
57

Part IX

Trees, SVM, and Random Forest
Discriminants

1 rpart Analyses – the Pima Dataset

Note the rpart terminology:

size Number of leaves Used in plots from plotcp()
nsplit Number of splits = size - 1 Used in printcp() output
cp Complexity parameter Appears as CP in graphs and printed

output. A smaller cp gives a more complex model,
i.e., more splits.

rel error Resubstitution error Multiply by baseline error to get the
measure corresponding absolute error measure.

In general, treat this error measure with scepticism.
xerror Crossvalidation error Multiply by baseline error to get the

estimate corresponding absolute error measure.

After attaching the MASS package, type help(Pima.tr) to get a description of these data. They
are relevant to the investigation of conditions that may pre-dispose to diabetes.

1.1 Fitting the model

Fit an rpart model to the Pima.tr data:

> library(MASS)
> library(rpart)
> Pima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> plotcp(Pima.rpart)

The formula type ∼ . has the effect of using as explanatory variables all columns of Pima.tr except
type. The parameter cp is a complexity parameter; it penalizes models that are too complex. A
small penalty leads to more splits. Note that cp, at this initial fit, has to be small enough so that the
minimum of the cross-validated error is attained.

Try this several times. The result will vary somewhat from run to run. Why?
One approach is to choose the model that gives the absolute minimum of the cross-validated error.

If the fitting has been repeated several times, the cross-validation errors can be averaged over the
separate runs.

A more cautious approach is to choose a model where there is some modest certainty that the final
split is giving a better than chance improvement. For this, the suggestion is to choose the smallest
number of splits so that cross-validated error rate lies under the dotted line. This is at a height of
(minimum cross-validated error rate) + 1 standard error.

The choice of 1 SE, rather than some other multiple of the SE, is somewhat arbitrary. The aim
is to identify a model where the numbers of splits stays pretty much constant under successive runs
of rpart. For this it is necessary to move back somewhat, on the curve that plots the cross-validated
error rate against cp, from the flat part of the curve where the cross-validated error rate is a minimum.
The 1 SE rule identifies a better-defined value of cp where the curve has a detectable negative slope.

For example, in one of my runs, the 1 SE rule gave cp=0.038, with size=4. The resulting tree can
be cut back to this size with:

> Pima.rpart4 <- prune(Pima.rpart, cp=0.037)

1 RPART ANALYSES – THE PIMA DATASET 58

The value of cp is chosen to be less than 0.038, but more than the value that led to a further split.
Plot the tree, thus:

> plot(Pima.rpart4) # NB: plot, not plotcp()
> text(Pima.rpart4) # Labels the tree

Note also the printed output from

> printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 0.97059 0.097791
3 0.073529 2 0.61765 0.89706 0.095752
4 0.058824 3 0.54412 0.88235 0.095305
5 0.014706 4 0.48529 0.77941 0.091785
6 0.010000 7 0.44118 0.89706 0.095752

Get the absolute cross-validated error by multiplying the root node error by xerror. With nsplit=3
(a tree of size 4 leaves), this is, in the run I did, 0.3327*0.7006 = 0.233. (The accuracy is obtained by
subtracting this from 1.0, i.e., about 77%.)

Where it is not clear from the graph where the minimum (or the minimum+SE, if that is used)
lies, it will be necessary to resort to use this printed output for that purpose. It may be necessary to
use a value of cp that is smaller than the default in the call to rpart(), in order to be reasonably
sure that the optimum (according to one or other criterion) has been found.

Exercise 1: Repeat the above several times, i.e.

> library(rpart)
> Pima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> plotcp(Pima.rpart)

(a) Overlay the several plots of the cross-validated error rate against the number of splits. Why
does the cross=validated error rate vary somewhat from run to run? Average over the several runs
and choose the optimum size of tree based on (i) the minimum cross-validated error rate, and (ii) the
minimum cross-validated error rate, plus one SE.

(b) Show the relative error rate on the same graph.
NB: You can get the error rate estimates from:

> errmat <- printcp(Pima.rpart)

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

2 RPART ANALYSES – PIMA.TR AND PIMA.TE 59

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.00000 0.098518
3 0.073529 2 0.61765 0.88235 0.095305
4 0.058824 3 0.54412 0.85294 0.094370
5 0.014706 4 0.48529 0.69118 0.088180
6 0.010000 7 0.44118 0.80882 0.092863

> colnames(errmat) # Hints at what will come next

[1] "CP" "nsplit" "rel error" "xerror" "xstd"

> resub.err <- 1-0.3327*errmat[,"rel error"]
> cv.err <- 1-0.3327*errmat[,"xerror"]

Exercise 2: Prune the model back to give the optimum tree, as determined by the one SE rule.
How does the error rate vary with the observed value of type? Examine the confusion matrix. This is
most easily done using the function xpred(). (The following assumes that 3 leaves, i.e., cp less than
about 0.038 and greater than 0.011, is optimal.)

