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Abstract

This document identifies statistical issues that can be and commonly are important for data
mining problems. As far as possible, it will avoid the technical language of mathematical statistics.

Key issues for any data analysis are:

1. Why are we undertaking this investigation?

2. What is the intended use of results?

3. What limitations, arising from the manner of collection or from the incompleteness of the
information, may constrain that intended use?

Finally, when results are presented, the data analyst should be well placed to answer the question:
“What is the relevance of these results?”

Part I discusses statistical issues and ideas. Examples, most of them taken from published
data, highlight the importance of these issues. Remaining parts of the document summarize
important results and concepts from classical statistics. More recent data mining methodologies
supplement rather than displace the classical methodologies. Models used in data mining often
build on or incoporate classical models.

The source population for the data is rarely, for observational data, identical to the target
population to which results will be applied. A model that is effective in describing the processes
that generated the data rarely provides a totally accurate description for the processes that will
apply when use is made of model results. This has large implications for the realistic assessment
of predictive accuracy. The need to tune predictive accuracy calculations to the target population
has not received much attention in the data mining literature.

The tuning can sometimes be handled theoretically, using a model that pays careful attention
to the random as well as to the fixed part of the model. Multi-level moddels, time series models,
and other models with a “complex error structure”, are examples of the kinds of models that may
be relevant in this context. If such a model-based theoretical approach is not available, the matter
must be handled more informally.

Accompanying sets of laboratory exercises use the R system for computing and graphics.

Maindonald (2006) (paper and overheads) covers, more succinctly, much of the ground of the
present document.
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Part I

Statistical Issues and Ideas

1 Preliminaries

1.1 Statistics versus data mining – what is the connection?

Technological advance in the past several decades have brought a variety of changes that affect the
collection, manipulation and analysis of data (this list is taken from Maindonald , 2005):

• Large datasets that have been created by automation of data collection, and by the merging of
existing databases, bring new challenges. The challenge may be to obtain forms of data summary
that are suitable for analysis, and/or to handle the sheer bulk of the data. Or, as in the analysis
of genomic expression array or other data where the number of outcome measures is large, the
data may require substantial adaptation of existing analysis methods.

• There are new types of data, derived for example from documents, images and web pages.

• New data analysis methodologies often allow analyses that make better use of the data, more
directly attuned to the questions of scientific interest, than was readily possible 15 years ago.

• Advances in statistical methodology have widened the gap between those whose statistical knowl-
edge has not advanced much in the past decade, and those professionals who are fully au fait
with modern methods.

• New statistical “meta-analysis” approaches that combine data from multiple studies into a single
analysis may allow the detection of patterns that were not apparent from the individual stud-
ies. They may resolve some discrepancies between the separate analyses, while raising further
questions. Note however that meta-analysis typically has complications that make automation
hazardous.

Daryl Pregibon’s definition of data mining as “Statistics at scale and speed” may be as apt as any.
Scale and speed create, inevitably, a large demand for automation. The skill lies in knowing what
to automate, when to call on the skill of the human expert, and in the use of tabular and graphical
summaries that will assist the judgment of skilled data analysts or call attention to features of the
data that might not otherwise be obvious. The demand for scale, speed and automation has created
many opportunities for researchers from a computer science tradition to take a lead role.1

Data mining, and indeed all data analysis, draws both from statistics and from computing.

• Statistics contributes: models, the distinction between signal and noise, attention to issues of
generalization, well-tested modeling approaches, and a long tradition of experience in the analysis
of data.

• Computing has contributed the means for managing data, for automating large parts of com-
putations, for maintaining an audit of all steps in an analysis, and some novel algorithms and
algorithmic approaches.

Comments in Witten and Frank (2000), with respect to machine learning. seem relevant also to
data mining:

In truth, you should not look for a dividing line between machine learning and statistics,
for there is a continuum, and a multidimensional one at that, of data analysis techniques.
. . . Right from the beginning, when constructing and refining the initial data set,
standard statistical methods apply: visualisation of data, selection of attributes, discarding
of outliers, and so on. Most learning algorithms use statistical tests . . . (p.26).2

1More cynical definitions are possible! For example:

A combination of large databases and bad statistics.
Statistics plus marketing.

2Be careful, though, what you do with outliers! Unless demonstrably erroneaous, they should, although perhaps
omitted from the main analysis, be reported and included in graphs. In some analyses the interest may be in a small
number of points that lie away from the main body of the data.
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1.2 Statistical theory

There is an extensive statistical theory that offers important insights on all data analysis, including
analyses that are carried out by “data miners”. This module will be unable to use this theory to any
substantial extent; there is not time to develop the necessary theoretical tools. Instead

• We will often fall back on a relatively informal ideas-based approach that makes little explicit
use of mathematical formulae.

• Empirical approaches, e.g., to assessing accuracy, will be emphasized at the expense of modeling
approaches that rely more heavily on statistical theory.

Good ways to move on from this module include getting up to speed in statistics, and working
closely with experienced statisticians. This module, and other modules in this course, will give hints
on areas of statistical theory that it will be useful to master, and should help motivate the theoretical
content of any subsequent study of statistics.

Ideas of population and sample are crucial. These can be treated in a formal theoretical way. I
will however adopt a less formal approach, using practical examples as motivation.

Statistical theory, as it affects practical data analysis, is currently developing very rapidly. This is
a result of a synergy between new theoretical developments, and the computational power (software
and hardware) of modern computer systems. The R system is one product of this synergy.

1.3 What is the purpose of these analyses?:

Key issues for any study are:

1. Why am I undertaking this investigation?

2. What is the intended use of results?

3. What limitations, arising from the manner of collection or from the incompleteness of the infor-
mation, may constrain that intended use?

When the analysis is complete, a key question will be: “What is the relevance of these results?”
The following is a (perhaps incomplete) list of the purposes that a data analysis may aim to serve:

1. Data collection and summarization may be an end in itself. A business needs to have accurate
accounts just so that it can know whether it is making a profit.

2. Prediction; i.e., the aim is to make statements that generalize beyond the circumstances that
generated the particular data that are under study.

3. Understanding – the elucidation of pattern. To be of interest, the pattern must usually be
relevant beyond the immediate data in which it was found, i.e., generalization is an issue here
also.

Most (all?) data mining analyses involve an element of generalization. In predictive modeling, gen-
eralization is an explicit concern. The nature of the generalization will typically have large implications
for the investigations that are to be undertaken, of a kind that this module will explore.

The hypothesis testing approach to inference, while in wide use in some areas of statistical ap-
plication, seems relatively uncommon in the data mining literature. Certainly, it offers a means for
making statements that apply beyond the specific data used to generate and/or test them. It is not
however always the best or most appropriate approach for this purpose.

Note the variety of uses of data that are collected by the the Australian Bureau of Statistics. By
explicit use of samples, or (less often) census data, statements will be made that apply to one or
other Australian population – to humans, sheep, farms, or whatever. Results may be used directly to
allocate resources, e.g., the distribution of GST revenue to states. They are also a resource that will be
used by researchers (statisticians, data miners) to find that patterns that will guide decision-making.
As those decisions will affect the future, the interest is in those patterns that can be expected to
persist into the future, i.e., there is a predictive element.
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Examples: Set out aims for analysis for the studies that have generated the following data:

The forest cover type data set, available from the web site noted in connection with Blackard
(1998). See the file covtype.info for details of these data.

The data set ant111b that gives yield of corn for each of four blocks at each of eight sites on
the island of Antigua in the Caribbean, in a single year.3

The data set on tinting of car windows (tinting (also in DAAG).

The attitudes to science data set (science,DAAG).

Data on diet-disease associations, with the food frequency questionnaire as the diet measurement
instrument.

Data on diet-genotype associations, with SNP (single nucleotide polymorphism) information for
each of a number of positions on the chromosome used to indicate genotype.

Studies and/or associated data sets that may be encountered in remaining modules of the course.

1.4 Population and sample

The ideas of population and sample are crucial. These are more subtle than is obvious on the surface.

Populations

In statistical theory a population is a set of values, with an associated probability measure. Here, it
will be sufficient to consider two types of distribution — discrete (e.g., 0, 1, 2, . . . ) or continuous
(e.g., any value on the real line). The population may be univariate, or it may be multivariate, with
two or more measures for each element of the population.

In making inferences, it is necessary to distinguish two populations (they are too easily assumed
identical):

The source population from which data have been drawn

The target population (if any) to which results will be applied.

For both source and target we typically have, not the whole population, but a sample. Most classical
statistical theory, and most use of models in data mining, assumes that samples, both from the source
population and from the target population, are drawn according to simple random sampling. For
observational data, this may be unrealistic.4

Samples

In a simple random sample, often referred to as a random sample, each element of the population
has the same probability of inclusion. Various modifications to simple random sampling schemes are
available; these are important in sample surveys and in experimental design.

Given the population distribution, the statistical properties of random samples or repeated random
samples can in principle be derived theoretically.

1.5 Models

1.5.1 Kinds of models

Most of the models that are considered in this course will have the form:

yi = f(xi; θ) + εi, i = 1, 2, . . . , n

where f(xi; θ) is the fixed term, and εi is the random term.

3These data are included in the DAAG package for R. Several of the data sets that appear in illustrative examples in
these notes are from DAAG.

4There can also be complex sampling designs where randomization is used, but according to more complex schemes.
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Models in which yi is continuous will be discussed rather briefly. Most of the attention will be on
classification models, where yi is a value of a factor (i.e., categorical) variable. An important special
case is where there are just two categories. Often the categories are taken as 0 and 1; this is purely a
convenience and is not necessary.

1.5.2 Model-based data analysis

Data analysis proceeds by a process of fitting models. The chosen model is designed to reflect, at
least empirically, the processes that generated the data. Any use of analysis results, whether called
data mining or statistical analysis, implicitly assumes a model that relates the data to the population
to which the data is thought to have relevance. This may in principle be, and in practice often is,
different from the model used for analysis. In order to discuss the practical implications of this point,
use of some technical statistical apparatus is inescapable.

What then is a model? Why is the idea of a model important for data analysis? What is the role
of models? The following are relevant:

Maindonald & Braun (2003), Chapter 3.

Breiman (2001), and its following discussion, is a good read, notwithstanding my judgment that
Breiman’s main thesis is nonsense!

Questions that will be addressed include:

1. Can there be “algorithmic” models? (Models can be algorithmic only in the sense that they have
an algorithmic motivation. All models, however motivated, can be use algorithmically. This
may not not be a good idea! When does it make sense?)

2. Is model-free inference (whether formal or informal) possible? (No, but ...)

3. Can any search for patterns in data be model-free? (Not really, but simplistic assumptions can
sometimes gain the investigator quite a bit of leverage. We’d like to distinguish problems where
simplistic assumptions will yield useful results from problems where they will mostly turn up
uninteresting and/or specious patterns.)

4. What is the point of the insistence, common among statisticians, that models have both “fixed”
and “random” components? (It has mostly to do with the way that results from the model will
be used. If the “random” component(s) are wrongly specified, false inferences may be drawn.
Note that what is for one purpose “fixed” may for another purpose be “random”)

5. How do we judge whether a model has worked or failed? (We challenge it, and observe how it
responds. Which challenges will be effective, and which are so undemanding as to be useless?)

6. Which models are likely, in one or other context, to be effective? Which are likely to be ineffec-
tive? (A measure of effectiveness is needed. We’d like to know the effectiveness of the model,
e.g., the accuracy of predictions, when the model is used in in practice. The best we can do
may be to assess its effectiveness for the same data used to generate the model. This is NOT
a simple matter testing the accuracy of the model with the same data that were used to fit the
model; some greater subtlety is necessary.)

7. When is a data set“large”and/or“complex” for the purpose of the inferences, formal or informal,
that are intended? (I will argue that the statistical modeling framework is necessary in order
to give meaningful answers to this question. It is not at all the case that large size and high
complexity from a database perspective is the same as large size and high complexity from a
statistical modeling perspective.)

