "other"

> groupDis <- factor(groupDis)

4 A For Loop

Exercise 5
The following code uses a for loop to plot graphs that compare the relative population growth
(here, by the use of a logarithmic scale) for the Australian states and territories.

> library(DAAG)

> oldpar <- par(mfrow=c(2,4))

> for (i in 2:9){

+ plot(austpop[,1], log(austpop[, i]), xlab="Year", ylab=names(austpop)[i],

+ pch=16, ylim=c(0,10))}

> par(oldpar)

Which Australian adminstration(s) showed the most rapid increase in the early years? Which
showed the most rapid increase in later years?

5 Data Exploration – Distributions of Data Values

Exercise 6
The data frame rainforest (DAAG package) has data on four different rainforest species. Use
table(rainforest$species) to check the names and numbers of the species present. In the fol-
lowing, attention will be limited to the species Acmena smithii.
The following plots a histogram showing the distribution of the diameter at base height:

> library(DAAG) # The data frame rainforest is from DAAG

> Acmena <- subset(rainforest, species=="Acmena smithii")

> hist(Acmena$dbh)

By default, frequencies are used to label the the vertical axis.
An alternative is to use a density scale (prob=TRUE). The histogram is interpreted as a crude density
plot. The density, which estimates the number of values per unit interval, changes in discrete jumps
at the breakpoints (= class boundaries). The histogram can then be directly overlaid with a density
plot, thus:

> hist(Acmena$dbh, prob=TRUE, xlim=c(0,50)) # Use a density scale

> lines(density(Acmena$dbh, from=0))

Why use the argument from=0? What is the effect of omitting it?
[Density estimates, as given by R’s function density(), change smoothly and do not depend on an
arbitrary choice of breakpoints, making them generally preferable to histograms. They do sometimes
require tuning to give a sensible result. Note especially the parameter bw, which determines how
the bandwidth is chosen, and hence affects the smoothness of the density estimate.]
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6 Random Samples

Exercise 7
Histograms and density plots are, for “small” samples, notoriously variable under repeated sampling.
This is true even for sample sizes as large as 50 or 100.
By taking repeated random samples from the normal distribution, and plotting the distribution for
each such sample, one can get an idea of the effect of sampling variation on the sample distribution.

A random sample of 100 values from a normal distribution (with mean 0 and standard deviation 1)
can be obtained, and a histogram and overlaid density plot shown, thus:

> y <- rnorm(100)

> hist(y, probability=TRUE) # probability=TRUE gives a y density scale

> lines(density(y))

(a) Take 5 samples of size 25, then showing the plots.

(b) Take 5 samples of size 100, then showing the plots.

(c) Take 5 samples of size 500, then showing the plots.

(d) Take 5 samples of size 2000, then showing the plots.

Note: By preceding the plots with par(mfrow=c(4,5)), all 20 plots can be displayed on
the one graphics page. (To bunch the graphs up more closely, make the further settings
par(mar=c(3.1,3.1,0.6,0.6), mgp=c(2.25,0.5,0)))

Comment on the usefulness of a sample histogram and/or density plot for judging whether the
population distribution is likely to be close to normal.

Exercise 8
This explores the function sample(), used to take a sample of values that are stored or enumerated
in a vector. Samples may be with or without replacement; specify replace = FALSE (the default)
or replace = TRUE. The parameter size determines the size of the sample. By default the sample
has the same size (length) as the vector from which samples are taken. Take several samples of size 5
from the vector 1:5, with replace=FALSE. Then repeat the exercise, this time with replace=TRUE.
Note how the two sets of samples differ.

Exercise 9
If in Exercise 6 above a new random sample of trees could be taken, the histogram and density plot
would change. How much might we expect them to change?
The boostrap approach treats the one available sample as a microcosm of the population. Repeated
with replacement samples are taken from the one available sample. This is equivalent to repeating
each sample value and infinite number of times, then taking random samples from the population
that is thus created. The expectation is that variation between those samples will be comparable
to variation between samples from the original population.

(a) Take repeated (5 or more) bootstrap samples from Acmena dataset of Exercise 6, and show
the density plots. [Use sample(Acmena$dbh, replace=TRUE)].

(b) Repeat, now with the cerealsugar data from DAAG.
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7 Smooth Curves

Exercise 10
The following compares three different smoothing functions. Comment on the different syntax and,
in the case of lowess(), the different default output that is returned. Why, for the smooth obtained
using lowess(), is it necessary to sort data in order of values of dbh? (Try omitting the ordering,
and observe the result.)

> Acmena <- subset(rainforest, species=="Acmena smithii")

> ## Use lowess()

> plot(wood ~ dbh, data=Acmena)

> ord <- order(Acmena$dbh)

> with(Acmena[ord, ], lines(predict(loess(wood ~ dbh)) ~ dbh))

> ## Now use panel.smooth()

> plot(wood ~ dbh, data=Acmena)

> with(Acmena, panel.smooth(dbh, wood))

For each of the functions just noted, what are the parameters that control the smoothness of the
curve? What, in each case, is the default?

8 Information on Workspace Objects

Exercise 11
An R workspace includes objects possum1, possum2, . . . possum5. The folowing shows how to get
the size of one of these objects one at a time.

> possum1 <- rnorm(10)

> object.size(possum1)

The names of the objects can be obtained with

> nam <- ls(pattern="^possum")

To get the sizes from the names that are held in nam, do

> sapply(nam, function(x)object.size(get(x)))

Create objects possum2, . . . possum5, and enter this command. Explain the successive steps in the
computation.
[Hint: Compare class(possum1) with class("possum1"), and object.size(possum1) with ob-
ject.size("possum1")]

Exercise 12*
The function ls() lists, by default, the names of objects in the current environment. If used from
the command line, it lists the objects in the workspace. If used in a function, it lists the names of
the function’s local variables. To get a listing of the contents of the workspace, do the following

> workls <- function()ls(name=".GlobalEnv")

> workls()
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Exercise 12*, continued

(a) If ls(name=".GlobalEnv") is replaced by ls(), the function lists the names of its local
variables. Modify workls() so that you can use it to demonstrate this.
[Hint: Consider adapting if(is.null(name))ls()) for the purpose.]

(b) Write a function that calculates the sizes of all objects in the workspace, then listing the names
and sizes of the largest ten objects.

9 Different Ways to Do a Calculation – Timings

Exercise 13
This exercise will investigate the relative times for alternative ways to do a calculation. First, we
will create both matrix and data frame versions of a largish data set.

> xxMAT <- matrix(runif(480000), ncol=50)

> xxDF <- as.data.frame(xxMAT)

The function system.time() will provide timings. The first three numbers that are returned will
be of interest; these are the user cpu time, the system cpu time, and the elapsed time.
Repeat each calculation several times, and note whether there is variation between repeats. If there
is, make the setting options(gcFirst=TRUE), and see whether this leads to more consistent timings.
NB: If your computer chokes on these calculations, reduce the dimensions of xxMAT and xxDF

(a) The following compares the times taken to increase each element by 1:

> system.time(invisible(xxMAT+1))[1:3]

> system.time(invisible(xxDF+1))[1:3]

(b) Now compare the following alternative ways to calculate the means of the 50 columns:

> ## Use apply() [matrix argument], or sapply() [data frame argument]

> system.time(av1 <- apply(xxMAT, 2, mean))[1:3]

> system.time(av1 <- sapply(xxDF, mean))[1:3]

> ## Use a loop that does the calculation for each column separately

> system.time({av2 <- numeric(50);

+ for(i in 1:50)av[i] <- mean(xxMAT[,i])

+ })[1:3]

> system.time({av2 <- numeric(50);

+ for(i in 1:50)av[i] <- mean(xxDF[,i])

+ })[1:3]

> ## Matrix multiplication

> system.time({colOFones <- rep(1, dim(xxMAT)[2])

+ av3 <- xxMAT %*% colOFones / dim(xxMAT)[2]

+ })[1:3]

(c) Pick one of the above calculations. Vary the number of rows in the matrix, keeping the number
of columns constant, and plot each of user CPU time and system CPU time against number
of rows of data.

