
35

Part VI

Linear Discriminant Analysis – Using lda()
The function lda() is in the Venables & Ripley MASS package. It may have poor predictive power
where there are complex forms of dependence on the explanatory factors and variables. In cases where
it is effective, it has the virtue of simplicity. Covariates are assumed to have a common multivariate
normal distribution.

The function qda() weakens the assumptions underlying lda() to allow different variance-covariance
matrices for different groups within the data. This sets limits on the minimum group size.

Where there are two classes, (use glm()) has very similar properties to linear discriminant anal-
ysis using lda(). It makes weaker assumptions. The trade-off is that estimated group membership
probabilities are conditional on the observed matrix.

With all these “linear” methods, the model matrix can replace columns of covariate data by a
set of spline (or other) basis columns that allow for effects that are nonlinear in the covariates.
Use termplot() with a glm object, with the argument smooth=panel.smooth, to check for hints of
nonlinear covariate effects. Detection of nonlinear effects may require very extensive data.

A good first check on whether these “linear” methods seem to be effective is given by compari-
son with the highly nonparametric analysis of the function randomForest(), from the randomForest
package. This function may do well when complex interactions are required to explain the dependence.

At this point, attention will mostly be limited to data where there are two groups only.

1 Accuracy for Classification Models – the Pima Data

After attaching the MASS package, type help(Pima.tr) to get a description of these data. They
are relevant to the investigation of conditions that may pre-dispose to diabetes. All the explanatory
variables can be treated as continuous variables; there are no factor columns, or columns (e.g. of 0/1
data) that might be regarded as factors.

1.1 Fitting an lda model

We will first try linear discriminant analysis. As a first try, we use the model formula type ∼ .. The
effect is to use as explanatory variables all columns of Pima.tr except type.

We run the calculations twice: (1) the first run of the calculations has CV=TRUE, to get predictions
of class membership that are derived from leave-one-out cross-validation; (2) the second run of the
calculations has CV=FALSE (the default), allowing us then to use predict() to obtain an object that
includes discriminant scores.

> library(MASS)
> PimaCV.lda <- lda(type ~ ., data = Pima.tr, CV = TRUE)
> tab <- table(Pima.tr$type, PimaCV.lda$class)
> conCV1 <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,]))
> dimnames(conCV1) <- list(Actual = c("No", "Yes"), "Predicted (cv)" = c("No",
+ "Yes"))
> print(round(conCV1, 3))

Predicted (cv)
Actual No Yes

No 0.864 0.136
Yes 0.456 0.544

> Pima.lda <- lda(type ~ ., data = Pima.tr)
> Pima.hat <- predict(Pima.lda)
> tabtrain <- table(Pima.tr$type, Pima.hat$class)

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 36

> conTrain <- rbind(tab[1,]/sum(tab[1,]), tab[2,]/sum(tab[2,
+]))
> dimnames(conTrain) <- list(Actual = c("No", "Yes"), "Predicted (cv)" = c("No",
+ "Yes"))
> print(round(conTrain, 3))

Predicted (cv)
Actual No Yes

No 0.864 0.136
Yes 0.456 0.544

The argument CV=TRUE generates leave-one-out cross-validation predictions of the class. Notice
that, here, the two accuracy measures are the same. In general, the training set accuracy can be
optimistic.

Now plot the discriminant scores. As there are two groups only, there is just one set of scores.

> library(lattice)
> densityplot(~Pima.hat$x, groups = Pima.tr$type)

A function that calculates the confusion matrices and overall accuracy would be helpful:

> confusion <- function(actual, predicted, names = NULL, printit = TRUE,
+ prior = NULL) {
+ if (is.null(names))
+ names <- levels(actual)
+ tab <- table(actual, predicted)
+ acctab <- t(apply(tab, 1, function(x) x/sum(x)))
+ dimnames(acctab) <- list(Actual = names, "Predicted (cv)" = names)
+ if (is.null(prior)) {
+ relnum <- table(actual)
+ prior <- relnum/sum(relnum)
+ acc <- sum(tab[row(tab) == col(tab)])/sum(tab)
+ }
+ else {
+ acc <- sum(prior * diag(acctab))
+ names(prior) <- names
+ }
+ if (printit)
+ print(round(c("Overall accuracy" = acc, "Prior frequency" = prior),
+ 4))
+ if (printit) {
+ cat("\nConfusion matrix", "\n")
+ print(round(acctab, 4))
+ }
+ invisible(acctab)
+ }

1.2 The model that includes first order interactions

It may be that the outcome is influenced by whether covariates increase or decrease together. One way
to check this is to include the effects of all products of variable values such as npreg*glu, npreg*bp,
etc. In this instance, it will turn out that this leads to a model that is over-fitted.