8. To what extent do “large” and/or “complex” data sets (now in a statistical sense) raise issues
that are different from those that arise with small data sets?
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1.5.3 The fixed and random components of models:

Statistical models have both “fixed effects” components, and random components.
Consider again the general form of model

yi = f(xi; θ) + εi, i = 1, 2, . . . , n

where f(xi; θ) is the fixed term, and εi is the random term. A further common (and commonly
unjustified!) assumption is that the epsiloni are independently and identically distributed (iid), most
commonly with a normal distribution. This will be referred to as the iid assumption.

Depending on the intended generalization(s), it can be important to get both types of component
right. Standard normal theory models that assume iid errors can be seriously limiting, and can lead
to seriously misleading inferences. The later discussion will use data for which a multi-level model
is appropriate to illustrate how accuracies may be different for different predictions, and how use of
an iid errors model in such a case gives predictive accuracy estimates that are likely to be wrong,
irrespective of the intended predictions.

Common types of non-iid model are:

1. Hierarchical multi-level models. For example, there may be variation between plants in a garden
plot, variation between plots, and variation between gardens.

2. Time series models, where it is common to model a sequential correlation structure;

3. Repeated measures models, which compare the times series (the “profiles”) of different “individ-
uals”;

4. Models for spatial variation, which may model a spatial correlation structure.

Multi-level models offer a relatively simple form of escape from iid assumptions, and are a good
starting point for demonstrating the implications of non-iid error structure. There are many practical
contexts where they are effective – this relatively simple form of escape from iid assumptions is all
that is needed. They have just enough complexity to provide a context in which to demonstrate the
problems that may arise with an uncritical use of models that assume iid errors, or that proceed as
though errors are iid.

There will not be time to do more than note these various non-iid types of model. Is it possible, for
suitably limited purposes, to ignore the correlation structure, i.e., implicitly assume an iid structure.
To what extent may it nevertheless be possible to make valid inferences or find patterns that are likely
to provide a useful basis for further investigation?

1.6 Measurement error effects:

Measurement error in the explanatory variables of a model can have major implications for inference.
An example will be given in Subsection 9.

1.7 Inference

Statistics typically works from samples, and aims to make inferences regarding the population from
which the sample has been taken. Inference is concerned, in essence, with making generalizations from
data. What generalizations are justified, and what generalizations are not?

There is no single universally agreed methodological principle — rather there are several different
principles that are widely used. These all use the same probability theory, but use it differently.
Differences between competent professionals typically relate more to the methodological principles to
be followed than to the conclusions reached.

A simple intuitive approach assumes that the sample is the population in miniature. This view
makes best sense for large populations. It must of course be possible to regard the sample as a random
sample.

More formal methodologies are, broadly, of two types. One type of methodology is based around
ideas of likelihood – given the model, what is the probability of obtaining a sample similar to that
observed? Parameter values are chosen to maximize the likelihood. This methodology does not allow
statements about the probability that a parameter has a particular value or range of values. (If such
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statements are made, there is an implicit use of a specific, but unstated, Bayesian prior, as used in
Bayesian inference!)

Another type of methodology uses Bayes’ theorem. The statistical model gives the probability
of the data given the parameter values, i.e., the likelihood. Additionally, the prior distribution of
the parameter values must be specified. If there is no hard information on this, then (this is where
controversy arises), some plausible form of distribution must be assumed. Bayes’ theorem is then used
to derive the (posterior) probability distribution of the parameter values given the data. Statements
about the probability that a parameter has a particular value or range of values are central to Bayesiam
inference.

Important ideas that cannot be covered include: sufficiency, Fisher information, efficiency, asymp-
totic properties of the log-likelihood ratio, other asymptotic theory, and applications of Bayes theorem.
Brief comments on maximum likelihood now follow.

1.7.1 Maximum Likelihood Estimators and Least Squares

In the model
yi = f(xi; θ) + εi, i = 1, 2, . . . , n

with f(xi; θ) accounting for the fixed effects, a common assumption is that the xi are independently
and identically distributed (i.i.d.) normal. The least squares estimator of θ is then the same as the
maximum likelihood estimator.

This is not true in general, with the practical consequence that the least squares estimator can be
far from optimal.

1.8 Predictive Accuracy

Statistics has, as a major aim, the development of methods that distinguish what is “real” from effects
or patterns that may well be due to chance. If this is the emphasis, then attention to predictive
validation questions is crucial. When the results from the analysis are used to make predictions, do
they check out?

1.8.1 Source and target populations

Here we discuss in more detail the questions:

• what is the population from which the data were derived, i.e., what is the source population.
and how were the data sampled?

• what is the population to which results will be applied, i.e., what is the target population, and
how will that population, in practice, be sampled?

It is commonly, implicitly if not explicitly, assumed that the population to which results will be
applied or to which results are relevant is the same as the population used to derive the data, and that
the sampling mechanism is the same in the two cases. Moreover it is assumed that both samples are
obtained using an iid sampling mechanism, that they are in this sense random samples. Alternatively,
predictions may be applied to the whole of the target population.

In a sampling context, the iid assumption is that sample items appear in the sample, independently
between items, with a probability that is proportional to the frequency with which they appear in the
population. Important questions are:

• Is the iid assumption, in the absence of an explicit randomization mechanism, justified?

• If wrong, is it wrong in ways that are likely to affect the validity of results? Is there some
obviously preferable non-iid model (e.g., a time series or multi-level model) that can be used to
give more valid results?



1 PRELIMINARIES 11

1.8.2 Measures of model performance

Measures of model performance are required in order to choose between models, and in order to give
an assessment of how the model is likely to perform in practice.

Note first theoretical measures. R2 is widely used, and may have some limited usefulness for
comparing between models, but is almost useful as an absolute measure of performance. Other more
satisfactory theoretical measures that may be used to compare models include AIC, BIC and the
Schwartz criterion. Discussion of these criteria is beyond the scope of this document. Additionally,
various goodness of fit and diagnostic criteria can be useful sources of insight that may help explain
why the model performs as it does, suggest how the model might be improved, and draw attention to
weaknesses in the model. Again, judgements are necessary on the relevance of one or other criterion,
for the intended use of model results.

Often predictive accuracy, appropriately measured, is most pertinent. For normal theory linear
models, and various other models, pertinent theoretical measures are available, though with the limi-
tation that they relate to the population from which the data were derived. For classification models,
however, classification accuracy is often the important criterion, perhaps with different costs assigned
to different possibilities for mis-classification. The relevant confusion matrix, giving for each category
the probability of assignent to each of the available categories, must then be estimated empirically.
The following indicates the range of methodologies:

1. The confusion matrix may be estimated from the data used to derive the model. This resubsti-
tution estimate can be hoplessly biased, and should not be used.

2. A training set may be used to derive the model, and a test set used to test the model. Ideally,
the test data should reflect the conditions under which the model will be used in practice, i.e.,
they should be from the target population, allowing a genuine external assessment of accuracy.

3. More commonly, the data are randomly or arbitrarily split into a training and test set, with the
training data used to derive the model, and the test data used to assess accuracy. As the training
and test data are from the same orginal sample, the estimate is for the source population.

4. In item 3, the training (set I) and test (set II) data were derived from the same original sample.
It therefore makes sense to swap the training and test sets (II/I in place of I/II), use II to fit the
model, and I to test the model. Predictions are then available for all data, but always with the
data used to test the model distinct from the data used to fit the model. An overall accuracy is
then available that combines the I/II and the II/I results. This method is 2-fold cross-validation.
The folds are I/II and II/I. The estimate is unbiased, but relates to the source population.

5. For use of cross-validation methodology, it is more usual to split the data into k parts, where
a common choice is k = 10. Each part is then left out in turn; the model is derived using the
remainder of the data, and predictions are made for the part that is left out. This is done for
all k parts. Predictions are, finally, available for all the data, and the confusion matrix can be
estimated. The estimate is unbiased, but relates to the source population.

6. Note also the bootstrap methodology. Rather than splitting the data randomly into parts, this
takes repeated random with replacement samples.

Use of training and test set, cross-validation, the bootstrap, and other related methodologies, can be
important when theoretical assumptions fail, or when the relevant distributional theory is unavailable.
As always, it may be necessary to adapt results to the specific inferences that are required. This can
be particularly important when algorithms are treated as black boxes.

1.8.3 Source and target populations – some further comments

To what target population do these results apply?

In medical contexts, the question may be: “To what target population do these results apply?” It is
assumed that results will be useful to someone somewhere, but who?

Thus, given results from a trial of a new drug, do they apply to the wider population of those
who have the same disease symptoms as the patients in the trial? Patients will have been screened
for suitability for the treatment. At best, they apply only to patients who pass the same screening
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criteria. If the trial was conducted in Australia, do they apply also in China, with patients whose
lifestyle and eating habits are very different?

What are the appropriate test data?

(Adapted from Maindonald & Braun (2003, p.471).)
Here we assume that there is an identifiable target population, though perhaps lying somewhere

in the future. The following four alternatives are an attempt at classifying the possible ways in which
the target population may relate to the source population:

1. The data used to develop the model are, to a close approximation, a random sample from the
population to which predictions will be applied. If this can be assumed, a simple use of a
resampling method will give an estimate of the score function that is unbiased with respect to
the population that is the target for predictions.

2. Test data are available that are from the target population, with a sampling mechanism that
reflects the intended use of the model. The test data can then be used to derive a realistic
estimate of predictive accuracy.

3. The sampling mechanism for the target data differs from the mechanism that yielded the data in
1, or yielded the test data in 2. However, there is a model that predicts how predictive accuracy
will change with the change in sampling mechanism. Thus, in the “attitudes to science” data,
the predictive accuracy for the mean of a new class depends on the number in the class.

4. The connection between the population from which the data have been sampled and the target
population may be weak or tenuous. It may be so tenuous that a confident prediction of the
score function for the target population is impossible. In other words, a realistic test set and
associated sampling mechanism may not be available. An informed guess may be the best that
is available.

These four possibilities are not completely distinct; they overlap at the boundaries.

Borderline Cases:

There may be a test set that is a plausible proxy for the target population. Examples are:

• The evaluation of algorithms for gene prediction.
[Ideally, they should be effective in finding new genes!]

• Algorithms for finding protein homologies.

Alternatively, there may be very limited information on the source of variation that is most relevant
to the predictions that are of interest. Maindonald, Waddell and Petry (2001) brought together data,
on codling moth response to disinfestation with methyl bromide, for seven different varieties of cherry
and for two seasons. The data were extensive, allowing a relatively accurate estimate of within season
effects. Evidence on between season effects was of course very inaccurate, but did indicate that this
source of variation was of a similar order of magnitude to the within season effects that the data were
designed to investigate. As the interest is in using experimental results to predict the consequences of
a disinfestation protocol in a future season, this is an important limitation.

Informed guesses are more widely used than data analysts may admit. Commonly, predictions are
required for a future time, but the only accuracy estimates are for prediction for another observation at
the same time. Alternatively, as with the methyl bromide disinfestation data, information on temporal
effects may be very limited. Questions that should be asked include:

• Is there any relevant past experience with comparable predictions?

• Is the accuracy for prediction in time likely to be similar to that for prediction in space, or
smaller, or larger?

Of course, ballpark estimates can be badly astray.
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Over-fitting

Models that are optimal for the source population are unlikely to be optimal for the target population.
Indeed a simpler model that is sub-optimal for the source population will often do a better job. As
a model is better tuned to the quirks of the source population, its tuning for the target population
deteriorates. See Hand (2006) for further discussion of this issue, with examples.

1.9 Further reading

Chapter 4 of Senn (2003) is a relatively non-technical discussion of approaches to statistical inference.
See Young and Smith (2005) for a more technical account.

2 Data Analysis System Use and Development Strategies

In our course material, the R system is a particular focus of attention, for several reasons. Major
aspects of its development have had the character of a co-operative interaction research project. The
associated statistical computing issues have spawned an extensive statistical literature. It is now the
dominant system used for analyses that are presented in statistical conference papers. It has become
a preferred environment for academic statistical software development, with inroads also into the data
mining and machine learning communities. It has is now a de facto standard, in quality of code, range
of abilities, and integration into a common language framework.