Suggest why the calculation that uses matrix multiplication is so efficient, relative to the other
options.
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10 Functions – Making Sense of the Code

Exercise 14*
Data in the data frame fumig (DAAGxtras) are from a series of fumigation trials, in which produce
was exposed to the fumigant over a 2-hour time period. Concentrations in the chamber were
measured at times 5, 10, 30, 60, 90 and 120 minutes. Code given following this exercise calculates
a concentration-time (c-t) product that measures exposure to the fumigant, leading to the measure
ctsum.
Examine the code in the three alternative functions given below, and the data frame fumig (in the
DAAGxtras package) that is given as the default argument for the parameter df. Do the following:

(a) Run all three functions, and check that they give the same result.

(b) Annotate the code for calcCT1() to explain what each line does.

(c) Are fumigant concentration measurements noticeably more variable at some times than at
others?

(d) Which function is fastest? [In order to see much difference, it will be necessary to put the
functions in loops that run perhaps 1000 or more times.]

Code for 3 functions that do equivalent calculations
> ## Function "calcCT1"

> "calcCT1" <-

+ function(df=fumig, times=c(5,10,30,60,90,120), ctcols=3:8){

+ multiplier <- c(7.5,12.5,25,30,30,15)

+ m <- dim(df)[1]

+ ctsum <- numeric(m)

+ for(i in 1:m){

+ y <- unlist(df[i, ctcols])

+ ctsum[i] <- sum(multiplier*y)/60

+ }

+ df <- cbind(ctsum=ctsum, df[,-ctcols])

+ df

+ }

> ##

> ## Function "calcCT2"

> "calcCT2" <-

+ function(df=fumig, times=c(5,10,30,60,90,120), ctcols=3:8){

+ multiplier <- c(7.5,12.5,25,30,30,15)

+ mat <- as.matrix(df[, ctcols])

+ ctsum <- mat%*%multiplier/60

+ cbind(ctsum=ctsum, df[,-ctcols])

+ }

> ##

> ## Function "calcCT3"

> "calcCT3" <-

+ function(df=fumig, times=c(5,10,30,60,90,120), ctcols=3:8){

+ multiplier <- c(7.5,12.5,25,30,30,15)

+ mat <- as.matrix(df[, ctcols])

+ ctsum <- apply(mat, 1, function(x)sum(x*multiplier))/60

+ cbind(ctsum=ctsum, df[,-ctcols])

+ }



11 ∗USE OF SAPPLY() TO GIVE MULTIPLE GRAPHS 17

11 ∗Use of sapply() to Give Multiple Graphs

Exercise 15* (Optional extra I)
Here is code for the calculations that compare the relative population growth rates for the Australian
states and territories, but avoiding the use of a loop:

> oldpar <- par(mfrow=c(2,4))

> invisible(

+ sapply(2:9, function(i, df)

+ plot(df[,1], log(df[, i]),

+ xlab="Year", ylab=names(df)[i], pch=16, ylim=c(0,10)),

+ df=austpop)

+ )

> par(oldpar)

Run the code, and check that it does indeed give the same result as the use of an explicit loop.
[By wrapping the code in the function invisible(), printed output that gives no useful information
can be suppressed.]
Note that lapply() could be used in place of sapply().

There are several subtleties here:

(i) The first argument to sapply() can be either a list (which is, technically, a non-atomic vector)
or a vector.1 Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an anonymous function that has
two arguments. The argument i takes as its values, in turn, the sucessive elements in the first
argument to sapply

(iii) Where as here the anonymous function has further arguments, they are supplied as additional
arguments to sapply(). Hence the parameter df=austpop.

12 ∗The Internals of R – Functions are Pervasive

Exercise 16* (Optional extra II)
This exercise peeks into the internals of the way in which R structures arithmetic and related
computations. Those internals are close enough to the surface that users can experiment with their
use.
The binary arithmetic operators +, -, *, / and ^ are implemented as functions. (R is a functional
language; albeit with features that compromise its purity as a member of this genre!) Try the
following:

> "+"(2,5)

> "-"(10,3)

> "/"(2,5)

> "*"("+"(5,2), "-"(3,7))

1By “vector” we usually mean an atomic vector, with “atoms” that are of one of the modes ”logical”, ”integer”,
”numeric”, ”complex”, ”character”’ or ”raw”. (Vectors of mode ”raw” can for our purposes be ignored.)
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Exercise 16*, continued
There are two other binary arithmetic operators – %% and %/%. Look up the relevant help page, and
explain, with examples, what they do. Try

> (0:25) %/% 5

> (0:25) %% 5

Of course, these are also implemented as functions. Write code that demonstrates this.
Note also that [ is implemented as a function. Try

> z <- c(2, 6, -3, NA, 14, 19)

> "["(z, 5)

> heights <- c(Andreas=178, John=185, Jeff=183)

> "["(heights, c("Jeff", "John"))

Rewrite these using the usual syntax.
Use this syntax to extract, from the data frame possumsites (DAAG), the altitudes for Byrangery
and Conondale.
Note: Expressions in which arithmetic operators appear as explicit functions with binary arguments
translate directly into postfix reverse Polish notation, introduced in 1920 by the Polish logician and
mathematician Jan Å ↪Aukasiewicz. Postfix notation is widely used in the interpreters and compilers
that translate computer language code into machine or assembly language instructions. See the
Wikipedia article “Reverse Polish Notation”.
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Part III

Informal and Formal Data Exploration

1 Informal Data Exploration

These exercises explore data that will later be used for exercises in error rate estimation.

Exercise 1
Look up the help page for the data frame Pima.tr2 (MASS package), and note the columns in
the data frame. The eventual interest is in using use variables in the first seven column to classify
diabetes according to type. Here, we explore the individual columns of the data frame.

(a) Several columns have missing values. Analysis methods inevitably ignore or handle in some
special way rows that have one or moe missing values. It is therefore desirable to check whether
rows with missing values seem to differ systematically from other rows.

Determine the number of missing values in each column, broken down by type, thus:

> library(MASS)

> ## Create a function that counts NAs

> count.na <- function(x)sum(is.na(x))

> ## Check function

> count.na(c(1, NA, 5, 4, NA))

> ## For each level of type, count the number of NAs in each column

> for(lev in levels(Pima.tr2$type))

+ print(sapply(subset(Pima.tr2, type==lev), count.na))

The function by() can be used to break the calculation down by levels of a factor, avoiding
the use of the for loop, thus:

> by(Pima.tr2, Pima.tr2$type, function(x)sapply(x, count.na))

(b) Create a version of the data frame Pima.tr2 that has anymiss as an additional column:

> missIND <- complete.cases(Pima.tr2)

> Pima.tr2$anymiss <- c("miss","nomiss")[missIND+1]

For remaining columns, compare the means for the two levels of anymiss, separately for each
level of type. Compare also, for each level of type, the number of missing values.

