
51

Part VIII

Ordination
The package oz, used to draw a map of Australia, must be installed. In order to use the dataframe
diabetes from the package mclust, that package must be installed. Or you can obtain the R image
file from "http://www.maths.anu.edu.au/~johnm/courses/dm/math3346/data/ Also required are
the functions read.dna() and dist.dna() from the package ape; that package must be installed.

Where there is no “natural” measure of distance between points, and there are groups in the
data that correspond to categorizations that will be of interest when the data are plotted, some
form of discriminant analysis may be the preferred starting point for obtaining a low-dimensional
representation. The low-dimensional representation that is likely to be superior to that obtained from
ordination without regard to any such categorization.

Two of the possibilities that the ordination methods considered in this laboratory addresses are:

• Distances may be given, from which it is desired to recover a low-dimensional representation.

– For example we may, as below, attempt to generate a map in which the distances on the
map accurately reflect Australian road travel distances.

– Or we may, based on genomic differences, derive genomic“distances ”between, e.g., different
insect species. The hope is that, with a judicious choice of the distance measure, the
distances will be a monotone function of the time since the two species separated. We’d
like to derive a 2 or 3-dimensional representation in which the distances accurately reflect
the closeness of the evolutionary relationships.

• There may be no groupings of the data that are suitable for use in deriving a low-dimensional
representation. Hence we calculate, using a metric that seems plausible, a matrix of distances
between pairs of points, from which we in turn try to derive a low-dimensional representation.

1 Australian road distances

The distance matrix that will be used is in the matrix audists, in the image file audists.Rdata.
Here is how the data can be read in from the text file:

audists <- read.table("audists.txt", sep="\t")
audists[is.na(audists)] <- 0
Also, we will later use the data frame aulatlong
aulatlong <- read.table("aulatlong.txt", row.names=1)[,2:1]
aulatlong[,2] <- -aulatlong[,2]
colnames(aulatlong) <- c("latitude", "longitude")

Consiser first the use of classical multi-dimensional scaling, as implemented in the function cmdscale():

> library(DAAGxtras)
> aupoints <- cmdscale(audists)
> plot(aupoints)
> text(aupoints, labels = paste(rownames(aupoints)))

An alternative to text(aupoints, labels=paste(rownames(aupoints))), allowing better place-
ment of the labels, is identify(aupoints, labels=rownames(aupoints)). We can compare the
distances in the 2-dimensional representation with the original road distances:

> origDists <- as.matrix(audists)
> audistfits <- as.matrix(dist(aupoints))
> misfit <- audistfits - origDists
> for (j in 1:9) for (i in (j + 1):10) {

1 AUSTRALIAN ROAD DISTANCES 52

+ lines(aupoints[c(i, j), 1], aupoints[c(i, j), 2], col = "gray")
+ midx <- mean(aupoints[c(i, j), 1])
+ midy <- mean(aupoints[c(i, j), 2])
+ text(midx, midy, paste(round(misfit[i, j])))
+ }
> colnames(misfit) <- abbreviate(colnames(misfit), 6)
> print(round(misfit))

Adelad Alice Brisbn Broome Cairns Canbrr Darwin Melbrn Perth Sydney
Adelaide 0 140 -792 -156 366 20 11 82 482 -273
Alice 140 0 -1085 -175 -41 76 -118 106 -26 -314
Brisbane -792 -1085 0 198 319 -25 -233 -471 153 -56
Broome -156 -175 198 0 527 -7 6 -65 990 70
Cairns 366 -41 319 527 0 277 -31 178 8 251
Canberra 20 76 -25 -7 277 0 -1 -241 372 -8
Darwin 11 -118 -233 6 -31 -1 0 -12 92 -58
Melbourne 82 106 -471 -65 178 -241 -12 0 301 -411
Perth 482 -26 153 990 8 372 92 301 0 271
Sydney -273 -314 -56 70 251 -8 -58 -411 271 0

The graph is a tad crowded, and for detailed information it is necessary to examine the table.
It is interesting to overlay this “map” on a physical map of Australia.

