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Part VII

Discriminant Methods & Associated
Ordinations
These exercises will introduce classification into three or more groups. They examine and compare
three methods – linear discriminant analysis, Support Vector machines, and random forests.

As noted in an earlier laboratory, linear discriminant analysis generates scores that can be plotted
directly. Support Vector Machines generate decision scores, one set for each of the g groups; these
can be approximated in g− 1 dimensional and plotted. Random forests generate a natural measure of
the relative nearness, or proximity of points. Non-metric scaling can then be used to represent these
in g − 1 dimensional space. In favorable cases, metric scaling may yield a workable represention.

Again, it will be handy to have the function confusion() available.

> confusion <- function(actual, predicted, names = NULL, printit = TRUE,
+ prior = NULL) {
+ if (is.null(names))
+ names <- levels(actual)
+ tab <- table(actual, predicted)
+ acctab <- t(apply(tab, 1, function(x) x/sum(x)))
+ dimnames(acctab) <- list(Actual = names, "Predicted (cv)" = names)
+ if (is.null(prior)) {
+ relnum <- table(actual)
+ prior <- relnum/sum(relnum)
+ acc <- sum(tab[row(tab) == col(tab)])/sum(tab)
+ }
+ else {
+ acc <- sum(prior * diag(acctab))
+ names(prior) <- names
+ }
+ if (printit)
+ print(round(c("Overall accuracy" = acc, "Prior frequency" = prior),
+ 4))
+ if (printit) {
+ cat("\nConfusion matrix", "\n")
+ print(round(acctab, 4))
+ }
+ invisible(acctab)
+ }

1 Discrimination with Multiple Groups

With three groups, there are three group centroids. These centroids determine a plane, onto which
data points can be projected.

Linear discrinimant analysis assumes, effectively, that discriminants can be represented without
loss of information in such a plane, determined by the linear discriminant scores. A plot of these scores
is an accurate summary of the analysis.

With g ≥ 4 groups, then if p ≥ g−1 linear discrinimant analysis yields scores that require g−1 ≥ 3
dimensions for their representation. With three (or more) sets of scores, the function plot3d() in the
rgl package can be used to give a 3D scatterplot that rotates dynamically under user control.

How many dimensions are really necessary. To answer this question in the case of lda(), examine
the “proportion of trace” in the output from printing the lda object, when it is called with CV=FALSE
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which is the default. The successive linear discriminants explain successively smaller proportions of
the trace, i.e., of the ratio of the between to within group variance. It may turn out that the final
discriminant or the final few discriminants explain a very small proportion of the trace, os that they
can be dropped.

With methods other than lda(), representation in a low-dimensional space is still in principle
possible. However any such representation arises less directly from the analysis, and there is not the
same well-defined mechanism for deciding on the number of dimensions.

1.1 The diabetes dataset

The package mclust has the data set diabetes. Datasets in this package do not automatically become
available when the package is attached.3 Thus, it is necessary to bring the data set diabetesit into
the workspace by typing

> library(mclust)

use of mclust requires a license agreement
see http://www.stat.washington.edu/mclust/license.txt

> data(diabetes)

Here is a 3-dimensional cloud plot:

> library(lattice)
> cloud(insulin ~ glucose + sspg, groups = class, data = diabetes)

1.2 Linear discriminant analysis

We will first try linear discriminant analysis. We specify CV=TRUE, in order to obtain predictions of
class membership that are derived from leave-one-out cross-validation. We then run the calculations
a second time, now with CV=FALSE, in order to obtain an object from which we can obtain the
discriminant scores

> library(MASS)
> library(lattice)
> diabetesCV.lda <- lda(class ~ insulin + glucose + sspg, data = diabetes,
+ CV = TRUE)
> confusion(diabetes$class, diabetesCV.lda$class)
> diabetes.lda <- lda(class ~ insulin + glucose + sspg, data = diabetes)
> diabetes.lda
> hat.lda <- predict(diabetes.lda)$x
> xyplot(hat.lda[, 2] ~ hat.lda[, 1], groups = diabetes$class,
+ auto.key = list(columns = 3), par.settings = simpleTheme(pch = 16))

1.3 Quadratic discriminant analysis

The variance-covariance structure is clearly very different between the three classes. It is therefore
worthwhile to try qda().