Exercise 2

(a) Use strip plots to compare values of the various measures for the levels of anymiss, for each of
the levels of type. Are there any columns where the distribution of differences seems shifted
for the rows that have one or more missing values, relative to rows where there are no missing
values?
Hint: The following indicates how this might be done efficiently:

> library(lattice)

> stripplot(anymiss ~ npreg + glu | type, data=Pima.tr2, outer=TRUE,

+ scales=list(relation="free"), xlab="Measure")
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Exercise 2, continued

(b) Density plots are in general better than strip plots for comparing the distributions. Try the
following, first with the variable npreg as shown, and then with each of the other columns
except type. Note that for skin, the comparison makes sense only for type=="No". Why?

> library(lattice)

> ## npreg & glu side by side (add other variables, as convenient)

> densityplot( ~ npreg + glu | type, groups=anymiss, data=Pima.tr2,

+ auto.key=list(columns=2), scales=list(relation="free"))

Exercise 3
Better than either strip plots or density plots may be Q-Q plots. Using qq() from lattice, investigate
their use. In this exercise, we use random samples from normal distributions to help develop an
intuitive understanding of Q-Q plots, as they compare with density plots.

(a) First consider comparison using (i) a density plot and (ii) a Q-Q plot when samples are from
populations in which one of the means is shifted relative to the other. Repeat the following
several times,

> y1 <- rnorm(100, mean=0)

> y2 <- rnorm(150, mean=0.5) # NB, the samples can be of different sizes

> df <- data.frame(gp=rep(c("first","second"), c(100,150)), y=c(y1, y2))

> densityplot(~y, groups=gp, data=df)

> qq(gp ~ y, data=df)

(b) Now make the comparison, from populations that have different standard deviations. For this,
try, e.g.

> y1 <- rnorm(100, sd=1)

> y2 <- rnorm(150, sd=1.5)

Again, make the comparisons using both density plots and Q-Q plots.

Exercise 4
Now consider the data set Pima.tr2, with the column anymiss added as above.

(a) First make the comparison for type="No".

> qq(anymiss ~ npreg, data=Pima.tr2, subset=type=="No")

Compare this with the equivalent density plot, and explain how one translates into the other.
Comment on what these graphs seem to say.

(b) The following places the comparisons for the two levels of type side by side:

> qq(anymiss ~ npreg | type, data=Pima.tr2)

Comment on what this graph seems to say.

NB: With qq(), use of “+” to get plots for the different columns all at once will not, in the current
version of lattice, work.
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2 Bootstrap sampling

Exercise 5
The following takes a with replacement sample of the rows of Pima.tr2.

> rows <- sample(1:dim(Pima.tr2)[1], replace=TRUE)

> densityplot(~ bmi, groups=type, data=Pima.tr2[rows, ],

+ scales=list(relation="free"), xlab="Measure")

Repeat, but using anymiss as the grouping factor, and with different panels for the two levels
of type. Repeat for several different bootstrap samples. Are there differences between levels of
anymiss that seem consistent over repeated bootstrap samples?

Exercise 6
Exercise 2 compared density plots, for several of the variables, between rows that had one or more
missing values and those that had no missing values. We can use the bootstrapping idea to check
the copnsistency of apparent differences across repeated bootstrap samples.
The distribution for bmi gives the impression that it has a different shape, between rows where one
or more values was missing and rows where no values were missing, at least for type=="Yes". One
way to check whether this difference is consistent under repeated sampling is to treat the sample as
representative of the population, and take repeated with replacement (“bootstrap”) samples from
it.
The following takes a bootstrap sample, then showing the Q-Q plot

> rownum <- 1:dim(Pima.tr2)[1] # generate row numbers

> chooserows <- sample(rownum, replace=TRUE)

> qq(anymiss ~ bmi | type, data=Pima.tr2[chooserows, ],

+ auto.key=list(columns=2))

Wrap these lines of code in a function. Repeat the formation of the bootstrap samples and the plots
several times. Does the shift in the distribution seem consistent under repeating sampling?

Judgements based on examination of graphs are inevitably subjective. They do however make it
possible to compare differences in the shapes of distributions. Here, the shape difference is of more
note than any difference in mean or median.

Exercise 7
In the data frame nswdemo (DAAGxtras package), compare the distribution of re78 for those who
received work training (trt==1) with controls (trt==0) who did not.

> library(DAAGxtras)

> densityplot(~ re78, groups=trt, data=nswdemo, from=0,

+ auto.key=list(columns=2))

The distributions are highly skew. A few very large values may unduly affect the comparison.
A reasonable alternative is to compare values of log(re78+23). The value 23 is chosen between it
is half the minimum non-zero value of re78. Here is the density plot.

> unique(sort(nswdemo$re78))[1:3] # Examine the 3 smallest values

> densityplot(~ log(re78+23), groups=trt, data=nswdemo,

+ auto.key=list(columns=2))

Do the distribution for control and treated have similar shapes?
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Exercise 8
Now examine the displacement, under repeated bootstrap sampling, of one mean relative to the
other. Here is code for the calculation:

> twoBoot <- function(n=999, df=nswdemo, ynam="re78", gp="trt"){

+ d2 <- numeric(n+1)

+ fac <- df[, gp]

+ if(!is.factor(fac))fac <- factor(fac)

+ if(length(levels(fac)) != 2) stop(paste(gp, "must have 2 levels"))

+ y <- df[, ynam]

+ d2[1] <- diff(tapply(y, fac, mean))

+ for(i in 1:n){

+ chooserows <- sample(1:length(y), replace=TRUE)

+ faci <- fac[chooserows]

+ yi <- y[chooserows]

+ d2[i+1] <- diff(tapply(yi, faci, mean))

+ }

+ d2

+ }

> ##

> d2 <- twoBoot()

> quantile(d2, c(.025,.975)) # 95% confidence interval

Note that a confidence interval should not be interpreted as a probability statement. It takes no
account of prior probability. Rather, 95% of intervals that are calculated in this way can be expected
to contain the true probability.

Exercise 9
Another possibility is to work with a permutation distribution. If the difference between treated and
controls is entirely due to sampling variation, then permuting the treatment labels will give another
sample from this same distribution. Does the observed difference between treated and controls seem
“extreme”, relative to this permutation distribution? Here is code that may be used.

> dnsw <- numeric(1000)

> y <- nswdemo$re78

> treat <- nswdemo$trt

> dnsw[1] <- mean(y[treat==1]) - mean(y[treat==0])

> for(i in 2:1000){

+ trti <- sample(treat)

+ dnsw[i] <- mean(y[trti==1]) - mean(y[trti==0])

+ }

> sum(dnsw > dnsw[1])/length(dnsw)

[1] 0.029

> 2*min(sum(d2<0)/length(d2), sum(d2>0)/length(d2)) # 2-sided comparison

[1] 0.062

Compare the result with that from the bootstrap approach.
Replace re78 with log(re78+23) and repeat the calculations.
Note: In formalizing the result for a test of hypothesis, note that the difference between treat==1
and treat==1 might go in either direction.
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Part IV

Models and Model Accuracy

1 Straight Line Regression

Exercise 1
A plot of heart weight (heart) versus body weight (weight), for Cape Fur Seal data in the data
set cfseal (DAAG) shows a relationship that is approximately linear. Check this. However vari-
ability about the line increases with increasaing weight. It is better to work with log(heart) and
log(weight), where the relationship is again close to linear, but variability about the line is more
homogeneous. Such a linear relationship is consistent with biological allometry, here across different
individuals. Allometric relationships are pairwise linear on a logarithmic scale.
Plot log(heart) against log(weight), and fit the least squares regression line for log(heart) on
log(weight).