Papers and books that may warrant attention include Chapter 2 of Maindonald & Braun (2003),
Chambers (2000), Maindonald (2004b) and Maindonald (2004a). (All these have a strong focus
towards S-PLUS or R, and to systems that interface to R or take R as a point of departure for further
development.)

Part II

Populations, Distributions and Samples

3 Populations

3.1 Probability distributions

Models that are commonly used for population distributions include the normal (heights and weights,
preferably on a logarithmic scale), exponential (lifetimes of components, where the probability of
failure is unchanged over time), uniform, binomial (number of female children in a family of size N),
and Poisson (failures in some fixed time interval, where the probability of failure is unchanged over
time). Even if none of these is the correct distribution, one of them may be a reasonable starting
point for investigation.

A probability distribution on the real line is a measure that defines, for all x1 and x2 in the support
of X

Pr[x1 < X ≤ x2].

In a discrete population, each value has a probability (or probability mass) associated with it. In
a continuous population, each value x has an associated density f(x), such that for any two values a
and b in the support of f(),

Pr[a < x <= b] =
∫ b

a

f(x)dx

3.2 Density Curves and Cumulative Distribution Functions

These may be defined either by a density function, or by a cumulative distribution curve.
The following plots the density of a normal distribution with a mean of 0 and SD=1:

> curve(dnorm(x), from = -3, to = 3)
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Why were the limits for the curve taken to be -3 and 3?
The height of the curve is the probability density. For a small interval of width h including the

point, the probability is
h× normal density

The area under the curve between x = x1 and x = x2 is the probability that the random variable
X will lie between x = x1 and x = x2.

Cumulative probability curves The following plots the cumulative probability curve of a normal
distribution with a mean of 0 and SD=1 (these are the defaults):

> curve(pnorm(x), from = -3, to = 3)
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The ordinates of the cumulative density curve give the cumulative probabilities, i.e., the height of
the curve at x is Pr[X ≤ x]. It follows that

Pr[x1 < X ≤ x2 = Pr[X ≤ x2 − Pr[X ≤ x1.

Thus, suppose that X has a normal distribution with a mean of 0 and a standard deviation equal
to 1. The probability that X is between -1 and 1 can be calculated as:

> pnorm(1) - pnorm(-1)

[1] 0.6826895

3.3 The mean and variance of a population

See Section 19 for the definition of the expectation of a random variable. The population mean is

µ = E[X] =
∫

xf(x)dx

while the variance is
σ2 = E[(X− µ)2] =

∫
(x− µ)2f(x)dx

4 Samples

Unless stated otherwise, “sample” will mean “simple random sample”.

4.1 Samples from a Population – R functions

The R functions rnorm() (normal), rexp() (exponential), runif() (uniform), rbinom() (binomial),
and rpois() (Poisson), all take samples from infinite distributions.

> rnorm(n = 10)

> runif(n = 10)
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The function sample() takes samples from a specified finite distribution. Samples may be taken
without (the default) or with replacement. In without replacement sampling, each population value
can appear at most once in the sample. In with replacement sampling, each sampled element is
placed back in the population before taking the next element. This is equivalent to sampling without
replacement from the infinite population obtained by specifying a uniform distribution on the sample
values. Try

> sample(1:8, size = 5)

> sample(1:8, size = 5, replace = TRUE)

> sample(c(2, 8, 6, 5, 3), size = 4)

> sample(c(2, 8, 6, 5, 3), size = 10, replace = TRUE)

4.2 Displaying the distribution of sample values:

Examination of a the sample distribution may allow an assessment of whether the sample is likely to
have come, e.g., from a normal population distribution. For displaying the sample distribution of a
set of values, histograms have traditionally been the first recourse. A better plot, often, may be a
density plot. Think of this as a smoothed version of a histogram.

Below, we plot the distribution of heights of 118 female students attending a first year statistics
class at the University of Adelaide. In Figure 2 we plot a histogram and overlay it with a density plot.
(The parameter setting prob=TRUE for the histogram is needed so that the units on the vertical scale
are the same both for the histogram and for the density plot.)

The function na.omit() omits missing values.

> library(MASS)

> y <- na.omit(survey[survey$Sex == "Female", "Height"])

> hist(y, prob = TRUE, xlab = "Heights of female students", main = "")

> lines(density(y))

The data set survey is included with the MASS package.
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Figure 2: Histogram, with overlaid den-
sity plot, showing the distributions of
heights of 118 female students in a first
year statistics class at the University of
Adelaide.

In the figure, I’ve added marks on the horizontal axis that show the actual heights. Also marked
off, in gray lines, are the mean, mean-SD and mean+SD.

> av <- mean(y)

> sdev <- sd(y)

> plot(density(y, kernel = "gaussian", width = 10), xlab = "Heights of female students",

+ main = "")

> rug(y)

> chw <- par()$cxy[1]

> chh <- par()$cxy[2]

> abline(v = av, col = "gray")

> ytop <- par()$usr[4] - 0.15 * par()$cxy[2]

> text(av, ytop, "mean", col = "gray45", xpd = TRUE)

> abline(v = av - 0.65 * sdev, col = "gray", lty = 2)
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> text(av - sdev - chw, ytop - 0.85 * chh, "mean\n-SD", col = "gray40",

+ xpd = TRUE, cex = 0.8)

> abline(v = av + sdev, col = "gray", lty = 2)

> text(av + sdev + 0.65 * chw, ytop - 0.85 * chh, "mean\n+SD",

+ col = "gray40", xpd = TRUE, cex = 0.8)
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+SD Figure 3: Density plot, now with a larger

smoothing window (width) and with a
gaussian (normal) kernel, showing the
distribution of heights of 118 female stu-
dents in a first year statistics class at the
University of Adelaide. Marks on the
horizontal axis show the actual heights.
Also marked off, in gray lines, are the
mean, mean-SD and mean+SD.

Note: If data have a sharp lower or upper cutoff (a sharp lower cutoff at zero is common), parameters
from and/or to can be set to ensure that this sharp cutoff is reflected in the fitted density.

Exercise: Draw a random sample of size 20 from an exponential distribution with rate = 1. Plot
an estimated density curve.

4.3 The smoothness of the density plot

We can also control the smoothness of the density plot. There are various ways to do the smoothing.
By default, with a normal “kernel”, a mixture of normal densities is used.

Increasing the bandwidth makes the estimated density more like the density that is used as the
kernel. Thus increasing the bandwith, with a "gaussian" kernel, is alright providing that the sample
really is from a normal distribution. Try the following:

> plot(density(rnorm(50), kernel = "rectangular", bw = 0.5), type = "l")

> plot(density(runif(50), kernel = "rectangular", bw = 0.5), type = "l")

> plot(density(runif(50), kernel = "gaussian", bw = 0.5), type = "l")

The density curve for a set of sample values lies somewhere between the theoretical distribution
that is used as the kernel, and the sample distribution. Figure 4 shows, for the Adelaide female student
data, the effect of varying the bandwidth.
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Figure 4: Density curves for Adelaide female student heights. Curves are shown for three different
choices of bandwidth: 0.25, 1.98 (the default for these data), 2.5 and 5.0. The normal kernel (the
default) is used in each case, so that increasing the bandwidth forces the curve closer to normal.
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The default bandwith usually gives acceptable results. Experimentation with different choices of
bandwidth is sometimes insightful.

4.4 Normal and other probability plots

Although preferable to histograms, density plots not in general an ideal tool for judging whether
the sample is likely to have come from one or other theoretical distribution, most often the normal
distribution. The appearance depends too much on the choice of bandwith. It lacks visual cues
that can be used to identify differences from the theoretical distribution and decide whether they are
important.

A much better tool is the Q-Q plot, which is a form of cumulative probability plot. Here, the focus
will be on the comparison with a normal distribution, and the relevant Q-Q plot is a normal probability
plot, using the function qqnorm(). Figure 5 shows a normal probability plot for the distribution of
heights of the 118 female students in a first year statistics class at the University of Adelaide.

> y <- na.omit(survey[survey$Sex == "Female", "Height"])

> qqnorm(y)
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Figure 5: Normal probabil-
ity plot for the distribution of
heights of 118 female students
in a first year statistics class at
the University of Adelaide.

If data are from a normal distribution, points should lie close to a line. For a small sample size,
quite large deviations from a line can be accepted. If the sample is large, points should lie close to
a line. It is useful to draw repeated Q-Q plots with random samples of the same size from a normal
distribution, in order to calibrate the eye. The function qreference() from the DAAG package may
be useful for this purpose. For example:

> y <- na.omit(survey[survey$Sex == "Female", "Height"])

> qreference(y, nrep = 6)

4.5 *Boxplots, and the inter-quartile range:

Another widely used measure of variability is the inter-quartile range. Boxplots, often used as summary
plots to indicate the distribution of values in a sample, are drawn so that 50% of the sample lies between
the upper and lower bounds of the central box. Figure 6 shows a boxplot representation of data on
heights of female students in a first year statistics class at the University of Adelaide. The following
code may be used to reproduce the boxplot, omitting the annotation.

> attach(survey)

> boxplot(Height[Sex == "Female"])

> detach(survey)
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Figure 6: Boxplot, with annotation that explains boxplot features. Lines in gray show mean-SD,
mean, and mean+SD. Data are heights of 118 female students in a first year statistics class at the
University of Adelaide.

5 Sample Statistics – Variance and Standard Deviation:

In a sample, the variance is the average of the sum of squares of the deviations from the mean. If n
is the sample size then, to correct for the fact that deviations are measured from the sample mean
(rather than from the true mean), the sum of squares of deviations from the mean is usually divided
by n− 1. Thus, given sample values x1, x2, . . . , xn, the usual estimate of the variance σ2 is

σ̂2 =
∑n

i=1(xi − x̄)2

n− 1

Why divide by n − 1 rather than by n. A sample of one gives no information on the variance.
Every value additional to the first gives one additional piece of information.

The standard deviation (SD) is the square root of the variance. The standard deviation is widely
used, both in statistical theory and for descriptive purposes, as a measure of variability. The most
obvious intuitive interpretations of the SD assume a normal population, or a random sample from
a normal population. If data are from a normal population, then 68% of values will on average be
within one standard deviation either side of the mean.

A key idea is that sample statistics have a sampling distribution – the distribution of values that
would be observed from repeated random samples. This is an idea that will be illustrated in laboratory
exercises.

Sample survey theory is one of several areas where there has been a strong tradition of basing all
inferences on variances. This works well when inferences are mostly for means or totals and samples are
large. The reason for this will become apparent below, in the discussion of the sampling distribution
of the mean. There are however important small sample applications where it does not work well, and
sample survey analysts are now moving away from the former relatively exclusive reliance on variance
based inferences.

5.1 The Standard Error of the Mean (SEM):

The standard deviation estimates the variability for an individual sample value. This variability does
not change (though the estimate will) as the sample size increases. On the other hand, the sample
mean does become less susceptible to variability as the sample size increases. If σ is the standard
deviation then, for a random sample, the standard error of the mean is σ/

√
n.

Here are calculations that give, for the student heights, the mean, the standard deviation and the
standard error:
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> attach(survey)

> y <- na.omit(Height[Sex == "Female"])

> sd(y)

[1] 6.151777

> sd(y)/sqrt(length(y))

[1] 0.6091167

> detach(survey)

The standard error of the mean is, with a sample of 118, less than a tenth the size of the standard
deviation. This result relies crucially on the i.i.d. assumption. This will be an important issue for
multi-level models.

5.2 The sampling distribution of the mean:

We have just one sample, and therefore just one mean. The standard error of the mean relates to the
distribution of means that might be expected if multiple samples (always of size 118) could be taken
from the population that provided the sample.

It is however possible to simulate the taking of such repeated samples. As the sample distribution
seems close to normal, the use of repeated samples of size 118 from a normal distribution seems
reasonable. The following assumes a mean of 165.69, as for the sample, and the same SD of 6.15 as
for the sample.