> diabetes.qda <- qda(class ~ insulin + glucose + sspg, data = diabetes,
+ CV = TRUE)
> confusion(diabetes$class, diabetes.qda$class)

The prediction accuracy improves substantially.

3This package does not implement the lazy data mechanism.
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Exercise 1
Suppose now that the model is used to make predictions for a similar population, but with a different
mix of the different classes of diabetes.

(a) What would be the expected error rate if the three classes occur with equal frequency?

(b) What would be the expected error rate in a population with a mix of 50% chemical, 25%
normal and 25% overt?

1.4 Support vector machines

This requires the e1071 package. Here, we will specify the use of tenfold cross-validation, in order to
estimate the error rate. The “decision values” will be used to define co-ordinate axes, so that data can
be plotted.

> library(e1071)
> diabetes.svm <- svm(class ~ insulin + glucose + sspg, data = diabetes,
+ cross = 10)
> summary(diabetes.svm)
> pred <- predict(diabetes.svm, diabetes[, -1], decision.values = TRUE)
> decision <- attributes(pred)$decision.values
> decision.dist <- dist(decision)
> decision.cmd <- cmdscale(decision.dist)
> library(lattice)
> xyplot(decision.cmd[, 2] ~ decision.cmd[, 1], groups = diabetes$class)

The cross-validated prediction accuracy is less than using lda(). There is however substantial scope
for using another kernel, and/or setting various tuning parameters. If there is such tuning, care is
needed in obtaining an accuracy measure that is not biased on account of the tuning. Two possibilities
are: (1) divide the data into training and test sets, and use the test set accuracy rather than the cross-
validation accuracy; or (2) repeat the tuning at each cross-validation fold.

Also possible is to use a scaled version of the decision values. For example, the following uses the
MASS program isoMDS() to obtain a 2-dimensional representation. The function isoMDS() requires
a starting configuration; we use the values from cmdscale() for that purpose:

> diabetes.mds <- isoMDS(decision.dist, decision.cmd)

It turns out that observations 4 and 80 have zero distance, which isoMDS() is unable to handle. We
therefore add a small positive quantity to the distance between these two observations.

> sort(decision.dist)[1:4]

[1] 0.0000000000 0.0008654923 0.0034727787 0.0054139013

> decision.dist[decision.dist == 0] <- 0.00043
> diabetes.mds <- isoMDS(decision.dist, decision.cmd)

initial value 0.452432
iter 5 value 0.385817
final value 0.382896
converged

> xyplot(diabetes.mds$points[, 2] ~ diabetes.mds$points[, 1], groups = diabetes$class)
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1.5 Use of randomForest()

First, fit a randomForest discriminant model, calculating at the same time the proximities. The
proximity of any pair of points is the proportion of trees in which the two points appear in the same
terminal node:

> library(randomForest)
> diabetes.rf <- randomForest(class ~ ., data = diabetes, proximity = TRUE)
> print(diabetes.rf)

Note the overall error rate.

Exercise 2
Suppose that the model is used to make predictions for a similar population, but with a different
mix of the different classes of diabetes.

(a) What would be the expected error rate if the three classes occur with equal frequency?

(b) What would be the expected error rate in a population with a mix of 50% chemical, 25%
normal and 25% overt?

Points that in a large proportion of trees appear at the same terminal node are in some sense
“close together”, whereas points that rarely appear in the same terminal node are “far apart”. This is
the motivation for subtracting the proximities from 1.0, and treating the values obtained as distances
in Euclidean space. Inititially, a two-dimensional representation will be tried. If this representation
reproduces the distances effectively, the result will be a plot in which the visual separation of the
points reflects the accuracy with which the algorithm has been able to separate the points:

> diabetes.rf.cmd <- cmdscale(1 - diabetes.rf$proximity)
> plot(diabetes.rf.cmd, col = unclass(diabetes$class) + 1)

The clear separation between the three groups, on this graph, is remarkable, though perhaps to be
expected given that the OOB error rate is ∼2%.

1.5.1 A rubber sheet representation of the distance

There is no necessary reason why distances that have been calculated as above should be Euclidean
distances. It is more reasonable to treat them as relative distances in such a space. The isoMDS()
function in the MASS package uses the ordinates that are given by cmdscale() as a starting point
for Kruskal’s ”non-metric” multi-dimensional scaling. In effect distances are represented on a rubber
sheet that can be stretched or shrunk in local parts of the sheet, providing only that relative distances
are unchanged.