Note that the model formula (a+b+c)^2 expands to a+b+c+a:b+a:c+b:c. Note the following:

• a:a is the same as a.

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 37

• If a and b are (different) factors, then a:b is the interaction between a and b, i.e., it allows for
effects that are due to the specific combination of level of a with level of b.

• If a is a factor and b is a variable, the interaction a:b allows for different coefficients of the
variable for different levels of the factor.

• If a and b are (different) variables, then a:b is the result of multiplying a by b, element by
element.

Exercise 1
Try adding interaction terms to the model fitted above:

> PimaCV2.lda <- lda(type ~ .^2, data = Pima.tr, CV = TRUE)
> confusion(Pima.tr$type, PimaCV2.lda$class)
> Pima2.hat <- predict(lda(type ~ .^2, data = Pima.tr))$class
> confusion(Pima.tr$type, Pima2.hat)

Notice that the training set measure (resubstitution accuracy or apparent accuracy) is now substan-
tially exaggerating the accuracy. The model that includes all interactions terms is in truth giving
lower predictive accuracy; it overfits.

1.3 Proportion correctly classified

Consider the fit

> PimaCV.lda <- lda(type ~ ., data = Pima.tr, CV = TRUE)
> confusion(Pima.tr$type, PimaCV.lda$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.755 0.660 0.340

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.8636 0.1364
Yes 0.4559 0.5441

The overall accuracy is estimated as 0.755. If however we keep the same rule, but change the prior
proportions of the two classes, the overall accuracy will change. If for example, the two classes are in
the ratio 0.9:0.1, the overall accuracy will be 0.9 × 0.8636 + 0.1 × 0.5441 # 0.83. The No’s are easier
to classify; with more of them the classification accuracy increases.

However the classification rule that is optimal also changes if the prior proportions change. The
function lda() allows specification of a prior, thus:

> prior <- c(0.9, 0.1)
> PimaCVp.lda <- lda(type ~ ., data = Pima.tr, CV = TRUE, prior = prior)
> confusion(Pima.tr$type, PimaCVp.lda$class, prior = c(0.9, 0.1))

Overall accuracy Prior frequency.No Prior frequency.Yes
0.9104 0.9000 0.1000

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.9773 0.0227
Yes 0.6912 0.3088

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 38

If the rule is modified to be optimal relative to the new prior proportions, the accuracy thus increases
to 0.91, approximately.

Exercise 2
Now assume prior proportions of 0.85 and 0.15. Repeat the above calculations, i.e.

• Estimate the accuracy using the rule that is designed to be optimal when the prior proportions
are as in the sample.

• Estimate the accuracy using the rule that is designed to be optimal when the prior proportions
are 0.85:0.15.

1.4 The ROC (receiver operating characteristic)

It is common to speak of sensitivity and specificity. With prior proportions as in the sample (0.755:0.245),
the sensitivity (true positive rate) was estimated as 0.544; this is the probability of correctly identi-
fying a person who is a diabetic as a diabetic. The false positive rate (1 - Specificity) was estimated
as 0.136. There is a trade-off between sensitivity and specificity. The ROC curve, which is a plot of
sensitivity against specificity, displays this trade-off graphically.

The analysis assumes that the cost of both types of mis-classification are equal. Varying the costs,
while keeping the prior probabilities the same, is equivalent to keeping the costs equal, but varying
the prior probabilities. The following calculation takes advantage of this equivalence.

Exercise 3
Run the following calculations:

> truepos <- numeric(19)
> falsepos <- numeric(19)
> p1 <- (1:19)/20
> for (i in 1:19) {
+ p <- p1[i]
+ Pima.CV1p <- lda(type ~ ., data = Pima.tr, CV = TRUE, prior = c(p,
+ 1 - p))
+ confmat <- confusion(Pima.tr$type, Pima.CV1p$class, printit = FALSE)
+ falsepos[i] <- confmat[1, 2]
+ truepos[i] <- confmat[2, 2]
+ }

Now plot the curve.

> plot(truepos ~ falsepos, type = "l", xlab = "False positive rate",
+ ylab = "True positive rate (Sensitivity)")

Read off the sensitivity at a low false positive rate (e.g., 0.1), and at a rate around the middle of
the range, and comment on the tradeoff.