> Pima.rpart <- prune(Pima.rpart, cp=0.037)
> cvhat <- xpred.rpart(Pima.rpart4, cp=0.037)
> tab <- table(Pima.tr$type, cvhat)
> confusion <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> dimnames(confusion) <- list(ActualType=c("No","Yes"),
+ PredictedType=c("No","Yes"))
> print(confusion)

PredictedType
ActualType No Yes

No 0.8863636 0.1136364
Yes 0.5000000 0.5000000

The table shows how the predicted accuracy changes, depending on whether the correct type is Yes
or No.

How would you expect the overall estimate of predictive accuracy to change, using the same fitted
rpart model for prediction:

• if 40% were in the Yes category?

• if 20% were in the Yes category?

2 rpart Analyses – Pima.tr and Pima.te

Exercise 3 These exercises will use the two data sets Pima.tr and Pima.te.
What are the respective proportions of the two types in the two data sets?

Exercise 3a: Refit the model.

> trPima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> plotcp(trPima.rpart)
> printcp(trPima.rpart)

2 RPART ANALYSES – PIMA.TR AND PIMA.TE 60

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 1.01471 0.098864
3 0.073529 2 0.61765 0.94118 0.097014
4 0.058824 3 0.54412 0.89706 0.095752
5 0.014706 4 0.48529 0.79412 0.092331
6 0.010000 7 0.44118 0.75000 0.090647

Choose values of cp that will give the points on the graph given by plotcp(trPima.rpart). These
(except for the first; what happens there?) are the geometric means of the successive pairs that are
printed, and can be obtained thus:

> trPima.rpart <- rpart(type ~ ., data=Pima.tr, method="class")
> cp.all <- printcp(trPima.rpart)[, "CP"]

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 0.91176 0.096186
3 0.073529 2 0.61765 0.79412 0.092331
4 0.058824 3 0.54412 0.77941 0.091785
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.70588 0.088822

> n <- length(cp.all)
> cp.all <- sqrt(cp.all*c(Inf, cp.all[-n]))
> nsize <- printcp(trPima.rpart)[, "nsplit"] + 1

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

3 ANALYSIS USING SVM 61

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 0.91176 0.096186
3 0.073529 2 0.61765 0.79412 0.092331
4 0.058824 3 0.54412 0.77941 0.091785
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.70588 0.088822

Observe that nsize is one greater than the number of splits.
Prune back successively to these points. In each case determine the cross-validated error for the

training data and the error for test data. Plot both these errors against the size of tree, on the same
graph. Are they comparable? The following will get you started:

> tr.cverr <- printcp(trPima.rpart)[, "xerror"] * 0.34

Classification tree:
rpart(formula = type ~ ., data = Pima.tr, method = "class")

Variables actually used in tree construction:
[1] age bmi bp glu ped

Root node error: 68/200 = 0.34

n= 200

CP nsplit rel error xerror xstd
1 0.220588 0 1.00000 1.00000 0.098518
2 0.161765 1 0.77941 0.91176 0.096186
3 0.073529 2 0.61765 0.79412 0.092331
4 0.058824 3 0.54412 0.77941 0.091785
5 0.014706 4 0.48529 0.66176 0.086846
6 0.010000 7 0.44118 0.70588 0.088822

> n <- length(cp.all)
> trPima0.rpart <- trPima.rpart
> te.cverr <- numeric(n)
> for (i in n:1){
+ trPima0.rpart <- prune(trPima0.rpart, cp=cp.all[i])
+ hat <- predict(trPima0.rpart, newdata=Pima.te, type="class")
+ tab <- table(hat, Pima.te$type)
+ te.cverr[i] <- 1-sum(tab[row(tab)==col(tab)])/sum(tab)
+ }

Comment on the comparison, and also on the dependence on the number of splits.

3 Analysis Using svm

Exercise 4: Compare the result also with the result from an SVM (Support Vector Machine) model.
For getting predictions for the current test data, it will be necessary, for models fitted using svm(),
to use the newdata argument for predict(). Follow the prototype

> library(e1071)
> library(MASS)

4 ANALYSIS USING RANDOMFOREST 62

> trPima.svm <- svm(type ~ ., data=Pima.tr)
> hat <- predict(trPima.svm, newdata=Pima.te)
> tab <- table(Pima.te$type, hat)
> 1-sum(tab[row(tab)==col(tab)])/sum(tab)
> confusion.svm <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> print(confusion.svm)

4 Analysis Using randomForest

Random forests can be fit pretty much automatically, with little need or opportunity for tuning. For
datasets where there is a relatively complex form of dependence on explanatory factors and variables,
random forests may give unrivalled accuracy.

Fiting proceeds by fitting (in fact, overfitting) many (by default, 500) trees, with each tree fitted
to a different bootstrap sample of the data, with a different random sample of variables also. Each
tree is taken to its full extent. The predicted class is then determined ny a simple vote over all trees.