Almost certainly, some distances will turn out to be zero. In order to proceed, zero distances will
be replaced by 0.5 divided by the number of points. (The minimum non-zero distance must be at
least 1/dim(diabetes)[1]. Why?)

> sum(1 - diabetes.rf$proximity == 0)
> distmat <- as.dist(1 - diabetes.rf$proximity)
> distmat[distmat == 0] <- 0.5/dim(diabetes)[1]

We now proceed with the plot.

> diabetes.rf.mds <- isoMDS(distmat, y = diabetes.rf.cmd)

initial value 8.375905
iter 5 value 6.033850
iter 10 value 5.751992
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iter 15 value 5.595654
iter 20 value 5.543829
iter 20 value 5.540744
iter 20 value 5.540546
final value 5.540546
converged

> xyplot(diabetes.rf.mds$points[, 2] ~ diabetes.rf.mds$points[,
+ 1], groups = diabetes$class, auto.key = list(columns = 3))

Note that these plots exaggerate the separation between the groups. They represent visually the
effectiveness of the algorithm in classifying the training data. To get a fair assessment, the plot should
show points for a separate set of test data.

Exercise 10: Make a table that compares lda(), svm() and randomForest(), with respect to error
rate for the three classes separately.

1.6 Vehicle dataset

Repeat the above, now with the Vehicle data frame from the mlbench package. For the plots, ensure
that the ggplot2 package (and dependencies) is installed.

Plots will use quickplot(), from the ggplot2 package. This makes it easy to get density plots.
With respect to arguments to quickplot(), note that:

• quickplot() has the geom (not geometry) argument, where base and lattice graphics would use
type;

• If different colours are specified, data will be grouped according to those colours.

> library(ggplot2)
> VehicleCV.lda <- lda(Class ~ ., data = Vehicle, CV = TRUE)
> confusion(Vehicle$Class, VehicleCV.lda$class)
> Vehicle.lda <- lda(Class ~ ., data = Vehicle)
> Vehicle.lda
> hat.lda <- predict(Vehicle.lda)$x
> quickplot(hat.lda[, 1], hat.lda[, 2], colour = Vehicle$Class,
+ geom = c("point", "density2d"))

Quadratic discriminant analysis

> Vehicle.qda <- qda(Class ~ ., data = Vehicle, CV = TRUE)
> confusion(Vehicle$Class, Vehicle.qda$class)

Support Vector Machines

> Vehicle.svm <- svm(Class ~ ., data = Vehicle, cross = 10)
> summary(Vehicle.svm)
> pred <- predict(Vehicle.svm, Vehicle, decision.values = TRUE)
> decision <- attributes(pred)$decision.values
> decision.dist <- dist(decision)
> eps <- min(decision.dist[decision.dist > 0])/2
> decision.cmd <- cmdscale(decision.dist)
> quickplot(decision.cmd[, 1], decision.cmd[, 2], colour = Vehicle$Class,
+ geom = c("point", "density2d"))
> decision.dist[decision.dist == 0] <- eps
> decision.mds <- isoMDS(decision.dist, decision.cmd)$points
> quickplot(decision.mds[, 1], decision.mds[, 2], colour = Vehicle$Class,
+ geom = c("point", "density2d"))
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Compare the metric and non-metric plots. Do they tell the same story?
Random Forests

> Vehicle.rf <- randomForest(Class ~ ., data = Vehicle, proximity = TRUE)
> print(Vehicle.rf)
> distmat <- 1 - Vehicle.rf$proximity
> Vehicle.rf.cmd <- cmdscale(distmat)
> quickplot(Vehicle.rf.cmd[, 1], Vehicle.rf.cmd[, 2], colour = Vehicle$Class,
+ geom = c("point", "density2d"))
> eps <- min(distmat[distmat > 0])/2
> distmat[distmat == 0] <- eps
> Vehicle.rf.mds <- isoMDS(distmat, Vehicle.rf.cmd)$points
> quickplot(Vehicle.rf.mds[, 1], Vehicle.rf.mds[, 2], colour = Vehicle$Class,
+ geom = c("point", "density2d"))

Now calculate the distances for the points generated by isoMDS(), and plot these distances against
distances (in distmat) generated by subtracting the proximities from 1.

> mdsdist <- dist(Vehicle.rf.mds)
> plot(as.dist(distmat), mdsdist)