The ROC curve allows assessment of the effects of different trade-offs between the two types of
cost.

1.5 Accuracy on test data

There is an additional data set – Pima.te – that has been set aside for testing. The following checks
the accuracy on these “test” data.

1 ACCURACY FOR CLASSIFICATION MODELS – THE PIMA DATA 39

> Pima.lda <- lda(type ~ ., data = Pima.tr)
> testhat <- predict(Pima.lda, newdata = Pima.te)
> confusion(Pima.te$type, testhat$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.7982 0.6717 0.3283

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.8879 0.1121
Yes 0.3853 0.6147

This is an improvement on the leave-one-out CV accuracy on the training data. The difference in the
prior proportions is too small to have much effect on the overall accuracy. The apparent improvement
might be a result of chance. Another possibility that has to be contemplated is that the division of
the data between Pima.tr and Pima.te may not have been totally random, and Pima.te may have
fewer hard to classify points. There are two checks that may provide insight:

• Swap the roles of training and test data, and note whether there the relative accuracies are
similar.

• Repeat the calculations on a bootstrap sample of the training data, to get an indication of the
uncertainty in the accuracy assessment.

Exercise 4
Try the effect of swapping the role of training and test data.

> swapCV.lda <- lda(type ~ ., data = Pima.te, CV = TRUE)
> confusion(Pima.te$type, swapCV.lda$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.7831 0.6717 0.3283

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.8879 0.1121
Yes 0.4312 0.5688

> swap.lda <- lda(type ~ ., data = Pima.te)
> otherhat <- predict(Pima.lda, newdata = Pima.tr)
> confusion(Pima.tr$type, otherhat$class)

Overall accuracy Prior frequency.No Prior frequency.Yes
0.77 0.66 0.34

Confusion matrix
Predicted (cv)

Actual No Yes
No 0.8712 0.1288
Yes 0.4265 0.5735

Note that, again, the accuracy is greater for Pima.te than for Pima.tr, but the difference is smaller.

2 LOGISTIC REGRESSION – AN ALTERNATIVE TO LDA 40

Exercise 5
Now check the accuracy on a bootstrap sample:

> prior <- table(Pima.tr$type)
> prior <- prior/sum(prior)
> index <- sample(1:dim(Pima.tr)[1], replace = TRUE)
> boot.lda <- lda(type ~ ., data = Pima.tr[index,], CV = TRUE)
> cmat <- confusion(Pima.tr[index, "type"], boot.lda$class, printit = FALSE)
> print(c(acc = round(prior[1] * cmat[1, 1] + prior[2] * cmat[2,
+ 2], 4)))

acc.No
0.7978

The calculations should be repeated several times. The changes in the predictive accuracy estimates
are substantial.
Note the need to relate all accuracies back to the same prior probabilities, to ensure comparability.
Annotate the code to explain what it does.

(From running this code five times, I obtained results of 0.77, 0.74, 0.72, 0.71 and 0.82.)

2 Logistic regression – an alternative to lda

As the Pima data have only two classes (levels of type) the calculation can be handled as a regression
problem, albeit with the reponse on a logit scale, i.e., the linear model predicts log(π

1−π), where π is
the probability of having diabetes.

Exercise 6
Fit a logistic regression model and check the accuracy.

> Pima.glm <- glm(I(unclass(type) - 1) ~ ., data = Pima.tr, family = binomial)
> testhat <- round(predict(Pima.glm, newdata = Pima.te, type = "response"))
> confusion(Pima.te$type, testhat)

Compare the accuracy with that obtained from lda().
A cross-validation estimate of accuracy, based on the training data, can be obtained thus:

> library(DAAG)
> CVbinary(Pima.glm)

Fold: 2 9 6 7 3 10 8 1 4 5
Internal estimate of accuracy = 0.775
Cross-validation estimate of accuracy = 0.745

This should be repeated several times. How consistent are the results?

One advantage of use of glm() is that asymptotic standard error estimates are available for pa-
rameter estimates:

> round(summary(Pima.glm)$coef, 3)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -9.773 1.770 -5.520 0.000
npreg 0.103 0.065 1.595 0.111
glu 0.032 0.007 4.732 0.000
bp -0.005 0.019 -0.257 0.797

3 DATA THAT ARE MORE CHALLENGING – THE CRX DATASET 41

skin -0.002 0.022 -0.085 0.932
bmi 0.084 0.043 1.953 0.051
ped 1.820 0.666 2.735 0.006
age 0.041 0.022 1.864 0.062

These results suggest that npreg, bp and skin can be omitted without much change to predictive
accuracy. Predictive accuracy may actually increase. There is however, no guarantee of this, and it is
necessary to check. Even though there is individually no detectable effect, the combined effect of two
or more of them may be of consequence.