> av <- numeric(1000)

> for (i in 1:1000) av[i] <- mean(rnorm(118, mean = 165.69, sd = 6.15))

> plot(density(av), main = "")
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Figure 7: Simulated distribution of the
mean, for samples of size 118 from a
normal distribution with mean=165.7
and SD=6.15, as for the sample of
UAdelaide students.

An alternative is to take repeated samples, with replacement, from the original sample itself.
This is equivalent to sampling from a population in which each sample value is repeated an infinite
number of times. The approach is known as “bootstrapping”. This repeated sampling from the
sample is just about as good an approximation as is available, if no use is made of theoretical results
or approximations, to repeated sampling from the original population.

> av <- numeric(1000)

> for (i in 1:1000) av[i] <- mean(sample(y, size = length(y), replace = TRUE))

> avdens <- density(av)

> plot(density(y), ylim = c(0, max(avdens$y)))

> lines(avdens, col = "gray")
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The sampling distribution for the mean looks, in the company of the distribution of sample values.
like a veritable Eiffel tower!

A practical consequence of the Central Limit Theorem is that the sampling distribution will for a
sample of this size be much the same (close to a normal distribution) irrespective of the distribution
from which the sample is taken, providing that the distribution is roughly symmetric and not unduly
spread out in the tails. Try the following, which takes samples from a uniform distribution on the
interval (0,1):

> par(mfrow = c(1, 2))

> av <- numeric(1000)

> xval <- pretty(c(-0.5, 1.5), 500)

> plot(xval, dunif(xval), type = "l")

> for (i in 1:1000) av[i] <- mean(runif(n = 118))

> plot(density(av))

> par(mfrow = c(1, 1))

All statistics have sampling distributions. For example, there is a sampling distribution for the
median. Unlike the distribution of the mean, this is strongly affected by the distribution from which
the sample is drawn. Coefficients in linear or other models have sampling distributions.

Exercise 1: Try varying the sizes of the samples for which the averages are calculated. Even with n
as small as 5 or 6, the distribution will be quite close to normal. Try also varying the number of samples
that are taken. Taking some number of samples greater than 1000 will estimate the distribution more
accurately; with fewer samples the estimate will be less accurate.

Exercise 2: Repeat, but now sampling from: (a) a uniform distribution, and (b) an exponential
distribution.

6 The Assessment of Accuracy

Having trained a model, we would like to know how well the model has performed. If model A performs
better than model B we will, other things being equal, prefer model A.

The discussion separates into two parts: model accuracy, and the accuracy of parameter esti-
mates, with model accuracy usually an over-riding requirement. Accuracy of parameter estimates has
additional complications, beyond those involved in assessing accuracy of model predictions.

6.1 Predictive accuracy

A first requirement is that predictions should be accurate, ideally for test data that accurately reflect
the context in which the model will be used.
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1. For a regression model with a continuous outcome, define the prediction error to be the difference
between the model prediction and the observed value. The root mean square prediction error is
then a measure of accuracy.

2. For a classification model, the percentage of correct classifications is often a suitable measure of
accuracy. The deviance, or another “information” measure may by used, in some computational
and theoretical contexts, as a proxy for percentage of correct classifications.

In practice predictive accuracy is commonly assessed for the same population from which the
sample is derived. Assessment of the extent to which results are relevant to the target population is
then a matter for separate investigation. This is a key issue, that is too often ignored.

Mechanisms that can be used for such assessment include:

• Derivation of a theoretically based estimate, e.g., for the error mean square for an lm() linear
model.

• The training/test set approach, using a random split into training and test set.

• Cross-validation, in which each of k parts of the data become in turn the test set, with remaining
data (k − 1 out of k parts) used for training.

• Bootstrap approaches can be used in much the same way as cross-validation, c.f., the approach
used by the randomForest package. Observations that for the time being serve as test data are
said to be “out-of-bag”, or OOB.

The final three methods are “resampling” methods, i.e., they rely on taking some form of sample from
the one original available sample. As described here, all methods assume that observations have been
sampled independently.

Laboratory Notes 4 demonstrate the use of cross-validation for assessing the predictive accuracy
of a model.

6.2 Parameter estimates

Quite stringent conditions are necessary if parameter estimates for a regression or classifiction model
are to be unbiased. The model must be correct. Part III illustrates, with examples, some of the issues.

Available methods are:

1. Estimates that depend heavily on distributional assumptions may be calculated from the one
available sample. The standard errors, t-statistics, and related statistics that are included in the
output from R’s lm() linear modelling function have this character.

2. Bootstrap samples can be used to derive the sampling distributions of some of the statistics that
may be of interest – means, means and regression coefficients. This approach does however have
limitations, which can be serious. For extreme quantiles, it will fail.

3. In a limited range of circumstances, permutation methods may be used for tests of statistical
significance.

As described here, all methods assume that observations have been sampled independently from
the relevant population. Exact theoretically based results are available for models with iid normal
errors. If the distribution is not normal results are, under relatively weak independence assumptions,
valid asymptotically, i.e., it is valid in the limit as the sample size goes to infinity.

Bootstrap and permutation methods do not rely, directly, on normality assumptions. Some as-
sumptions are however necessary if results are to be susceptible to ready interpretation. How does one
interpret the result of a bootstrap version of a t-test for comparing two means, if the two distributions
have a markedly different shape?

Laboratory Notes 3 demonstrate bootstrap samping and a permutation distribution approach, for
the comparison of two means. It is assumed that there are no other factors that might, in part or
whole, account for any difference.
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Part III

Data Analysis and Interpretation Issues
Here, we draw attention to sources of bias or misleading results.

7 Data collection biases

Large biases can arise from the way that data have been collected. The Literary Digest poll that was
taken prior to the US 1936 Presidential election, where Roosevelt had 62% of the vote rather than the
predicted 43%, is an infamous example. The estimate of 43% was based on a sample, highly biased
as it turned out, of 2.4 million!

The problems that arise can be exacerbated by more directly statistical problems, i.e., issues that
it is important to note even if random samples are available. Estimates of regression coefficients, or
other model parameters, cannot necessarily be taken at their face value.

8 Biases from omission of features (variables or factors)

Data analysis has as its end point the use of forms of data summary that will convey, fairly and
succinctly, the information that is in the data. Considerable technical skill may be required to extract
that information. Simple forms of data summary, which seem superficially harmless, can lead to
misleading inferences.

The problem arises, often, from a combination of unbalance in the data and failure to account
properly for important variables. To focus the discussion, consider observational studies of the effects
of modest wine-drinking on heart disease (Jackson et al., 2005). There are a large number of factors
that affect heart disease – genetic, lifestyle, diet, and so on. Any analysis of observational data
that tries to account for their joint effect will inevitably be simplistic. The assumptions made about
the form of the response (usually, a straight line on a suitably transformed scale) will be simplistic.
Simplistic assumptions will be made about interaction effects (how does alcohol intake interact with
other dietary habits?), and so on.

Some of the possibilities that it may be necessary to contemplate, for this specific example and
more generally, are:

1. The issue is one of design of data collection, as well as analysis. If information has not been
collected on relevant variables, the analyst cannot allow for their effect(s).

2. If the data are observational, there may be crucial variables on which it is impossible to collect
information. Or there may be no good understanding of what the relevant variables are.

3. Providing the problem is understood and handled appropriately, large effects are unlikely, in
large data sets, to arise from differences between sub-populations.

4. Small effects are highly likely, and should always be treated with scepticism. Small effects that
are artefacts of the issues noted here show up more readily than small effects that are genuine.
This is because the effects that will be noted here will almost invitably skew estimates of genuine
effects, either exaggerating the effect or (just as likely) reversing the direction of its apparent
effect.

8.1 Unequal subgroup weights – an example

Figure 8.1 relates to data collected in an experiment on the use of painkillers.5. Notice that the overall
comparison (average for baclofen versus average for no baclofen) goes in a different direction from the
comparison for the two sexes separately.

Researchers had been looking for a difference between the two analgesic treatments, without and
with baclofen. When the paper was first submitted for publication, an alert reviewer spotted that some

5Gordon, N. C. et al.(1995): “Enhancement of Morphine Analgesia by the GABAB against Baclofen”. Neuroscience
69: 345-349
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of the treatment groups contained more women than men, and proposed a re-analysis to determine
whether this accounted for the results.6 When the data were analysed to take account of the gender
effect, it turned out that the main effect was a gender effect, with a much smaller difference between
treatments.

Average reduction: 30 min vs 0 min

all

female

male

1.5 2.0 2.5 3.0 3.5 4.0

●

●

●

●

●

●

3 9

15 7

2212

Baclofen No baclofen● ●

Figure 9: Does ba-
clofen, following opera-
tion (additional to ear-
lier painkiller), reduce
pain? Subgroup num-
bers, shown below each
point in the graph, weight
the overall averages when
sex is ignored.

The overall averages in Figure 8.1 reflect the following subgroup weighting effects:

Baclofen: 15f to 3m, i.e. 15
18 to 3

18 (a little less than f average)
No baclofen: 7f to 9m, i.e. 7

16 to 9
16 (≈ 1

2 -way between m & f)

This is still only part of the story. More careful investigation revealed that the response to pain
has a different pattern over time. For males, the sensation of pain declined more rapidly over time.

Strategies

(i) Simple approach Calculate means for each subgroup separately.
Overall treatment effect is average of subgroup differences.
Effect of baclofen (reduction in pain score from time 0) is:

Females: 3.479 - 4.151 = -0.672 (-ve, therefore an increase)

Males: 1.311 - 1.647 = -0.336

Average over male and female = -0.5 × (0.672+0.336) = -0.504

(ii) Fit a model that accounts for sex and baclofen effects y = overall mean + sex effect +
baclofen effect + interaction
(At this point, we are not including an error term).

Why specify a model?

It makes assumptions explicit. More anon!

8.2 Simpson’s paradox

In multi-way tables, weighting effects such as have been noted lead to Simpson’s paradox, known
in the genetic context as epistasis. Here is a contrived example; data are admissions to a fictitious

6Cohen, P. 1996. Pain discriminates between the sexes. New Scientist, 2 November, p. 16.
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university:

Engineering Sociology Total

Female Male Female Male Female Male
Admit 10 30 30 15 40 45
Deny 10 30 10 5 20 35

Summing over the two separate tables is equivalent, for purposes of calculating overall admission
rates, to the following:

Females: 10
20 ×

20
60 + 30

40 ×
40
60 [0.33 (Eng) : 0.67 (Soc)]

Males: 30
60 ×

60
80 + 15

20 ×
20
80 [0.75 (Eng) : 0.25 (Soc)]

The Overall Rates are:

• females (2
3 ): bias (0.33:0.67) is towards the Sociology rate (0.75)

• males (45
80 ): bias is (0.75:0.25) towards the Engineering rate (0.5).

For a real-life example that demonstrates this effect, see the data set UCBAdmissions that is
supplied with the R system. Type

help(UCBAdmissions) # Optional; get details of the data
example(UCBAdmissions) # Summarize total data, and breakdown

# by departments

Several further examples, of this same general character, will be given in the next subsection.

Simpson’s paradox and epistasis

In population genetics, Simpson’s paradox type effects are known as epistasis. Most human societies
are genetically heterogeneous. In San Francisco, any gene that is different between the European
and Chinese populations will be found to be associated with the use of chopsticks! If a disease
differs in frequency between the European and Chinese populations, then a naive analysis will find
an association between that disease and any gene that differs in frequency between the European and
Chinese populations.

Such effects are a major issues for gene/disease population association studies. It is now common to
collect genetic fingerprinting data that should identify major heterogeneity. Providing such differences
are accounted for, large effects that show up in large studies are likely to be real. Small effects may
well be epistatic.