> library(DAAG)

> cflog <- log(cfseal[, c("heart", "weight")])

> names(cflog) <- c("logheart", "logweight")

> plot(logheart ~ logweight, data = cflog)

> cfseal.lm <- lm(logheart ~ logweight, data = cflog)

> abline(cfseal.lm)

Exercise 2
In the training/test sample appraoch, the data are split into two parts. The model is trained on
one part (the training set), and tested on the other part. Run the following code:

> fold <- sample(1:2, dim(cflog)[1], replace = TRUE)

> train <- subset(cflog, fold == 1)

> test <- subset(cflog, fold == 2)

> cfseal.lm <- lm(logheart ~ logweight, data = train)

> hat <- predict(cfseal.lm, newdata = test)

> plot(hat, test$logheart)

> meansquare <- sum((hat - test$logheart)^2)/dim(test)[1]

> sd <- sqrt(meansquare)

> sd

Values for sd should be of the same order of magnitude as summary(cfseal.lm)$sigma) Repeat
the calculations 100 times, and store the 100 values of sd

Exercise 3
We could interchange the training and test set, and repeat the calculations, averaging the two mean
squares. But why limit ourselves to a split into two parts. Why not split the data into an arbitrary
number of parts?

(a) In cross-validation, the data are split into perhaps 10 folds. Each of the ten parts is used in
turn as the test data, with the remaining nine parts used as training data. Here is skeleton
code for the calculations.
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Exercise 3, continued

> cvskeleton <- function(data, nfolds = 3) {

+ n <- dim(data)[1]

+ folds <- sample(rep(1:nfolds, length.out = n))

+ ufold <- unique(folds)

+ for (i in ufold) {

+ trainrows <- (1:n)[i != folds]

+ testrows <- (1:n)[i == folds]

+ print(testrows)

+ }

+ invisible(split(1:n, folds))

+ }

Run the function and check that each row does indeed appear in exactly one of the test sets.

(b) Here is a function that implements cross-validation calculations. For the regression calculation,
it will be necessary to supply it with functions that do the training and test calculations, thus:

> cftrainfun <- function(formula = logheart ~ logweight, traindata) lm(formula,

+ traindata)

> cftestfun <- function(obj, newdata) predict(obj, newdata)

Here then is the function:

> cvpred <- function(formula = type ~ ., data, trainfun, testfun,

+ nfolds = 2, balanced = TRUE) {

+ n <- dim(data)[1]

+ pred <- numeric(n)

+ if (balanced)

+ folds <- sample(rep(1:nfolds, length.out = n))

+ else folds <- sample(1:nfolds, n, replace = T)

+ ufold <- unique(folds)

+ for (i in ufold) {

+ testrows <- i == folds

+ traindata <- subset(data, !testrows)

+ trained.obj <- trainfun(formula, traindata = traindata)

+ testdata <- data[testrows, ]

+ pred[testrows] <- testfun(obj = trained.obj, newdata = testdata)

+ }

+ invisible(pred)

+ }

Now run the function, and compare predictions with observed values

> predobs <- cvpred(logheart ~ logweight, data = cflog, trainfun = cftrainfun,

+ testfun = cftestfun)

> sd <- sqrt(sum((predobs - cflog$logheart)^2)/dim(cflog)[1])

Run the calculation several times.
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Exercise 4
For each of (1) nfolds=2 and (2) nfolds=10, run the calculations of Exercise 3 100 times, calculating
a standard deviation at each run. Compare the two sets of standard deviation estimates, both using
a density plot and using a Q-Q plot. Which calculation would you expect to give the more consistent
(less variable) results? Why? Do the graphs bear this out?

Exercise 5
The following fits a simple linear discriminant model to the data frame Pima.tr, then using Pima.te
to test the predictions. We are using the training/test set approach.

> Pima.lda <- lda(type ~ ., data = Pima.tr)

> predclass <- predict(Pima.lda, newdata = Pima.te)$class

> tab12 <- table(Pima.te$type, predclass)

> tab12

> sum(tab12[row(tab12) == col(tab12)])/sum(tab12)

Note that we are regarding Pima.tr as data set 1, and textttPima.te as data set 2. The confusion
matrix when we train on data set 1 and test on data set 2 is therefore called tab12.
Now use Pima.te as the training data, and Pima.tr as the test data, and repeat the exercise, leading
to the confusion matrix tab21.
You should find that the confusion matrices differ substantially, and that the overall accuracies
differ. What might explain this?

Exercise 6
Now work with Pima.tr alone, and Pima.te alone, calculating cross-validated predictions and con-
fusion matrices. As before functions will be be defined to handle the training and testing. Use is
then made of the function cvpred() that was defined above.

(a) Calculate cross-validated estimates, with Pima.tr.

> Pimatrainfun <- function(formula, traindata) lda(formula, traindata)

> Pimatestfun <- function(obj, newdata) predict(obj, newdata)$class

> predclass <- cvpred(type ~ ., data = Pima.tr, nfolds = 10, trainfun = Pimatrainfun,

+ testfun = Pimatestfun)

> tab11 <- table(Pima.tr$type, predclass)

> sum(tab11[row(tab11) == col(tab11)])/sum(tab11)

(b) Now calculate cross-validated estimates for Pima.te, leading to the confusion matrix tab22.

Repeat each of these calculations several times, to get an idea of the statistical variation in the
confusion matrices.
Compare tab11, tab21, tab22 and tab12, and comment.

Exercise 7
The resubstitution measure of accuracy compares predictions for the training data with observations
from the same training data. For example:

> Pima.lda <- lda(type ~ ., data = Pima.tr)

> predclass <- predict(Pima.lda)$class

> tab1resub <- table(Pima.tr$type, predclass)

> tab1resub

> sum(tab1resub[row(tab1resub) == col(tab1resub)])/sum(tab1resub)



1 STRAIGHT LINE REGRESSION 26

Exercise 7, continued
Such resubstitution measures of accuracy can be grossly optimistic. Why? Do they seem to be
optimistic for the models that have been fitted to these data.

Exercise 8
A feature of the resubstitution measure is that it cannot decrease as more terms are added to the
model. For example, try adding in all second order interaction terms, i.e., we have all factors and
interactions involving three or fewer columns.

> Pima.lda <- lda(type ~ .^3, data = Pima.tr)

> predclass <- predict(Pima.lda)$class

> tab1resub3 <- table(Pima.tr$type, predclass)

> tab1resub3

> sum(tab1resub3[row(tab1resub3) == col(tab1resub3)])/sum(tab1resub3)

There is a large increase in the resubstitution measure of predictive accuracy, but does it mean
anything. In order to check, we do a cross-validation calculation.

> predclass <- cvpred(type ~ .^3, data = Pima.tr, nfolds = 10,

+ trainfun = Pimatrainfun, testfun = Pimatestfun)

> tab11cv3 <- table(Pima.tr$type, predclass)

> sum(tab11cv3[row(tab11cv3) == col(tab11cv3)])/sum(tab11cv3)

Compare the resubstitution measure with the cross-validation measure, and comment.

Exercise 9
Most of the rows with missing values for Pima.tr2 arise from missing values for the column skin.
Compare

> sum(!complete.cases(Pima.tr2[, -4]))

> sum(!complete.cases(Pima.tr2))

The following omits entirely rows where columns other than skin are missing. It then creates an
outcome variable with four categories: type=="No" & NA or not for skin, type=="Yes" & NA or not
for skin.