Using this logistic regression approach, there is no built-in provision to adjust for prior probabilities.
Users can however make their own adjustments.

One advantage of glm() is that the termplot() function is available to provide a coarse check
on possible nonlinear effects of covariates. Use termplot() with a glm object as the first argument,
and with the argument smooth=panel.smooth. The resulting graphs can be examined for hints of
nonlinear covariate effects. Detection of nonlinear effects may require very extensive data.

3 Data that are More Challenging – the crx Dataset

The data can be copied from the web:

> webpage <- "http://mlearn.ics.uci.edu/databases/credit-screening/crx.data"
> webn <- "http://mlearn.ics.uci.edu/databases/credit-screening/crx.names"
> test <- try(readLines(webpage)[1])
> if (!inherits(test, "try-error")) {
+ download.file(webpage, destfile = "crx.data")
+ crx <- read.csv("crx.data", header = FALSE, na.strings = "?")
+ download.file(webn, destfile = "crx.names")
+ }

Column 16 is the outcome variable. Factors can be identified as follows:

> if (exists("crx")) sapply(crx, function(x) if (is.factor(x)) levels(x))

These data have a number of factor columns. It will be important to understand how they are handled.

3.1 Factor terms – contribution of the model matrix

As with normal theory linear models, the matrix has an initial column of ones that allows for a
constant term. (In all rows, the relevant parameter is muitiplied by 1.0, so that the contribution to
the fitted value is the same in all rows.) For terms that correspond directly to variables, the model
matrix incoporates the variable directly as one of its columns. With the default handling of a factor
term

• Implicitly there is a column that corresponds to the initial level of the factor, but as it has all
elements 0 it can be omitted;

• For the third and any subsequent levels, the model matrix has a column that is zeros except for
rows where the factor is at that level.

A factor that has only two levels will generate a single column, with 0s correponding to the first level,
and 1s for the second level. The Pima data has, except for the response variable type, no binary
variables.

4 USE OF RANDOM FOREST RESULTS FOR COMPARISON 42

3.2 Fitting the model

Exercise 7
Now fit a linear discriminant model:

> if (exists("crx")) {
+ crxRed <- na.omit(crx)
+ crxCV.lda <- lda(V16 ~ ., data = crxRed, CV = TRUE)
+ confusion(crxRed$V16, crxCV.lda$class)
+ }

Note the message

Warning message:
In lda.default(x, grouping, ...) : variables are collinear

Now, for comparison, fit the model using glm(). This is one way to get details on the reasons for
collinearity. Also, for using glm(), the argument na.action=na.exclude is available, which omits
missing values when the model is fit, but then places NAs in those positions when fitted values,
predicted values, etc., are calculated. This ensures that predicted values match up with the rows of
the orginal data.

> if (exists("crx")) {
+ crx.glm <- glm(V16 ~ ., data = crx, family = binomial, na.action = na.exclude)
+ alias(crx.glm)
+ confusion(crx$V16, round(fitted(crx.glm)))
+ summary(crx.glm)$coef
+ }

From the output from alias(crx.glm), what can one say about the reasons for multi-collinearity?

Now display the scores from the linear discriminant calculations:

> if (exists("crx")) {
+ crxRed <- na.omit(crx)
+ crx.lda <- lda(V16 ~ ., data = crxRed)
+ crx.hat <- predict(crx.lda)
+ densityplot(~crx.hat$x, groups = crxRed$V16)
+ }

This plot is actually quite interesting. What does it tell you?

4 Use of Random Forest Results for Comparison

A good strategy is to use results from the random forests method for comparison. The accuracy of
this algorithm, when it does give a worthwhile improvement over lda(), is often hard to beat. This
method has the advantage that it can be applied pretty much automatically. It is good at handling
situations where explanatory variables and factors interact in a relatively complex manner.

Here are results for Pima.tr as training data, at the same time applying predictions to Pima.te as
test data. Notice that there are two confusion matrices, one giving the OOB estaimtes for Pima.tr,
and the other for Pima.te.