Exercise 5: Repeat the previous exercise, but now using randomForest()

> library(randomForest)
> Pima.rf <- randomForest(type~., data=Pima.tr, xtest=Pima.te[,-8],
+ ytest=Pima.te$type)
> Pima.rf

Call:
randomForest(formula = type ~ ., data = Pima.tr, xtest = Pima.te[, -8], ytest = Pima.te$type)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 29.5%
Confusion matrix:

No Yes class.error
No 107 25 0.1893939
Yes 34 34 0.5000000

Test set error rate: 23.19%
Confusion matrix:

No Yes class.error
No 190 33 0.1479821
Yes 44 65 0.4036697

Note that OOB = Out of Bag Error rate, calculated using an approach that has much the same effect
as cross-validation, applied to the data specified by the data parameter. Notice that randomForest()
will optionally give, following the one function call, an assessment of predictive error for a completely
separate set of test data that has had no role in training the model. Where such a test set is available,
this provides a reassuring check that randomForest() is not over-fitting.

Exercise 6: The function tuneRF() can be used for such limited tuning as randomForest() allows.
Look up help(tuneRF(), and run this function in order to find an optimal value for the parameter
mtry. Then repeat the above with this optimum value of mtry, and again compare the OOB error
with the error on the test set.

Exercise 7: Comment on the difference between rpart() and randomForest(): (1) in the level
of automation; (2) in error rate for the data sets for which you have a comparison; (3) in speed of
execution.

5 CLASS WEIGHTS 63

5 Class Weights

Exercise 8: Analysis with and without specification of class weights Try the following:

> Pima.rf <- randomForest(type ~ ., data=Pima.tr, method="class")
> Pima.rf.4 <- randomForest(type ~ ., data=Pima.tr, method="class", classwt=c(.6,.4))
> Pima.rf.1 <- randomForest(type ~ ., data=Pima.tr, method="class", classwt=c(.9,.1))

What class weights have been implicitly assumed, in the first calculation?
Compare the three confusion matrices. The effect of the class weights is not entirely clear. They

do not function as prior probabilites. Prior probabilities can be fudged by manipulating the sizes of
the bootstrap samples from the different classes.

6 Plots that show the “distances” between points

In analyses with randomForest, the proportion of times (over all trees) that any pair of observations
(“points”) appears at the same terminal node can be use as a measure of proximity between the pair.
An ordination method can then be used to find a low-dimensional representation of the points that
as far as possible preserves the distances or (for non-metric scaling) preserves the ordering of the
distances. Here is an example:

> Pima.rf <- randomForest(type~., data=Pima.tr, proximity=TRUE)
> Pima.prox <- predict(Pima.rf, proximity=TRUE)
> Pima.cmd <- cmdscale(1-Pima.prox$proximity)
> Pima.cmd3 <- cmdscale(1-Pima.prox$proximity, k=3)
> library(lattice)
> cloud(Pima.cmd3[,1] ~ Pima.cmd3[,2]*Pima.cmd3[,2], groups=Pima.tr$type)

Exercise 9: What is the plot from cloud() saying? Why is this not overly surprising?:

Note: The function randomForest() has the parameter classwt, which seems to have little effect.

6.1 Prior probabilities

The effect of assigning prior probabilities can be achieved by choosing the elements of the parameter
sampsize (the bootstrap sample sizes) so that they are in the ratio of the required prior probabilities.

> ## Default
> randomForest(type ~ ., data=Pima.tr, sampsize=c(132,68))

Call:
randomForest(formula = type ~ ., data = Pima.tr, sampsize = c(132, 68))

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 28.5%
Confusion matrix:

No Yes class.error
No 108 24 0.1818182
Yes 33 35 0.4852941

> ## Simulate a prior that is close to 0.8:0.2
> randomForest(type ~ ., data=Pima.tr, sampsize=c(132,33))

7 FURTHER EXAMPLES 64

Call:
randomForest(formula = type ~ ., data = Pima.tr, sampsize = c(132, 33))

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 27%
Confusion matrix:

No Yes class.error
No 120 12 0.0909091
Yes 42 26 0.6176471

> # Notice the dramatically increased accuracy for the No's
> ## Simulate a prior that is close to 0.1:0.9
> randomForest(type ~ ., data=Pima.tr, sampsize=c(17,68))

Call:
randomForest(formula = type ~ ., data = Pima.tr, sampsize = c(17, 68))

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 39%
Confusion matrix:

No Yes class.error
No 60 72 0.5454545
Yes 6 62 0.0882353

With small sample sizes, it may be beneficial to fit a greater number of trees.

7 Further Examples

(a) Look up the help page for the dataset Vehicle from the mlbench package:

(a) Fit a linear discriminant analysis model (lda()). Plot the first two sets of discriminant
scores, identifying the different vehicle types;

(b) Try quadratic discriminant analysis (qda()) for comparison;
(c) Compare the accuracy with that from fitting a random forest model. Use the proximities

to derive a three-dimensional representation of the data. Examine both the projection onto
two dimensions and (using rgl() from the rgl package) the three-dimensional representa-
tion.

(d) Compare the two (or more; you might derive more than one plot from the proximities)
low-dimensional plots. Do any of the plots offer any clue on why quadratic discriminant
analysis is so effective?

(b) Repeat Exercise 1, now with the dataset fgl (forensic glass data) in the MASS package. Note
that, for these data, qda() fails. Why does it fail?