9 Measurement error effects

Errors in explanatory variables, if they are sufficiently extreme, have two effects:

1. Estimates of effects will be reduced, relative to the true effects.

2. Effects, reduced or not, are hard to detect.

The attempt to use food frequency questionnnaires (FFQs) or food diaries, in studies that are
designed to detect diet-disease associations, provides a telling and interesting case study. A recent
major study with biomarkers has demonstrated large person-specific biases in standard dietary intake
measurement “instruments” (diaries or questionnaires). These biases severely complicate the finding
of a relationship between such measures and health outcomes. Not only is there an error that varies
from recording time to recording time, for an individual. There is also a person-specific bias, that can
be substantially larger than the random occasion to occasion error. See Schatzkin et al (2003) and
the power point presentation Carroll (2004).

This is a multi-million dollar issue. The following prospective studies that use such instruments
are complete or nearly complete:
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NHANES: n = 3,145 women aged 25-50
(National Health and Nutrition Examination Survey)
Nurses Health Study: n = 60,000+
Pooled Project: n = 300,000+
Norfolk (UK) study: n = 15,000+
AARP: n = 250,000+
(The AARP results will be available within the next few months)

Only 1 prospective study has found firm evidence suggesting a fat and breast cancer link, and 1
has found a negative link. The lack of consistent (even positive) findings led to the Women’s Health
Initiative Dietary Modification Study in which 60,000 women have been randomized to two groups:
healthy eating and typical eating. Objections to this study are:

• Cost ($100,000,000+)

• Can Americans can really lower % fat calories from to 20%, from the current 35%

• Even if the study is successful, difficulties in measuring diet mean that we will not know what
components led to the decrease in risk.

10 Further examples and discussion

10.1 Does screening reduce deaths from gastric cancer?

The issue here is that of comparing groups who may differ in respects other then the respect that is
under investigation. In other words, there are likely to be hidden variables.

Patients who had surgery for gastric cancer were divided into two groups – those who had presented
with cancer at a hospital or doctor’s surgery, and those who had been diagnosed with cancer as a
result of screening. Mortality was assessed in the 5 years following surgery:

Mortality Number
Unscreened Group 41.9% 352

Screened Group 28.2% 308

Table 1: Mortality in five-year period following surgery for cancer, classified according to whether
patients presented with cancer, or cancer was detected by screening.

What are the possible explanations for the higher mortality in the unscreened group?

Screening may be catching cancer early, thus reducing the risk of death.

Cancers detected by screening may be at an earlier stage of development, and thus less imme-
diately fatal.

Some cancers detected by screening may be of a less dangerous type, that progress slowly, or
may never progress to become fatal.

All three effects may contribute to the difference.

Question: What are likely/possible missing variables/factors, for these data?

The appropriate approach is to identify several large groups of patients, randomly assigning groups
for screening or no screening. Study participants are then followed for, e.g., the next decade. One
study7 classified 24,134 survey recipients as screened or unscreened, according as they had been
screened, or not, in the previous year. It then followed them up for 40 months:

7used in: Inaba et al. 1999: Evaluation of a Screening Program on Reduction of Gastric Cancer Mortality in Japan:
Preliminary Results from a Cohort Study. Preventive Medicine 29: 102-106



10 FURTHER EXAMPLES AND DISCUSSION 26

Male Female
Unscreened Screened Unscreened Screened
(n = 6,536) (n = 4,934) (n = 8,456) (n = 4,208)

Gastric cancer
No. of deaths 19 8 9 4
Mortality rate 86.8 53.0 31.0 40.2

All causes
No. of deaths 473 237 403 97
Mortality rate 2,199.0 1,593.1 1,370.7 829.4

Table 2: Mortality rates (deaths per 100,000 person years), from gastric cancer and from all causes.

Question: What are likely/possible missing variables/factors, for these data?

10.2 Cricket – Runs Per Wicket:

1st innings 2nd innings Overall
Runs Wickets Runs Wickets

Bowler A 40 4 240 6 280 10
Bowler B 70 5 50 1 120 6

Table 3: Runs per wicket for each bowler in the two innings.

The runs per wicket are:

1st innings 2nd innings
Bowler A 10.00 40.00
Bowler B 14.00 50.00

Table 4: Runs per wicket for each bowler in the two innings.

Observe that although Bowler A does better than bowler B in each innings, his overall average is
worse – 28 runs per wicket as opposed to 20.

A fair way to make the comparison is to model the effects both of bowler and of innings, using a
linear model.

10.3 Alcohol consumptions and risk of coronary heart disease

Here, there are may factors for which there should be an adjustment. After adjusting for the effects
of other factors. how does level of alcohol consumption affect risk of death? The method of analysis
used is survival analysis, which will not be covered in this course. Think of it as an extension of
the regression methodology that will be considered later in the course, with the risk of death as the
outcome. Risk is expressed as a probability density. Thus these analyses have probability density as
the outcome variable.

Britton & Marmot (2004) report on an 11-year follow-up of a study of 10,308 London-based civil
servants aged 35-55 years at baseline (33% female). Adjustments were made for age, smoking, em-
ployement grade, blood cholesterol, blood pressure, body mass index, and general health as measured
by a score from a questionnaire. Table 5 shows the estimated ratio of risk relative to the baseline line,
i.e., to the risk from all other factors.



10 FURTHER EXAMPLES AND DISCUSSION 27

No. of events (mortality/CHD) All-cause mortality Coronary heart disease
Men

Never drink (16/43) 2.3 (1.2 – 3.8) 1.8 (1.3 – 2.5)
Special occasions (33/76) 1.4 (0.9 – 2.2) 1.1 (0.8 – 1.4)
1–2 times/month (37/93) 1.5 (1.0 – 2.2) 1.0 (0-8 – 1.3)
1–2 times/week (82/306) 1 (baseine) 1.0 (baseline)
Almost daily (52/219) 0.9 (0.7 – 1.3) 0.9 (0.8 – 1.1)
Twice a day or more (22/41) 2.5 (1.5 – 4.1) 1.1 (0.8 – 1.5)

Women
Never drink (9/43) 1.5 (0.7 – 3.5) 1.8 (1.3 – 2.8)
Special occasions (40/127) 1.5 (0.7 – 3.5) 1.2 (0.9 – 1.5)
1–2 times/month (14/61) 1.7 (1.0 – 2.9) 1.0 (0-8 – 1.8)
1–2 times/week (26/137) 1 (baseine) 1.0 (baseline)
Almost daily (18/59) 1.3 (0.7 – 2.4) 0.8 (0.6 – 1.2)
Twice a day or more (5/7) 4.8 (1.8 – 12.7) 1.3 (0.6 – 2.8)

Table 5: Increased risk of mortality, relative to baseline, according to frequency of alcohol consumption.
Factors for which adjustment was made were age, smoking, employment grade, blood cholesterol, blood
pressure, body mass index, and general health as measured by a score from a questionnaire. CHD
was recorded as an outcome if there was an episode of fatal or non-fatal cornonary heart disease.

Thus, it looks as though modest levels of alcohol consumption may be beneficial. However the
results remain controversial. There may for example be lifestyle factors, associated with levels of
alcohol consumption, for which factors such as employment have not made adequate adjustment. If
such factors are correlated with frequency of drinking, this might in part explain the result. See
especially Jackson et al. (2005).

Note also another source of evidence, derived from so-called Mendelian randomization studies.
(Mendelian dose assignment would be a more accurate description than “Mendelian randomization”.)
Half of the Japanese population is homozygous or heterozygous for a non-functional variant of the
gene ALDH2, making them unable to metabolise alcohol properly, with unpleasant consequences. The
effect is more serious for the homozygotes than for the heterozygotes. The result is that homozygotes
heavily curtail their alcohol consumption and heterozygotes curtail it to some lesser extent. The
incidence of CHD closely reflects results predicted by Britton & Marmot (2004). At the same time, no
association was apparent between genotype and other factors implicated in CHD. See Davey Smith &
Ebrahim (2005).

10.4 Do the left-handed die young

A number of papers, in Nature, in the psychological literature and in the medical literature, have
argued that left-handed people have poorer survival prospects than right-handers. It turns out that,
in a large cross-sectional sample of the British population that was studied in the 1970s, the proportion
of left-handers declined from around 15% for ten-year-olds to around 5% for 70-year olds. If average
age at death is compared between left-handers and right-handers, left-handers will be over-represented
among those dying young, and over-represented among those dying in older years. Hence the average
age will be be lower for left-handers than for right-handers. Disturbingly it has been easier to get this
nonsense published than to get refutations published.

Again survival analysis methods are required for a proper analysis. Once the effect noted above
has been removed, there may be a small residual effect from lef-thandedness. See Bland & Altman
(2005).

10.5 Do airbags reduce risk of death in an accident

Each year the National Highway Traffic Safety Administration in the USA collects, using a random
sampling method, data from all police-reported crashes in which there is a harmful event (people or
property), and from which at least one vehicle is towed. The data in Table 6 are a summary of a
subset of the 1997-2002 data, as reported in Meyer & Finney (2006).
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Seatbelt Airbag Fatalities Occupants
seatbelt airbag 8626 4871940
none airbag 10650 870875
seatbelt none 7374 2902694
none none 20550 1952211

Table 6: Number of fatalities, by use of seatbelt and presence of airbag.

Meyer & Finney (2006) conclude that on balance (over the period when their data were collected)
airbags cost lives. Although their study is better than the official National Highway Traffic Safety
Administration assessment of the evidence, based on accidents where there was at least one death. In
order to obtain a fair comparison, it is necessary to adjust, not only for the effects of seatbelt use, but
also for speed of impact. When this is done, airbags appear on balance to be dangerous, with the most
serious effects in high impact accidents. Strictly, the conclusion is that, conditional on involvement
in an accident that was sufficiently serious to be included in the database (at least one vehicle towed
away from the scene), airbags are harmful.

Both sets of data are from accidents, and there is no way to know how many cases there were with
airbags where accidents (serious enough to find their way into the database) were avoided, as opposed
to the cases without aribags where accidents were avoided. Tests with dummies do not clinch the
issue; they cannot indicate how often it will happen that an airbag disables a driver to an extent that
they are unable to recover from an accident situation enough to avoid death or serious injury.

In ongoing debate and controversy over the use of airbags, errors have been identified in the data.
Use of the corrected data do not, however, substantially change the conclusions. Further questions,
additional to those noted above, have been raised. A forthcoming issue of Chance will take up some
of these further issues. The data (the initial data an/or perhaps the corrected data) will appear in
one of the sets of laboratory exercises.

Before installation of airbags was ever made mandatory, should there have been a large controlled
trial in which one out of every two cars off the production line was fitted with an airbag? Would it
have worked? Or would there be too much potential for driver behaviour to be influenced by whether
or not there was an airbag in the car? Would it have been possible to sell the idea of such a trial to
the public?

10.6 Hormone replacement therapy

Cohort and other population based studies have suggested hormone replacement therapy (HRT) re-
duces the risk of coronary heart disease (CHD). A large meta-analysis of what were identified as the
best quality observational studies found a relative reduction in risk of 50% from any use of HRT.

A large randomized controlled trial found an increase in hazard, from use of CRT, of 1.29 (95%
CI 1.02–1.63), after 5 years of follow-up. Thus, so far from reducing CHD risk, it increases the risk.
Overall, the conclusion now is that:

Hormone therapy, both oestrogen combined with progesterone and oestrogen alone, in-
crease risk of cardio vascular disease, stroke, blood clots and the hormone therapy that
was combined meaning oestrogen and progesterone increase risk of breast cancer.
[This is taken from: http://www.abc.gov.au/rn/healthreport/stories/2006/1530042.
htm]

This was an especial puzzle because the results of the observational studies have been consistent
with the results of randomized trials for other outcomes – breast cancer (increased risk for the combined
oestrogen/progesterone HRT; for a 50-year old from 11 in 1000 to maybe 15 in 1000), colon cancer
(reduced risk), hip fracture (reduced risk, but diet, exercise and other drugs can achieve the same or
better results) and stroke (increased risk; for a 50-year old from 4 in 1000 to 6 in 1000). See the ABC
web page just noted and, e.g., Rossouw et al. (2002) for further details and references.