> library(randomForest)
> Pima.rf <- randomForest(type ~ ., xtest = Pima.te[, -8], ytest = Pima.te[,
+ 8], data = Pima.tr)
> Pima.rf

5 NOTE – THE HANDLING OF NAS 43

Call:
randomForest(formula = type ~ ., data = Pima.tr, xtest = Pima.te[, -8], ytest = Pima.te[, 8])

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 2

OOB estimate of error rate: 28.5%
Confusion matrix:

No Yes class.error
No 110 22 0.1666667
Yes 35 33 0.5147059

Test set error rate: 23.49%
Confusion matrix:

No Yes class.error
No 192 31 0.1390135
Yes 47 62 0.4311927

Look at the OOB estimate of accuracy, which is pretty much equivalent to a cross-validation estimate
of accuracy. This error will be similar to the error on test data that are randomly chosen from the
same population.

The accuracy is poorer than for lda(). As before, the error rate is lower on Pima.te than on
Pima.te. Note however the need to re-run the calculation several times, as the accuracy will vary
from run to run.

Here are results for crx.

> if (exists("crxRed")) {
+ crx.rf <- randomForest(V16 ~ ., data = crxRed)
+ crx.rf
+ }

Call:
randomForest(formula = V16 ~ ., data = crxRed)

Type of random forest: classification
Number of trees: 500

No. of variables tried at each split: 3

OOB estimate of error rate: 12.71%
Confusion matrix:

+ - class.error
+ 253 43 0.1452703
- 40 317 0.1120448

Accuracy is similar to that from use of lda().

5 Note – The Handling of NAs

The assumption that underlies any analysis that omits missing values is that, for purposes of the
analysis, missingness is uninformative. This may be incorrect, and it is necessary to ask: Are the
subjects where there are missing values different in some way?

The missing value issue is pertinent both to the Pima data and to the crx data. There is a further
dataset, Pima.tr2, that augments Pima.tr with 100 subjects that have missing values in one or more
of the explanatory variables. The question then arises: Is the pattern of missingness the same for
those without diabetes as for those with diabetes?

The following shows the numbers of missing values for each of the variables

5 NOTE – THE HANDLING OF NAS 44

> if (exists("Pima.tr2", where = ".GlobalEnv", inherits = FALSE)) rm(Pima.tr2)
> sapply(Pima.tr2, function(x) sum(is.na(x)))

npreg glu bp skin bmi ped age type
0 0 13 98 3 0 0 0

> sum(!complete.cases(Pima.tr2))

[1] 100

Note that the variable skin accounts for 98 of the 100 subjects where there is one or more missing
value.

A first step is to check whether the subjects with one or more missing values differ in some
systematic manner from subjects with no missing values. The major issue is for values that are
missing for skin. We start by creating a new variable – here named complete – that distinguishes
subjects with missing values for skin from others. We omit observations that are missing on any of
the other variables.

> newPima <- subset(Pima.tr2, complete.cases(bp) & complete.cases(bmi))
> newPima$NOskin <- factor(is.na(newPima$skin), labels = c("skin",
+ "NOskin"))
> newPima$skin <- NULL

The argument labels=c("skin","NOskin") takes the values (here FALSE and TRUE) in alphanumeric
order, then making skin and NOskin the levels. Omission of this argument would result in levels
FALSE and TRUE.2

We now do a linear discriminant analysis in which variables other than skin are explanatory
variables.

> completeCV.lda <- lda(NOskin ~ npreg + glu + bp + bmi + ped +
+ age + type, data = newPima, CV = TRUE)
> confusion(newPima$NOskin, completeCV.lda$class)

Overall accuracy Prior frequency.skin Prior frequency.NOskin
0.6937 0.7042 0.2958

Confusion matrix
Predicted (cv)

Actual skin NOskin
skin 0.9700 0.0300
NOskin 0.9643 0.0357

A linear discriminant analysis seems unable to distinguish the two groups. The overall accuracy does
not reach what could be achieved by predicting all rows as complete.

5.1 Does the missingness give information on the diagnosis?

If there is a suspicion that it does, then a valid analysis may be possible as follows. Missing values of
continuous variables are replaced by 0 (or some other arbitrary number). For each such variable, and
each observation for which it is missing, there must be a factor, e.g. with levels miss and nomiss, that
identifies the subject for whom the value is missing. Where values of several variables are missing for
the one subject, the same factor may be used. This allows an analysis in which all variables, together
with the newly created factors, are “present” for all subjects.

2NB also factor(is.na(newPima$skin), levels=c(TRUE, FALSE)); levels would then be TRUE and FALSE, in that
order.