> mostlyOK <- complete.cases(Pima.tr2[, -4])

> Pima.tr2A <- Pima.tr2[mostlyOK, ]

> type4 <- with(Pima.tr2A, paste(type, complete.cases(skin), sep = ""))

> Pima.tr2A <- cbind(Pima.tr2A[, c(1:3, 5:7)], type4 = factor(type4))

Now try

> PimaA.lda <- lda(type4 ~ ., data = Pima.tr2A)

> PimaA.lda
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Exercise 9, continued
We can get a plot of the results:

> plot(PimaA.lda, dimen = 2)

> scores <- predict(PimaA.lda)$x

> library(lattice)

> xyplot(scores[, 2] ~ scores[, 1], groups = type4, data = Pima.tr2A,

+ auto.key = list(columns = 2), par.settings = list(superpose.symbol = list(pch = 16)))

The function cvpred() can be used as before to estimate the confusion matrix. Or use the setting
CV=TRUE when the function lda is called, which uses the simple leave-one-out form of cross-validation.

> table(Pima.tr2A$type4, lda(type4 ~ ., data = Pima.tr2A, CV = TRUE)$class)

2 Analysis Using randomForest

Exercise 10
Repeat exercise 9, but now using randomForest(). For now, we use this as a black box.

> library(randomForest)

> Pima.rf <- randomForest(type4 ~ ., data = Pima.tr2A)

> Pima.rf

Call:
randomForest(formula = type4 ~ ., data = Pima.tr2A)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 53.52%
Confusion matrix:

NoFALSE NoTRUE YesFALSE YesTRUE class.error
NoFALSE 2 46 1 6 0.9636364
NoTRUE 19 93 2 18 0.2954545
YesFALSE 3 15 0 11 1.0000000
YesTRUE 3 26 2 37 0.4558824

Note that OOB = Out of Bag Error rate, calculated using an approach that has much the same
effect as cross-validation, applied to the data specified by the data parameter. Notice that random-
Forest() will optionally give, following the one function call, an assessment of predictive error for
a completely separate set of test data that has had no role in training the model.

> type4te <- with(Pima.te, paste(type, TRUE, sep = ""))

> type4te <- factor(type4te, levels = levels(Pima.tr2A$type4))

> randomForest(type4 ~ ., data = Pima.tr2A, xtest = Pima.te[c(1:3,

+ 5:7)], ytest = type4te)

Where such a test set is available, this provides a reassuring check that randomForest() is not
over-fitting.

Note: The function tuneRF() can be used for such limited tuning as randomForest() allows.
Look up help(tuneRF(), and run this function in order to find an optimal value for the parameter
mtry. Then repeat the above with this optimum value of mtry, and again compare the OOB error
with the error on the test set.
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Part V

Ordination
The package oz, used to draw a map of Australia, must be installed. In order to use the dataframe
diabetes from the package mclust, that package must be installed. Or you can obtain the R image
file from "http://www.maths.anu.edu.au/~johnm/courses/dm/math3346/data/ Also required are
the functions read.dna() and dist.dna() from the package ape; that package must be installed.

Where there is no “natural” measure of distance between points, and there are groups in the
data that correspond to categorizations that will be of interest when the data are plotted, some
form of discriminant analysis may be the preferred starting point for obtaining a low-dimensional
representation. The low-dimensional representation that is likely to be superior to that obtained from
ordination without regard to any such categorization.

Two of the possibilities that the ordination methods considered in this laboratory addresses are:

• Distances may be given, from which it is desired to recover a low-dimensional representation.

– For example we may, as below, attempt to generate a map in which the distances on the
map accurately reflect Australian road travel distances.

– Or we may, based on genomic differences, derive genomic“distances ”between, e.g., different
insect species. The hope is that, with a judicious choice of the distance measure, the
distances will be a monotone function of the time since the two species separated. We’d
like to derive a 2 or 3-dimensional representation in which the distances accurately reflect
the closeness of the evolutionary relationships.

• There may be no groupings of the data that are suitable for use in deriving a low-dimensional
representation. Hence we calculate, using a metric that seems plausible, a matrix of distances
between pairs of points, from which we in turn try to derive a low-dimensional representation.

1 Australian road distances

The distance matrix that will be used is in the matrix audists, in the image file audists.Rdata.
Here is how the data can be read in from the text file:

audists <- read.table("audists.txt", sep="\t")
audists[is.na(audists)] <- 0
## Also, we will later use the data frame aulatlong
aulatlong <- read.table("aulatlong.txt", row.names=1)[,2:1]
aulatlong[,2] <- -aulatlong[,2]
colnames(aulatlong) <- c("latitude", "longitude")

Consiser first the use of classical multi-dimensional scaling, as implemented in the function cmdscale():

> library(DAAGxtras)

> aupoints <- cmdscale(audists)

> plot(aupoints)

> text(aupoints, labels = paste(rownames(aupoints)))

An alternative to text(aupoints, labels=paste(rownames(aupoints))), allowing better place-
ment of the labels, is identify(aupoints, labels=rownames(aupoints)). We can compare the
distances in the 2-dimensional representation with the original road distances:

> origDists <- as.matrix(audists)

> audistfits <- as.matrix(dist(aupoints))

> misfit <- audistfits - origDists

> for (j in 1:9) for (i in (j + 1):10) {
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+ lines(aupoints[c(i, j), 1], aupoints[c(i, j), 2], col = "gray")

+ midx <- mean(aupoints[c(i, j), 1])

+ midy <- mean(aupoints[c(i, j), 2])

+ text(midx, midy, paste(round(misfit[i, j])))

+ }

> print(round(misfit))

Adelaide Alice Brisbane Broome Cairns Canberra Darwin Melbourne Perth
Adelaide 0 140 -792 -156 366 20 11 82 482
Alice 140 0 -1085 -175 -41 76 -118 106 -26
Brisbane -792 -1085 0 198 319 -25 -233 -471 153
Broome -156 -175 198 0 527 -7 6 -65 990
Cairns 366 -41 319 527 0 277 -31 178 8
Canberra 20 76 -25 -7 277 0 -1 -241 372
Darwin 11 -118 -233 6 -31 -1 0 -12 92
Melbourne 82 106 -471 -65 178 -241 -12 0 301
Perth 482 -26 153 990 8 372 92 301 0
Sydney -273 -314 -56 70 251 -8 -58 -411 271

Sydney
Adelaide -273
Alice -314
Brisbane -56
Broome 70
Cairns 251
Canberra -8
Darwin -58
Melbourne -411
Perth 271
Sydney 0

The graph is a tad crowded, and for detailed information it is necessary to examine the table.
It is interesting to overlay this “map” on a physical map of Australia.

> if (!exists("aulatlong")) load("aulatlong.RData")

> library(oz)

> oz()

> points(aulatlong, col = "red", pch = 16, cex = 1.5)

> comparePhysical <- function(lat = aulatlong$latitude, long = aulatlong$longitude,

+ x1 = aupoints[, 1], x2 = aupoints[, 2]) {

+ fitlat <- predict(lm(lat ~ x1 + x2))

+ fitlong <- predict(lm(long ~ x1 + x2))

+ x <- as.vector(rbind(lat, fitlat, rep(NA, 10)))

+ y <- as.vector(rbind(long, fitlong, rep(NA, 10)))

+ lines(x, y, col = 3, lwd = 2)

+ }

> comparePhysical()

An objection to cmdscale() is that it gives long distances the same weight as short distances. It is
just as prepared to shift Canberra around relative to Melbourne and Sydney, as to move Perth. It
makes more sense to give reduced weight to long distances, as is done by sammon() (MASS ).