Lawlor et al (2004) discuss why there is agreement for most outcomes, but not for CHD. Other
studies have shown that for CHD, childhood socio-economic indicators are important as predictors of
CHD, independently of adult socio-economic status (SES), behavioural and physiological risk factors.
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That is not true for the other outcomes considered. Additionally, the use of HRT is “strongly socially
patterned”. These are just the circumstances that can be expected to lead to confounding (Simpson’s
paradox type effects), as already discussed.

(The argument has the following character. There will be a group of individuals who had low
childhood SES, but high adult SES. Their low childhood SES may both lead to low use of HRT and
consequent lowered risk of CHD. In the analysis, the only adjustment is for their high adult SES. This
leads to over-correction for SES. The benefit that arises from non-use of HRT is wrongly ascribed, in
the analysis and its associated interpretation, to their high adult SES.)

If Lawlor et al (2004)’s account is correct, these investigations highlight the importance of account-
ing properly for socio-economic effects. When studying an outcome of interest from an observational
study, it is important to ask whether the simpler type of model that can account for breast cancer
risk is adequate, or whether the situation that pertains to CHD risk is more likely.

10.7 Freakonomics

Several of the studies that are discussed in Leavitt and Dubner (2005), some with major public policy
relevance, relied to an extent on regression methods – usually generalized linear models rather than
linear models. References in the notes at the end of their book allow interested readers to pursue
technical details of the statistical and other methodology. The conflation of multiple sources of insight
and evidence is invariably necessary, in such studies, if conclusions are to carry conviction. Ignore the
journalistic hype, obviously the responsibility of the second author, in the preamble to each chapter.

10.8 Further reading

See Rosenbaum (1999) and Rosenbaum (2002) for a comprehensive overview of issues that commonly
arise in the analysis of observational data, and of approaches that may be available to handle some of
the major sources of potential difficulty.

11 Variable selection and other multiplicity effects

Model coefficients and estimates can be susceptible to huge biases when there is substantial variable
selection that is designed to improve discrimination between subgroups of the data. This is an especial
issue for the analysis of microarray and other genomic data. See Ambroise and McLachlan (2001) for
a critique of papers where the authors have fallen prey to this trap. This can also be an issue for
graphs that are based on the data that remain after selection.

Empirical accuracy assessments seem the only good way to address the major issues that can arise
here. There are traps for data analysts who have not taken adequate account of the implications
of selecting, for use in a regression or discriminant or similar analysis, a small number of variables
(“features”) from a much larger number. Maindonald (unpub. manuscript) gives a relatively elemen-
tary account of this matter, which should be accessible to non-specialists. The paper Ambroise and
McLachlan (2001) is a careful examination of several examples, all concerned with the use of discrimi-
nant methods in connection with microarray data, from the literature. The same effects can arise from
model tuning. Cross-validation is a key tool in this context. This, or the bootstrap, seems the only
good way to allow for the skewing of results that can arise from potentially huge variable selection
effects. Any model tuning and/or variable selection must be repeated at each cross-validation fold.

Part IV

Linear Models with an i.i.d. Error
Structure
Most accounts of linear models assume that errors are independently and identically distributed (i.i.d.).
That assumption is by no means necessary. In real world examples, it is often patently false. It will
however be our starting point, for several reasons:
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• There are a wide range of situations where the i.i.d. errors assumption is a reasonable approxi-
mation.

• It is enough to deal with one complication at a time.

12 Straight Line Models in R

The base R system and the various R packages provide, between them, a huge range of model fitting
abilities. In these notes, the major attention will be on the model fitting function is lm(), where the
lm stands for linear model. Here, we fit a straight line, which is very obviously a linear model! This
simple starting point gives little hint of the range of models that can be fitted using R’s linear model
lm() function. A later laboratory will build on the simple ideas that are presented here to present a
far more expansive view of linear models.

R’s implementation of linear models uses a symbolic notation Wilkinson & Rogers (1973), that
gives a straightforward means for describing elaborate and intricate models.

12.1 Model, graphics and table formulae:

The syntax for lm() models that will be demonstrated here is used right throughout the modeling
functions in R, with modification as required. A very similar syntax can be used for obtaining graphs
and for certain types of tables.

weight depression
1 1.90 2.00
2 3.10 1.00
3 3.30 5.00
4 4.80 5.00
5 5.30 20.00
6 6.10 20.00
7 6.40 23.00
8 7.60 10.00
9 9.80 30.00

10 12.40 25.00

Table 7: Data showing depression
in lawn (mm.), for various weights
of roller (t)

The following plots the data in the data frame roller (shown in Table 7) that is in the DAAG
package.

> library(DAAG)

> plot(depression ~ weight, data = roller)

The formula depression ~ weight can be used either as a graphics formula or as a model formula.
Just to see what happens, try fitting a straight line, and adding it to the above plot:

> lm(depression ~ weight, data = roller)

Call:
lm(formula = depression ~ weight, data = roller)

Coefficients:
(Intercept) weight

-2.087 2.667

> abline(lm(depression ~ weight, data = roller))

The different components of the model are called terms. In the above, there is one term only on the
right, i.e., weight.
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12.2 Straight Line Regression – More Details

The straight line regression model has the form

depression = α+ β × weight + noise.

Writing y in place of depression and x in place of weight, we have:

y = α+ βx+ ε.

Subscripts are often used. Given observations (x1, y1), (x2, y2), . . . ,(xn, yn), we may write

yi = α+ βxi + εi.

In standard analyses, we assume that the εi are independently and identically distributed as normal
variables with mean 0 and variance σ2. The α+βx term is the deterministic component of the model,
and ε is the random noise. Greatest interest usually centers on the deterministic term. The R function
lm() provides a way to estimate the slope β and the intercept α (the line is chosen so that the sum
of squares of residuals is as small as possible). Given estimates (a for α and b for β), we can pass the
straight line

ŷ = a+ bx

through the points of the scatterplot. Fitted or predicted values are calculated using the above formula,
i.e.

ŷ1 = a+ bx1, ŷ2 = a+ bx2, . . . .

By construction, the fitted values lie on the estimated line. The line passes through the cloud of
observed values. Useful information about the noise can be gleaned from an examination of the
residuals, which are the differences between the observed and fitted values,

e1 = y1 − ŷ1, e2 = y2 − ŷ2, . . . .

In particular, a and b are estimated so that the sum of the squared residuals is as small as possible,
i.e., the resulting fitted values are as close (in this “least squares” sense) as possible to the observed
values. The residuals are shown as vertical lines, gray for negative residuals and black for positive
residuals, in Figure 10.
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Figure 10: Lawn depression for various
weights of roller, with fitted line. The
fitted line is designed to minimize the
sum of squares of residuals, i.e., the sum
of squared lengths of the vertical lines,
joining x’s to o’s, that are shown on the
graph.

12.3 The Model Matrix

The quantity that is to be minimized can be written:

10∑
i=1

(yi − a− bxi)2

Now observe how this can be written in matrix form. Set
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X =



1 1.9
1 3.1
1 3.3
1 4.8
1 5.3
1 6.1
1 6.4
1 7.6
1 9.8
1 12.4


y =



2
1
5
5
20
20
23
10
30
25


b =

(
a
b

)

Here X has the name “model matrix”.

The quantity that is to be minimized is, then, the sum of squares of

e = y −Xb =



2− (a+ 1.9b)
1− (a+ 3.1b)
5− (a+ 3.3b)
5− (a+ 4.8b)
20− (a+ 5.3b)
20− (a+ 6.1b)
23− (a+ 6.4b)
10− (a+ 7.6b)
30− (a+ 9.8b)
25− (a+ 12.4b)


The sum of squares of elements of e = y −Xb can be written

e′e = (y −Xb)′(y −Xb)

The least squares equations can be solved using matrix arithmetic. For our purposes, it will be
sufficient to use the R function lm() to handle the calculation:

> lm(depression ~ weight, data = roller)

Call:
lm(formula = depression ~ weight, data = roller)

Coefficients:
(Intercept) weight

-2.087 2.667

Both weight and depression are variables, i.e., they take values on the real line. They have,
within R, class “numeric”.

12.4 Recap, and Next Steps in Linear Modeling

This section has discussed one of the simplest possible type of linear model. It has shown how to
construct the model matrix with which R works when it fits such models. Here, it had two columns
only. Omission of the intercept term will give an even simpler model matrix, with just one column.

Regression calculations in which there are several explanatory variables are handled in the obvious
way, by adding further columns as necessary to the model matrix. This is however just the start.
There is a great deal more that can be done with model matrices, as will now be demonstrated.

13 What is a linear model?

The models discussed here are linear, in the sense that predicted values are a linear combination of a
finite set of basis functions. The basis functions can be nonlinear functions of the features, allowing
the modeling of systems in which there can nonlinear components that enter additively. The technical
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mathematical apparatus of linear models has a wider importance than linear models per se. It is a
fundamental component of many of the algorithms that have been developed by machine learners, by
data miners, and by statisticians.

Data that are intended for regression calculations consist of multiple observations (or instances, or
realizations) of a vector (x1, x2, . . . , xk, y) of real numbers, where the xis are explanatory variables
and y is the dependent variable.

Given x1, x2, . . . , xk, which take values on the real line, a first step (which in the simplest case
maps the xis onto themselves), is the formation of basis’ functions

φ1(x1, x2, . . . xk), φ2(x1, x2, . . . xk), . . . , φp(x1, x2, . . . xk)

In the simplest case p = k and φ1(x1, x2, . . . xp) = x1, φ2(x1, x2, . . . xp) = x2, . . . , φp(x1, x2, . . . xp) =
xp.

Then any function with values on the real line such that

f(x1, x2, . . . xk) = b1φ1(x1, x2, . . . xk) + b2φ2(x1, x2, . . . xk) + . . .+ bpφp(x1, x2, . . . xk)

where the elements of b = (b1, b2, . . . bp) are the only unknowns, specifies a linear model.
The model is linear in the values that the φ’s take on the sample data. It is not, in general, linear

in the xi’s. Here endeth our brief excursion that has defined the term linear model.

The random part of the model: The statistical output (standard errors, p-values, t-statistics)
from the lm() function assumes that the random term is i.i.d. (independently and identically dis-
tributed) normal. Least squares estimation is them equivalent to maximising the likelihood.

What if the i.i.d. assumption is false? Depending on the context, this may or may not matter. In
general, it is unwise to assume that it does not matter!

If the i.i.d. normal errors assumption is false in ways that are to some extent understood, then
it may be possible to make use of functions in one or other of the R packages that are designed to
facilitate the modeling of the random part of the model. Typically, these fit the model by maximising
the likelihood. Note especially the R packages nlme and lme4, for handling multilevel and related
models, and arima and related functions in the stats package that fit time series models.

13.1 Model terms, and basis functions:

In the very simple model in which depression is modeled as a linear function of weight, there the
one term (weight generates two basis functions: φ1(x) = 1 and φ2(x) = x which mapped values of
weight into itself. (Basis functions seem an unnecessary complication, for such a simple example.)

13.2 Multiple Regression

In multiple regression, the model matrix has one column for the constant term (if any), plus one
column for each additional explanatory variable. Thus, multiple regrssion is an easy extension of
straight line regression. Further flexibility is obtained by transforming variable values, if necessary,
before use of the variable in a multiple regression equation.

In the next example, there are multiple explanatory variables. We start with simple multiple linear
regression model, and then look to see whether there is a case to replace the linear terms by polynomial
or spline terms. Polynomial and spline terms extend the idea of“linear model”, with the result that the
dependence upon the variables in the model may be highly nonlinear! The lm() function will fit any
model for which the fitted values are a linear combination of basis functions. Each basis function can
in principle be an arbitrary transformation of one or more explanatory variables. “Additive models”
may be better terminology.

The example will use the hills2000 data set that is in the DAAG package. The row names store
the names of the hillraces. For the Caerketton race, where the time seems anomalously small, dist
should probably be 1.5mi not 2.5mi. The safest option may be to omit this point.