> library(MASS)

> aupoints.sam <- sammon(audists)

Initial stress : 0.01573
stress after 10 iters: 0.00525, magic = 0.500
stress after 20 iters: 0.00525, magic = 0.500
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> oz()

> points(aulatlong, col = "red", pch = 16, cex = 1.5)

> comparePhysical(x1 = aupoints.sam$points[, 1], x2 = aupoints.sam$points[,

+ 2])

Notice how Brisbane, Sydney, Canberra and Melbourne now maintain their relative positions much
better.

Now try full non-metric multi-dimensional scaling (MDS). THis preserves only, as far as possible,
the relative distances. A starting configuration of points is required. This might come from the
configuration used by cmdscale(). Here, however, we use the physical distances.

> oz()

> points(aulatlong, col = "red", pch = 16, cex = 1.5)

> aupoints.mds <- isoMDS(audists, as.matrix(aulatlong))

initial value 11.875074
iter 5 value 5.677228
iter 10 value 4.010654
final value 3.902515
converged

> comparePhysical(x1 = aupoints.mds$points[, 1], x2 = aupoints.mds$points[,

+ 2])

Notice how the distance between Sydney and Canberra has been shrunk quite severely.

2 If distances must first be calculated . . .

There are two functions that can be used to find distances – dist() that is in the base statistics
package, and daisy() that is in the cluster package. The function daisy() is the more flexible. It
has a parameter stand that can be used to ensure standardization when distancces are calculated,
and allows columns that are factor or ordinal. Unless measurements are comparable (e.g., relative
growth, as measured perhaps on a logarithmic scale, for different body measurements), then it is
usually desirable to standardize before using ordination methods to examine the data.

> library(cluster)

> library(mclust)

> data(diabetes)

> diadist <- daisy(diabetes[, -1], stand = TRUE)

> plot(density(diadist, from = 0))

3 Genetic Distances

Here, matching genetic DNA or RNA or protein or other sequences are available from each of the
different species. Distances are based on probabilistic genetic models that describe how gene sequences
change over time. The package ape implements a number of alternative measures. For details see
help(dist.dna).

3.1 Hasegawa’s selected primate sequences

The sequences were selected to have as little variation in rate, along the sequence, as possible. The
sequences are available from:
http://evolution.genetics.washington.edu/book/primates.dna. They can be read into R as:
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> library(ape)

> webpage <- "http://evolution.genetics.washington.edu/book/primates.dna"

> primates.dna <- read.dna(url(webpage))

Now calculate distances, using Kimura’s F84 model, thus

> primates.dist <- dist.dna(primates.dna, model = "F84")

We now try for a two-dimensional representation, using cmdscale().

> primates.cmd <- cmdscale(primates.dist)

> eqscplot(primates.cmd)

> rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.cmd[, 1], breaks = 4))]

> text(primates.cmd[, 1], primates.cmd[, 2], row.names(primates.cmd),

+ pos = rtleft)

Now see how well the distances are reproduced:

> d <- dist(primates.cmd)

> sum((d - primates.dist)^2)/sum(primates.dist^2)

[1] 0.1977138

This is large enough (20%, which is a fraction of the total sum of squares) that it may be worth
examining a 3-dimensional representation.

> primates.cmd <- cmdscale(primates.dist, k = 3)

> cloud(primates.cmd[, 3] ~ primates.cmd[, 1] * primates.cmd[,

+ 2])

> d <- dist(primates.cmd)

> sum((d - primates.dist)^2)/sum(primates.dist^2)

[1] 0.1045168

Now repeat the above with sammon() and mds().

> primates.sam <- sammon(primates.dist, k = 3)

Initial stress : 0.11291
stress after 10 iters: 0.04061, magic = 0.461
stress after 20 iters: 0.03429, magic = 0.500
stress after 30 iters: 0.03413, magic = 0.500
stress after 40 iters: 0.03409, magic = 0.500

> eqscplot(primates.sam$points)

> rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.sam$points[, 1],

+ breaks = 4))]

> text(primates.sam$points[, 1], primates.sam$points[, 2], row.names(primates.sam$points),

+ pos = rtleft)

There is no harm in asking for three dimensions, even if only two of them will be plotted.

> primates.mds <- isoMDS(primates.dist, primates.cmd, k = 3)

initial value 19.710924
iter 5 value 14.239565
iter 10 value 11.994621
iter 15 value 11.819528
iter 15 value 11.808785
iter 15 value 11.804569
final value 11.804569
converged
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> eqscplot(primates.mds$points)

> rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.mds$points[, 1],

+ breaks = 4))]

> text(primates.mds$points[, 1], primates.mds$points[, 2], row.names(primates.mds$points),

+ pos = rtleft)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The two remaining examples are optional extras.

4 *Distances between fly species

These data have been obtained from databases on the web. We extract them from an Excel .csv
file (dipt.csv) and store the result in an object of class "dist". The file dipt.csv is available from
http://www.maths.anu.edu.au/~johnm/datasets/ordination.

Only below diagonal elements are stored, in column dominant order, in the distance object
dipdist that is created below. For manipulating such an object as a matrix, should this be re-
quired, as.matrix() can be used to turn it into a square symmetric matrix. Specify, e.g., dipdistM
<- as.matrix(dipdist). For the clustering and ordination methods that are used here, storing it as
a distance object is fine.

> webfile <- "http://www.maths.anu.edu.au/~johnm/datasets/ordination/dipt.csv"

> diptera <- read.csv(url(webfile), comment = "", na.strings = c(NA,

+ ""))

> dim(diptera)

[1] 110 114

> species <- as.character(diptera[, 1])

> table(substring(species, 1, 1))

#
110

> species <- substring(species, 2)

> genus <- as.character(diptera[, 2])

> dipdist <- as.dist(diptera[1:110, 5:114])

> attributes(dipdist)$Labels <- species

> length(dipdist)

[1] 5995

Two of the functions that will be used – sammon() and isoMDS() – require all distances to be
positive. Each zero distance will be replaced by a small positive number.

> dipdist[dipdist == 0] <- 0.5 * min(dipdist[dipdist > 0])

Now use (i) classical metric scaling; (ii) sammon scaling; (iii) isometric multi-dimensional scaling,
with i as the starting configuration; (iv) isometric multi-dimensional scaling, with ii as the starting
configuration.

> dipt.cmd <- cmdscale(dipdist)

> genus <- sapply(strsplit(rownames(dipt.cmd), split = "_", fixed = TRUE),

+ function(x) x[1])

> nam <- names(sort(table(genus), decreasing = TRUE))

> genus <- factor(genus, levels = nam)

> plot(dipt.cmd, col = unclass(genus), pch = 16)
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> dipt.sam <- sammon(dipdist)

> plot(dipt.sam$points, col = unclass(genus), pch = 16)

> dipt.mds <- isoMDS(dipdist, dipt.cmd)

> plot(dipt.mds$points, col = unclass(genus), pch = 16)

> dipt.mds2 <- isoMDS(dipdist, dipt.sam$points)

> plot(dipt.mds2$points, col = unclass(genus), pch = 16)

5 *Rock Art

Here, we use data that were collected by Meredith Wilson for her PhD thesis. The 614 features were
all binary – the presence or absence of specific motifs in each of 103 Pacific sites. It is necessary to
omit 5 of the 103 sites because they have no motifs in common with any of the other sites. Data are
in the dataset pacific.RData.

The binary measure of distance was used – the number of locations in which only one of the sites
had the marking, as a proportion of the sites where one or both had the marking. Here then is the
calculation of distances:

> if (!exists("pacific")) load("pacific.Rdata")

> pacific.dist <- dist(x = as.matrix(pacific[-c(47, 54, 60, 63,

+ 92), 28:641]), method = "binary")

> sum(pacific.dist == 1)/length(pacific.dist)

[1] 0.6311803

> plot(density(pacific.dist, to = 1))

> symmat <- as.matrix(pacific.dist)

> table(apply(symmat, 2, function(x) sum(x == 1)))

13 21 27 28 29 32 33 35 36 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56
1 1 1 1 2 1 2 1 2 2 1 2 4 3 1 3 1 2 1 1 2 2 3 2 2 2
57 58 61 62 64 65 66 67 68 69 70 71 73 75 76 77 79 81 83 84 85 90 91 92 93 94
1 3 3 1 2 1 1 1 3 3 1 1 4 1 2 1 1 1 2 1 1 3 1 1 3 1
95 96 97
1 3 4

It turns out that 63% of the distances were 1. This has interesting consequences, for the plots we now
do.

> pacific.cmd <- cmdscale(pacific.dist)

> cmdplot()

> samplot()
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Part VI

Discriminant Methods – Error Rate
Estimation, & Low-Dimensional Views

1 rpart Analyses – the Combined Pima Dataset

Note the rpart terminology:

size Number of leaves Used in plots from plotcp()
nsplit Number of splits = size - 1 Used in printcp() output
cp Complexity parameter Appears as CP in graphs and printed

output. A smaller cp gives a more complex model,
i.e., more splits.

rel error Resubstitution error Multiply by baseline error to get the
measure corresponding absolute error measure.

In general, treat this error measure with scepticism.
xerror Crossvalidation error Multiply by baseline error to get the

estimate corresponding absolute error measure.

After attaching the MASS package, type help(Pima.tr) to get a description of these data. They
are relevant to the investigation of conditions that may pre-dispose to diabetes.

The Pima data frame combines Pima.tr and Pima.te from the MASS package, thus:

> library(e1071)

> library(MASS)

> Pima <- rbind(Pima.tr, Pima.te)

1.1 Fitting the model

Fit an rpart model to the Pima data:

> library(rpart)

> Pima.rpart <- rpart(type ~ ., data = Pima, method = "class")

> plotcp(Pima.rpart)

The formula type ∼ . has the effect of using as explanatory variables all columns of Pima except
type. The parameter cp is a complexity parameter; it penalizes models that are too complex. A
small penalty leads to more splits. Note that cp, at this initial fit, has to be small enough so that the
minimum of the cross-validated error is attained.

Try this several times. The result will vary somewhat from run to run. Why?
One approach is to choose the model that gives the absolute minimum of the cross-validated error.

If the fitting has been repeated several times, the cross-validation errors can be averaged over the
separate runs.

A more cautious approach is to choose a model where there is some modest certainty that the final
split is giving a better than chance improvement. For this, the suggestion is to choose the smallest
number of splits so that cross-validated error rate lies under the dotted line. This is at a height of
(minimum cross-validated error rate) + 1 standard error.

The choice of 1 SE, rather than some other multiple of the SE, is somewhat arbitrary. The aim
is to identify a model where the numbers of splits stays pretty much constant under successive runs
of rpart. For this it is necessary to move back somewhat, on the curve that plots the cross-validated
error rate against cp, from the flat part of the curve where the cross-validated error rate is a minimum.
The 1 SE rule identifies a better-defined value of cp where the curve has a detectable negative slope.

For example, in one of my runs, the 1 SE rule gave cp=0.038, with size=4. The resulting tree can
be cut back to this size with:
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> Pima.rpart4 <- prune(Pima.rpart, cp = 0.037)

The value of cp is chosen to be less than 0.038, but more than the value that led to a further split.
Plot the tree, thus:

> plot(Pima.rpart4)

> text(Pima.rpart4)

Note also the printed output from

> printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima, method = "class")

Variables actually used in tree construction:
[1] age bmi glu npreg ped

Root node error: 177/532 = 0.33271

n= 532

CP nsplit rel error xerror xstd
1 0.265537 0 1.00000 1.00000 0.061400
2 0.056497 1 0.73446 0.77966 0.057116
3 0.025424 3 0.62147 0.74576 0.056284
4 0.020716 5 0.57062 0.76836 0.056844
5 0.014124 9 0.48588 0.71751 0.055552
6 0.011299 11 0.45763 0.67797 0.054464
7 0.010000 14 0.42373 0.69492 0.054940

Get the absolute cross-validated error by multiplying the root node error by xerror. With nsplit=3
(a tree of size 4 leaves), this is, in the run I did, 0.3327*0.7006 = 0.233. (The accuracy is obtained by
subtracting this from 1.0, i.e., about 77%.)

Where it is not clear from the graph where the minimum (or the minimum+SE, if that is used)
lies, it will be necessary to resort to use this printed output for that purpose. It may be necessary to
use a value of cp that is smaller than the default in the call to rpart(), in order to be reasonably
sure that the optimum (according to one or other criterion) has been found.

Exercise 1: Repeat the above several times, i.e.

> library(rpart)

> Pima.rpart <- rpart(type ~ ., data = Pima, method = "class")

> plotcp(Pima.rpart)

(a) Overlay the several plots of the cross-validated error rate against the number of splits. Why
does the cross=validated error rate vary somewhat from run to run? Average over the several runs
and choose the optimum size of tree based on (i) the minimum cross-validated error rate, and (ii) the
minimum cross-validated error rate, plus one SE.

(b) Show the relative error rate on the same graph.
NB: You can get the error rate estimates from:

> errmat <- printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima, method = "class")
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Variables actually used in tree construction:
[1] age bmi glu npreg ped

Root node error: 177/532 = 0.33271

n= 532

CP nsplit rel error xerror xstd
1 0.265537 0 1.00000 1.00000 0.061400
2 0.056497 1 0.73446 0.77966 0.057116
3 0.025424 3 0.62147 0.70621 0.055249
4 0.020716 5 0.57062 0.72316 0.055701
5 0.014124 9 0.48588 0.71186 0.055401
6 0.011299 11 0.45763 0.68927 0.054783
7 0.010000 14 0.42373 0.67232 0.054302

> colnames(errmat)

[1] "CP" "nsplit" "rel error" "xerror" "xstd"

> resub.err <- 1 - 0.3327 * errmat[, "rel error"]

> cv.err <- 1 - 0.3327 * errmat[, "xerror"]

]

Exercise 2: Prune the model back to give the optimum tree, as determined by the one SE rule.
How does the error rate vary with the observed value of type? Examine the confusion matrix. This is
most easily done using the function xpred(). (The following assumes that 3 leaves, i.e., cp less than
about 0.038 and greater than 0.011, is optimal.)

> Pima.rpart <- prune(Pima.rpart, cp = 0.037)

> cvhat <- xpred.rpart(Pima.rpart4, cp = 0.037)

> tab <- table(Pima$type, cvhat)

> confusion <- rbind(tab[1, ]/sum(tab[1, ]), tab[2, ]/sum(tab[2,

+ ]))

> dimnames(confusion) <- list(ActualType = c("No", "Yes"), PredictedType = c("No",

+ "Yes"))

> print(confusion)

PredictedType
ActualType No Yes

No 0.8647887 0.1352113
Yes 0.4802260 0.5197740

The table shows how the predicted accuracy changes, depending on whether the correct type is Yes
or No.

How would you expect the overall estimate of predictive accuracy to change, using the same fitted
rpart model for prediction:

• if 40% were in the Yes category?