The interest is in prediction of time as a function of dist and climb. First examine the scatterplot
matrices, for the untransformed variables, and for the log transformed variables. The pattern of rela-
tionship between the two explanatory variables – dist and climb – is much closer to linear for the log
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transformed data, i.e., the log transformed data are consistent with a form of parsimony that is advan-
tageous if we hope to find a relatively simple form of model. Note also that the graphs of log(dist)
against log(time) and of log(climb) against log(time) are consistent with approximately linear
relationships. Thus, we will work with the logged data:

> match("Caerketton", rownames(hills2000))

[1] 42

> loghills2k <- log(hills2000[-42, 7:10]) # Omit the dubious point

> names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")

> loghills2k.lm <- lm(ltime ~ ldist + lclimb, data=loghills2k)

> par(mfrow=c(2,2))

> plot(loghills2k.lm) # Diagnostic plot

> par(mfrow=c(1,1))

We pause at this point and look more closely at the model that has been fitted. Does log(time)
really depend linearly on the terms ldist and log(lclimb)?

The function termplot() gives a graphical summary that can be highly useful. The graph is called
a termplot because it shows the contributions of the different terms in the model. We use the function
mfrow() to place the graphs side by side in a panel of one row by two columns:

> ## Plot the terms in the model

> if(dev.cur()==3)invisible(dev.set(2))

> par(mfrow=c(1,2))

> termplot(loghills2k.lm, col.term="gray", partial=TRUE,

+ col.res="black", smooth=panel.smooth)

> par(mfrow=c(1,1))

The plot shows the “partial residuals” for log(time) against log(dist) (left panel), and for log(time)
against log(climb) (right panel). They are partial residuals because, for each point, the means of
contributions of other terms in the model are subtracted off. The vertical scales show changes in
ltime, about the mean of ltime.

The lines, which are the contributions of the individual linear terms (“effects”) in this model, are
shown in gray so that they do not obtrude unduly. For the lines as well as the points, the contributions
of each term are shown after averaging over the contributions of all other terms. The dashed curves,
which are smooth curves that are passed through the partial residuals, are the primary feature of
interest in these plots. In both panels, they show clear indications of curvature.

This can be modeled, in the R context, by fitting either polynomial or spline curves. Spline curves
are vastly more flexible than polynomial curves.

14 Modeling Qualitative Effects

14.1 A single factor

The sugar data frame (DAAG package) compares the amount of sugar obtained from an unmodified
wild type plant with the amounts from three different types of genetically modified plants. In Table
8, the data are shown, with a model matrix alongside that may be used in explaining the effect of
plant type (Control, or one of the three modified types A or B or C) on the yield of sugar.

In the model matrix in Table 8, Control is the baseline, and the yields for A, B and C are estimated
as differences from this baseline. Then for each of the three treatments A, B and C there is an indicator
variable that is 1 for that treatment, and otherwise zero. There are three basis functions that are used
to account for the four levels of the factor trt.

The code used to fit the model is:

> library(DAAG)

> sugar.lm <- lm(weight ~ trt, data = sugar)

> summary(sugar.lm)
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Sugar yield data
weight trt

1 82.00 Control
2 97.80 Control
3 69.90 Control
4 58.30 A
5 67.90 A
6 59.30 A
7 68.10 B
8 70.80 B
9 63.60 B

10 50.70 C
11 47.10 C
12 48.90 C

Model matrix
(Intercept) trtA trtB trtC

1 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

Table 8: The data frame sugar is shown in the left panel. The right panel has R’s default form of
model matrix that is used in explaining the yield of sugar as a function of treatment (trt)

Call:
lm(formula = weight ~ trt, data = sugar)

Residuals:
Min 1Q Median 3Q Max

-13.3333 -2.7833 -0.6167 2.1750 14.5667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.367 2.236 29.229 2.03e-09
trt1 17.867 3.874 4.613 0.00173
trt2 -3.533 3.874 -0.912 0.38834
trt3 2.133 3.874 0.551 0.59685

Residual standard error: 7.747 on 8 degrees of freedom
Multiple R-Squared: 0.7915, Adjusted R-squared: 0.7133
F-statistic: 10.12 on 3 and 8 DF, p-value: 0.004248

Control was taken as the baseline; the fitted value is 83.23, which is given as (Intercept). The
vales that are given for remaining treatments are differences from this baseline. Thus the fitted value
(here equal to the mean) for treatment A is 83.23-21.40, that for B is 83.23-15.73, while that for C is
83.23-34.33.

The termplot summary

Again, termplots can be an excellent way to summarize results. Here is the termplot summary for the
analysis of the cuckoo egg length data:

> termplot(sugar.lm, partial.resid = TRUE, se = TRUE)

The dotted lines show one standard deviation limits either side of the mean.
In the above model there was just one term, i.e., species, and hence just one graph. This one

graph brings together information from the values of the six basis functions that correspond to the
term species. The vertical scale is labeled to show deviations of egg lengths from the overall mean.

In this example the so-called “partial residuals” are the deviations from the overall mean. The
dashed lines show one standard error differences in each direction from the species mean. (The
standard error of the mean measures the accuracy of the mean, in the same way that the standard
deviation measures the accuracy of the of an individual egg length.)
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A note on factors: The names for the different values that a factor can take are the “levels”.

> levels(bowler)

> levels(innings)

Internally, factors are stored as integer values. Each of the above factors has two levels. A lookup
table is used to associate levels with these integer values.

Other things to try: The function expand.grid() can be helpful for setting up the values of the
factors. We use xtable() to check that this gives the correct table:

> y <- c(10, 14, 40, 50)

> Z <- expand.grid(bowler = c("A", "B"), innings = c("one", "two"))

> xtabs(y ~ bowler + innings, data = Z)

innings
bowler one two

A 10 40
B 14 50

Other parameterizations

1. Above we used the default ”corner” parameterization, which R calls the “treatment” parameter-
ization. There are alternatives. The most commonly used alternative parameterization is the
“anova” parameterization, which R calls the “sum” parameterization. Use it thus:

> options(contrasts = c("contr.sum", "contr.poly"))

> model.matrix(~trt, data = sugar)

(Intercept) trt1 trt2 trt3
1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 1 0 1 0
5 1 0 1 0
6 1 0 1 0
7 1 0 0 1
8 1 0 0 1
9 1 0 0 1
10 1 -1 -1 -1
11 1 -1 -1 -1
12 1 -1 -1 -1
attr(,"assign")
[1] 0 1 1 1
attr(,"contrasts")
attr(,"contrasts")$trt
[1] "contr.sum"

> lm(weight ~ trt, data = sugar)

Call:
lm(formula = weight ~ trt, data = sugar)

Coefficients:
(Intercept) trt1 trt2 trt3

65.367 17.867 -3.533 2.133

These are called the “sum” contrasts (i.e., a particular form of parameterization) because they
are constrained to sum to zero. The sum contrasts have been favoured in texts on analysis of
variance.

2. There can be interactions between factors, or between factors and variables.
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14.2 The grouping of model matrix columns

Quite generally, the basis functions φ1, φ2, . . . , φp may be further categorized into groups, with one
group for each term the model, thus:

φ1, . . . , φm1︸ ︷︷ ︸
Term1

, φm1+1, . . . , φm2︸ ︷︷ ︸
Term2

, . . .

In the above, the basis functions for one factor formed just one termx. More generally, thare may
be one group of basis functions for each of several factors. In the later discussion of spline terms,
several basis functions will be required to account for each spline term in the model.

15 *Linear models, in the style of R, can be curvilinear models

We want to model y as a curvilinear function of x. This is straightforward, using the abilities of the
splines package. The following uses the data frame fruitohms in the DAAG package.

First ohms is plotted against juice. The function ns() (splines package) is then used to set up
the basis functions for the curve and pass a curve through these data. (There are other mechanisms,
some of them more direct, but this is more insightful for present purposes.)

> library(DAAG)

> plot(ohms ~ juice, data=fruitohms)

> library(splines)

> fitohms <- fitted(lm(ohms ~ ns(juice,df=3), data=fruitohms))

> points(fitohms ~ juice, data=fruitohms, col="gray")

The parameter df (degrees of freedom) controls the smoothness of the curve. A large value for df
allows a very flexible curve, e.g., a curve that can have multiple local maxima and minima.

The termplot() function offers another way to view the result. There is an option that allows,
also, one standard error limits about the curve:

> ohms.lm <- lm(ohms ~ ns(juice,df=3), data=fruitohms)

> termplot(ohms.lm, partial=TRUE, se=TRUE)

The labeling on the vertical axis shows differences from the overall mean of ohms. In this example the
partial is just the difference from the overall mean.

Spline basis elements

It is insightful to extract and plot the elements of the B-spline basis. This can be done as follows:

> par(mfrow=c(2,2))

> basismat <- model.matrix(ohms.lm)

> for (j in 2:5) plot(fruitohms$juice, basismat[,j])

The first column of the model matrix is the constant term in the model. Remaining columns are the
spline basis terms. The fitted values are determined by adding a linear combination of these four
curves to the constant term.

Splines in models with multiple terms

For present purposes, it will be enough to note that this is possible. Consider for example

> loghills2k <- log(hills2000[, 7:10])

> names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")

> loghill2k.lm <- lm(ltime ~ ns(ldist,2) + lclimb, data=loghills2k)

> par(mfrow=c(1,2))

> termplot(loghill2k.lm, col.term="gray", partial=TRUE,

+ col.res="black", smooth=panel.smooth)

> par(mfrow=c(1,1))
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Part V

Generalizations of Linear Models

16 Generalized Linear Models & Survival Models

The models described here, or in the case of the airbag data an extension of such a model, are needed
for handling the problems that are described in Subsections 10.3, 10.4, 10.5 and 10.6. Data analysts
should be aware of them, as they provide the only satistactory way to handle many of the problems
for which they are designed.

Yang & Letourneau (2005) is an interesting example of a data mining paper where survival
methods could and should have been used. The methodology may be regarded as an unsatisfactory
attempt to reinvent survival methods! Their methodology is tortuous and does not make the most
effective use of the data.

16.1 Generalized Linear Models

These are an extension of linear models. Generalized linear models (GLMs) extend linear models in
two ways. They allow for a more general form of expression for the expectation, and they allow various
types of non-normal error terms. Logistic regression models are perhaps the most widely used GLM.

The straight line regression model has the form

y = α+ βx+ ε

where, if we were especially careful, we would add subscript i s to y, x, and ε. In this introductory
discussion, we will consider with models where there is just one x, in order to keep the initial discussion
simple.

Taking expectation on both sides of the equation used for the above straight line regression model,
it follows that

E[y] = α+ βx

where E is expectation. It is this form of the equation that is the point of departure for our discussion
of generalized linear models. This class of models was first introduced in the 1970s, giving a unified
theoretical and computational approach to models that had previously been treated as distinct. These
models have been a powerful addition to the data analyst’s armory of statistical tools.

16.1.1 Transformation of the expected value on the left

GLMs allow a transformation f() to the left hand side of the regression equation, i.e., to E[y]. The
result specifies a linear relation with x. In other words,

f (E[y]) = α+ βx

where f() is a function, which is usually called the link function. In the fitted model, we call α+ βx
the linear predictor, while E[y] is the expected value of the response. The function f() transforms
from the scale of the response to the scale of the linear predictor.

Some common examples of link functions are: f(x) = x, f(x) = 1/x, f(x) = log(x), and f(x) =
log(x/(1− x)). The last is referred to as the logit link and is the link function for logistic regression.
Note that these functions are all monotonic, i.e., they increase or (in the case of 1/x) decrease with
increasing values of x.

16.1.2 Noise terms need not be normal

We may write
y = E[y] + ε.

Here the elements of y may have a distribution different from the normal distribution. Common
distributions are the binomial where y is the number responding out of a given total n, and the
Poisson where y is a count.
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Even more common may be models where the random component differs from the binomial or
Poisson by having a variance that is larger than the mean. The analysis proceeds as though the
distribution were binomial or Poisson, but the theoretical binomial or Poisson variance estimates
are replaced by a variance that is estimated from the data. Such models are called, respectively,
quasi-binomial models and quasi-Poisson models.

16.1.3 Iteratively reweighted least squares

In GLMs, errors are typically assumed independent, but the variance is a function of the fitted value.
Such models are fitted, in R and most other implementations of this methodology, using iteratively
reweighted least squares. This yields, for GLMs, the maximum likelihood estimates of parameters. It
is important that the noise term is from the exponential family of distributions. This family includes
in particular the normal, the binomial and the Poisson.

Each iteration uses a weighted least squares calculation. As the weights are inversely proportional
to the variances, they depend on the fitted values. Starting values are required, in order to initiate cal-
culations. The weighted least squares calculation is repeated, with new weights at each new iteration,
until the fitted values converge.

16.2 Survival models

Survival (or failure) analysis introduces features different from any of those encountered in the re-
gression methods discussed in earlier chapters. It has been widely used for comparing the times of
survival of patients suffering a potentially fatal disease who have been subject to different treatments.
Computations can be handled in R using the survival package, written for S-PLUS by Terry Therneau,
and ported to R by Thomas Lumley.

Other names, mostly used in non-medical contexts, are Failure Time Analysis and Reliability. Yet
another term is Event History Analysis. The focus is on time to any event of interest, not necessarily
failure. It is an elegant methodology that is too little known outside of medicine and industrial
reliability testing.

Applications include:

• the failure time distributions of industrial machine components, electronic equipment, auto-
mobile components, kitchen toasters, light bulbs, businesses, etc. (failure time analysis, or
reliability),

• the waiting time to germination of seeds, to marriage, to pregnancy, or to getting a first job,

• the waiting time to recurrence of an illness or other medical condition.

The outcomes are survival times, but with a twist. The methodology is able to handle data where
failure (or another event of interest) has, for a proportion of the subjects, not occurred at the time
of termination of the study. It is not necessary to wait till all subjects have died, or all items have
failed, before undertaking the analysis! Censoring implies that information about the outcome is
incomplete in some respect, but not completely missing. For example, while the exact point of failure
of a component may not be known, it may be known that it did not survive more than 720 hours (=
30 days). In a clinical trial, there may for some subjects be a final time up to which they survived,
but no subsequent information. Such observations are said to be right censored.

Thus, for each observation there are two items of information: a time, and censoring information.
Commonly the censoring information indicates either right censoring denoted by 0, or failure denoted
by 1.

Many of the same issues arise as in more classical forms of regression analysis. One important set
of issues has to do with the diagnostics used to check on assumptions. Here there have been large
advances in recent years. A related set of issues has to do with model choice and variable selection.
There are close connections with variable selection in classical regression. Yet another set of issues
has to do with the incomplete information that is available when there is censoring

17 Multilevel Models – General Comments

Basic ideas of multilevel modeling will be illustrated using data on yields from packages on eight sites
on the Caribbean island of Antigua. They are a summarized version of a subset of data given in
Andrews and Herzberg 1985, pp.3̃39-353.



17 MULTILEVEL MODELS – GENERAL COMMENTS 40

Depending on the use that will be made of the results, it may be essential to correctly model the
structure of the random part of the model. The analysis will use the abilities of the lme() function
in the nlme package, though the example is one where it is easy, using modest cunning, to get the
needed sums of squares from a linear model calculation. For these data, there is more than one type (or
“level”) of prediction or generalization, with very different accuracies for the different generalizations.
The data give results for each of several packages at a number of different locations (sites). In such
cases, a prediction for a new package at one of the existing locations is likely to be more accurate than
a prediction for a totally new location. Multi-level models are able to account for such differences in
predictive accuracy.

The multiple levels that are in view are multiple levels in the noise or error term, and are superim-
posed on any effects that are predictable. For example, differences in historical average annual rainfall
may partly explain location to location differences in crop yield. The error term in the prediction for a
new location will account for variation that remains after taking account of differences in the rainfall.

Examples abound where the intended use of the data makes a multi-level model appropriate.
Examples of two levels of variability, at least as a first approximation, include: variation between
houses in the same suburb, as against variation between suburbs; variation between different clinical
assessments of the same patients, as against variation between patients; variation within different
branches of the same business, as against variation between different branches; variations in the
bacterial count between different samples from the same lake, as opposed to variation between different
subsamples of the same sample; variation between the drug prescribing practices of clinicians in a
particular specialty in the same hospital, as against variation between different clinicians in different
hospitals; and so on. In all these cases, the accuracy with which predictions are possible will depend
on the mix of the two levels of variability that are involved. These examples can all be extended in
fairly obvious ways to include more than two levels of variability.

In all the examples just mentioned, one source of variability is nested within the other – thus
packages of land are nested within locations. Variation can also be crossed. For example different
years may be crossed with different locations. Years are not nested in locations, nor are locations
nested in years. Examples of crossed error structures are beyond the scope of the present discussion.

17.1 The Antiguan Corn Yield Data

For the version of the Antiguan corn data presented here, the hierarchy has two levels of random
effects. Variation between packages in the same site is at the lower of the two levels, and is called level
0 in the later discussion. Variation between sites is the higher of the two levels, and is called level 1 in
the later discussion. A farmer who lived close to one of the experimental sites might take data from
that site as indicative of what to expect. Other farmers may think it more appropriate to regard their
farms as new sites, distinct from the experimental sites, so that the issue is one of generalizing to new
sites.

The analysis will use the lme() function in the nlme package, though the example is one where it
is easy, using modest cunning, to get the needed sums of squares from a linear model calculation.

The data that will be analyzed are in the second column of Table 9, which has means of packages
of land for the Antiguan data. In comparing yields from different packages, there are two sorts of
comparison. Packages on the same site should be relatively similar, while packages in different sites
should be relatively more different. The figure that was given earlier suggested that this is indeed the
case.

Note: In an analysis of variance formalization, the two-level structure of variation is handled by splitting

variation, as measured by the total sum of squares about the grand mean, into two parts – variation within

sites, and variation between site means. The final two columns in Table 9 indicate how to calculate the relevant

sums of squares and (by dividing by degrees of freedom) mean squares. The division of the sum of squares

into two parts mirrors two different types of predictions that can be based on these data. First, suppose that

we are interested in another package on one of these same sites. Within what range of variation would we

expect its yield to lie? Second, suppose that a trial were to be carried out on some different site, not one of

the original eight. What is the likely range of variation of the mean yield, i.e., how accurate is the accuracy

of prediction of the yield for that new site?
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Site Site means Site effect Residuals from
site mean

DBAN 5.16, 4.8, 5.07, 4.51 +0.59 0.28, −0.08, 0.18, −0.38
LFAN 2.93, 4.77, 4.33, 4.8 −0.08 −1.28, 0.56, 0.12, 0.59
NSAN 1.73, 3.17, 1.49, 1.97 −2.2 −0.36, 1.08, −0.6, −0.12
ORAN 6.79, 7.37, 6.44, 7.07 (4.29) +2.62 −0.13, 0.45, −0.48, 0.15
OVAN 3.25, 4.28, 5.56, 6.24 +0.54 −1.58, −0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 −1.26 −0.39, 0.15, −0.25, 0.48

WEAN 5.04, 4.6, 6.34, 6.12 +1.23 −0.49, −0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 −1.45 −0.82, −0.18, 0.32, 0.68

square, add, square, add, divide by
multiply by 4, d.f.=24, to give ms
divide by d.f.=7,
to give ms

Table 9: The leftmost column has harvest weights (harvwt), for the packages in each site, for the
Antiguan corn data. Each of these harvest weights can be expressed as the sum of the overall mean
(= 4.29), site effect (third column), and residual from the site effect (final column). This information
that can be used to create the analysis of variance table. (Details of the analysis of variance approach
to analysis of these data, although straightforward, get only passing mention in these notes.)

The model

The model that is used is:

yield = overall mean + site effect
(random) + package effect

(random)

In formal mathematical language:

yij = µ+ αi
(site, random) + βij

(package, random) (i = 1, . . . , 8; j = 1, . . . , 4)

with var[αi] = σ2
L, var[βij] = σ2

B.
The quantities σ2

L and σ2
B are known, technically, as variance components. (Those who are familiar

with the analysis of variance breakdown may wish to note that the variance components analysis allows
inferences that are not immediately available from the breakdown of the sums of squares in the analysis
of variance table.) Importantly, the variance components provide information that can help design
another experiment.

17.2 The variance components

Here is how the variance components should be interpreted, for the Antiguan data:

• Variation between packages at a site is due to one source of variation only. Denote this variance
by σ2

B . The variance of the difference between two such packages is 2σ2
B

[Both packages have the same site effect αi, so that var(αi) does not contribute to the variance
of the difference.]

• Variation between sites in different plots is partly a result of variation between packages, and
partly a result of additional variation between sites. In fact, if σ2

L is the (additional) component
of the variation that is due to variation between sites, the variance of the difference between two
packages that are in different site is

2(σ2
L + σ2

B)
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• For s single package, the variance is σ2
L + σ2

B . The variance of the estimate of the site mean is a
mean over the four packages at the one site, and is

σ2
B +

σ2
L

4

[Notice that while σ2
L is divided by four, σ2

B is not. This is because the site effect is the same
for all four packages.]

Part VI

Technical Mathematical Results

18 Least Squares Estimates

18.1 The mean is a least squares estimator

The lm() function uses the method of least square to find estimates. The following is the simplest
possible example. Given sample values

y1, y2, . . . , yn

what choice of µ will minimize
∑n

i=1(xi − µ)2? Observe that

n∑
i=1

(xi − µ)2 =
n∑

i=1

[(xi − x̄) + (x̄− µ)]2

=
n∑

i=1

[(xi − x̄)2 + 2(xi − x̄)(x̄− µ) + (x̄− µ)2]

=
n∑

i=1

(xi − x̄)2 + 2(x̄− µ)
n∑

i=1

(xi − x̄) + n(x̄− µ)2

As
n∑

i=1

(xi − x̄ =
n∑

i=1

xi − nx̄ = 0

this equals
n∑

i=1

(xi − x̄)2 + n(x̄− µ)2

Then n(x̄− µ)2 >= 0, with equality for µ = µ̂ = x̄.
Because x̄ is the least squares estimator of µ, it is possible to use a linear model to calculate the

mean. For this, a model is specified in which the only term is the constant term. Thus, for the female
Adelaide statistics students:

library(MASS)
y <- na.omit(survey[survey$Sex=="Female", "Height"])
lm(y ~ 1)

18.2 Least squares estimates for linear models

Given the model
y = Xβ + ε

the least squares estimate b of β is obtained by solving the normal equation

X′Xβ = X′y

In practice it is usually best not to solve this equation directly, but to work from the QR orthogonal
decomposition of X. For details, see the references that appear on the help page for R’s function qr().
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18.3 Beyond Least Squares – Maximum Likelihood

Least squares may not work very well for non-normal data. Typically, statisticians then appeal to the
maximum likelihood principle. For normal data, with independent and identically distributed errors,
maximum likelihood gives the same parameter estimates as least squares. Section 16 has brief notes
on two types of model where it really is necessary to work with maximum likelihood estimates.

19 Variances of Sums and Differences

The needed results are most easily derived using expectation algebra. For present purposes, it will be
adequate to define

E[g(X)] =
∫

g(x)f(x)dx

if X is a continuous random variable with density f(x) at the point x, and

E[g(X)] =
∑

g(x)Pr(X = x)

where the integral or sum is taken over the support of X. The key result from expectation algebra
is that, for any two random variables X and Y , E[c1X + c2X] = c1E[X] + c2E[Y]. The proof, for two
special cases noted above, is left as an exercise.

The variance of a random variable X with mean µ = E[X] is E(y − µ)2. Then

var[X1 + X2] = var[X1] + var[X2] + 2cov[X1,X2]

which equals var[X1] + var[X2] if and only if

cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] = 0

A very similar argument shows that var[X1 −X2] = var[X1] + var[X2] if and only if cov[X1,X2] = 0.
A sufficient condition for cov[X1,X2] = 0 is that X1 and X2 are independent.
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