• if 20% were in the Yes category?

2 rpart Analyses – Pima.tr and Pima.te

Exercise 3 These exercises will use the two data sets Pima.tr and Pima.te, and carrying out a
variation on the calculations of Exercise 2.

What are the respective proportions of the two types in the two data sets?
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Exercise 3a: Repeat Exercise 1, but now use the data frame Pima.tr to determine the model, and
comparing cross-validation accuracies from calculations with Pima.tr with accuracies when Pima.te
is used as the test data:

> trPima.rpart <- rpart(type ~ ., data = Pima.tr, method = "class")

> plotcp(trPima.rpart)

> printcp(trPima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 0.97059 0.097791
3 0.073529 2 0.61765 0.75000 0.090647
4 0.058824 3 0.54412 0.76471 0.091224
5 0.014706 4 0.48529 0.64706 0.086152
6 0.010000 7 0.44118 0.70588 0.088822

as above, e.g.

> trPima.rpart <- prune(trPima.rpart, cp = 0.02)

How does the error rate vary between the No’s and Yes’s. How does the expected error rate vary with
the proportion of No’s in the target population?

Exercise 3b: Refit the model. Choose values of cp that will give the points on the graph obtained
from plotcp(trPima.rpart). Suitable values of cp are those that appear on the graph given by
plotcp(). These (except for the first; what happens there?) are the geometric means of the successive
pairs that are printed, and can be obtained thus:

> trPima.rpart <- rpart(type ~ ., data = Pima.tr, method = "class")

> cp.all <- printcp(trPima.rpart)[, "CP"]

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.05882 0.099827
3 0.073529 2 0.61765 0.83824 0.093882
4 0.058824 3 0.54412 0.83824 0.093882
5 0.014706 4 0.48529 0.69118 0.088180
6 0.010000 7 0.44118 0.76471 0.091224
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> n <- length(cp.all)

> cp.all <- sqrt(cp.all * c(Inf, cp.all[-n]))

> nsize <- printcp(trPima.rpart)[, "nsplit"] + 1

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.05882 0.099827
3 0.073529 2 0.61765 0.83824 0.093882
4 0.058824 3 0.54412 0.83824 0.093882
5 0.014706 4 0.48529 0.69118 0.088180
6 0.010000 7 0.44118 0.76471 0.091224

Observe that nsize is one greater than the number of splits.
Prune back successively to these points. In each case determine the cross-validated error for the

training data and the error for test data. Plot both these errors against the size of tree, on the same
graph. Are they comparable? The following will get you started:

> tr.cverr <- printcp(trPima.rpart)[, "xerror"] * 0.34

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.05882 0.099827
3 0.073529 2 0.61765 0.83824 0.093882
4 0.058824 3 0.54412 0.83824 0.093882
5 0.014706 4 0.48529 0.69118 0.088180
6 0.010000 7 0.44118 0.76471 0.091224

> n <- length(cp.all)

> trPima0.rpart <- trPima.rpart

> te.cverr <- numeric(n)

> for (i in n:1) {

+ trPima0.rpart <- prune(trPima0.rpart, cp = cp.all[i])

+ hat <- predict(trPima0.rpart, newdata = Pima.te, type = "class")

+ tab <- table(hat, Pima.te$type)

+ te.cverr[i] <- 1 - sum(tab[row(tab) == col(tab)])/sum(tab)

+ }

Comment on the comparison, and also on the dependence on the number of splits.
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3 Analysis Using svm

Exercise 4: Compare the result also with the result from an SVM (Support Vector Machine) model.
For getting predictions for the current test data, it will be necessary, for models fitted using svm(),
to use the newdata argument for predict(). Follow the prototype

> library(e1071)

> library(MASS)

> trPima.svm <- svm(type ~ ., data = Pima.tr)

> hat <- predict(trPima.svm, newdata = Pima.te)

> tab <- table(Pima.te$type, hat)

> 1 - sum(tab[row(tab) == col(tab)])/sum(tab)

> confusion.svm <- rbind(tab[1, ]/sum(tab[1, ]), tab[2, ]/sum(tab[2,

+ ]))

> print(confusion.svm)

4 Analysis Using randomForest

Exercise 5: Repeat the previous exercise, but now using randomForest()

> library(randomForest)

> Pima.rf <- randomForest(type ~ ., data = Pima.tr, xtest = Pima.te[,

+ -8], ytest = Pima.te$type)

> Pima.rf

Call:
randomForest(formula = type ~ ., data = Pima.tr, xtest = Pima.te[, -8], ytest = Pima.te$type)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 27.5%
Confusion matrix:

No Yes class.error
No 110 22 0.1666667
Yes 33 35 0.4852941

Test set error rate: 23.49%
Confusion matrix:

No Yes class.error
No 191 32 0.1434978
Yes 46 63 0.4220183

Note that OOB = Out of Bag Error rate, calculated using an approach that has much the same effect
as cross-validation, applied to the data specified by the data parameter. Notice that randomForest()
will optionally give, following the one function call, an assessment of predictive error for a completely
separate set of test data that has had no role in training the model. Where such a test set is available,
this provides a reassuring check that randomForest() is not over-fitting.

Exercise 6: The function tuneRF() can be used for such limited tuning as randomForest() allows.
Look up help(tuneRF(), and run this function in order to find an optimal value for the parameter
mtry. Then repeat the above with this optimum value of mtry, and again compare the OOB error
with the error on the test set.

Exercise 7: Comment on the difference between rpart() and randomForest(): (1) in the level
of automation; (2) in error rate for the data sets for which you have a comparison; (3) in speed of
execution.
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5 Class Weights

Exercise 8: Analysis with and without specification of class weights Try the following:

> Pima.rf <- randomForest(type ~ ., data = Pima, method = "class")

> Pima.rf.4 <- randomForest(type ~ ., data = Pima, method = "class",

+ classwt = c(0.6, 0.4))

> Pima.rf.1 <- randomForest(type ~ ., data = Pima, method = "class",

+ classwt = c(0.9, 0.1))

What class weights have been implicitly assumed, in the first calculation?
Compare the three confusion matrices. The effect of the class weights is not entirely clear. They

do not function as prior probabilites. Prior probabilities can be fudged by manipulating the sizes of
the bootstrap samples from the different classes.

6 Plots that show the “distances” between points

In analyses with randomForest, the proportion of times (over all trees) that any pair of observations
(“points”) appears at the same terminal node can be use as a measure of proximity between the pair.
An ordination method can then be used to find a low-dimensional representation of the points that
as far as possible preserves the distances or (for non-metric scaling) preserves the ordering of the
distances. Here is an example:

> Pima.rf <- randomForest(type ~ ., data = Pima, proximity = TRUE)

> Pima.prox <- predict(Pima.rf, proximity = TRUE)

> Pima.cmd <- cmdscale(1 - Pima.prox$proximity)

> Pima.cmd3 <- cmdscale(1 - Pima.prox$proximity, k = 3)

> library(lattice)

> cloud(Pima.cmd3[, 1] ~ Pima.cmd3[, 2] * Pima.cmd3[, 2], groups = Pima$type)

Exercise 9: What is the plot from cloud() saying? Why is this not overly surprising?:

Note: The function randomForest() has the parameter classwt, which is supposed to assign
weights to the respective classes. There is apparently (at least in verson 4.5-16) a fault in its im-
plementation, and in most cases it has almost no effect.

The required effect can be achieved by multiplying the default values of elements of the parameter
sampsize by amounts that reflect the relative weights.
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