> if (!exists("aulatlong")) load("aulatlong.RData")
> library(oz)
> oz()
> points(aulatlong, col = "red", pch = 16, cex = 1.5)
> comparePhysical <- function(lat = aulatlong$latitude, long = aulatlong$longitude,
+ x1 = aupoints[, 1], x2 = aupoints[, 2]) {
+ fitlat <- predict(lm(lat ~ x1 + x2))
+ fitlong <- predict(lm(long ~ x1 + x2))
+ x <- as.vector(rbind(lat, fitlat, rep(NA, 10)))
+ y <- as.vector(rbind(long, fitlong, rep(NA, 10)))
+ lines(x, y, col = 3, lwd = 2)
+ }
> comparePhysical()

An objection to cmdscale() is that it gives long distances the same weight as short distances. It is
just as prepared to shift Canberra around relative to Melbourne and Sydney, as to move Perth. It
makes more sense to give reduced weight to long distances, as is done by sammon() (MASS).

> library(MASS)
> aupoints.sam <- sammon(audists)

Initial stress : 0.01573
stress after 10 iters: 0.00525, magic = 0.500
stress after 20 iters: 0.00525, magic = 0.500

> oz()
> points(aulatlong, col = "red", pch = 16, cex = 1.5)
> comparePhysical(x1 = aupoints.sam$points[, 1], x2 = aupoints.sam$points[,
+ 2])

Notice how Brisbane, Sydney, Canberra and Melbourne now maintain their relative positions much
better.

Now try full non-metric multi-dimensional scaling (MDS). THis preserves only, as far as possible,
the relative distances. A starting configuration of points is required. This might come from the
configuration used by cmdscale(). Here, however, we use the physical distances.

2 IF DISTANCES MUST FIRST BE CALCULATED . . . 53

> oz()
> points(aulatlong, col = "red", pch = 16, cex = 1.5)
> aupoints.mds <- isoMDS(audists, as.matrix(aulatlong))

initial value 11.875074
iter 5 value 5.677228
iter 10 value 4.010654
final value 3.902515
converged

> comparePhysical(x1 = aupoints.mds$points[, 1], x2 = aupoints.mds$points[,
+ 2])

Notice how the distance between Sydney and Canberra has been shrunk quite severely.

2 If distances must first be calculated . . .

There are two functions that can be used to find distances – dist() that is in the base statistics
package, and daisy() that is in the cluster package. The function daisy() is the more flexible. It
has a parameter stand that can be used to ensure standardization when distancces are calculated,
and allows columns that are factor or ordinal. Unless measurements are comparable (e.g., relative
growth, as measured perhaps on a logarithmic scale, for different body measurements), then it is
usually desirable to standardize before using ordination methods to examine the data.

> library(cluster)
> library(mclust)

use of mclust requires a license agreement
see http://www.stat.washington.edu/mclust/license.txt

> data(diabetes)
> diadist <- daisy(diabetes[, -1], stand = TRUE)
> plot(density(diadist, from = 0))

3 Genetic Distances

Here, matching genetic DNA or RNA or protein or other sequences are available from each of the
different species. Distances are based on probabilistic genetic models that describe how gene sequences
change over time. The package ape implements a number of alternative measures. For details see
help(dist.dna).

3.1 Hasegawa’s selected primate sequences

The sequences were selected to have as little variation in rate, along the sequence, as possible. The
sequences are available from:
http://evolution.genetics.washington.edu/book/primates.dna. They can be read into R as:

> library(ape)
> webpage <- "http://evolution.genetics.washington.edu/book/primates.dna"
> test <- try(readLines(webpage)[1])
> if (!inherits(test, "try-error")) {
+ primates.dna <- read.dna(con <- url(webpage))
+ close(con)
+ hasdata <- TRUE
+ } else hasdata <- FALSE

3 GENETIC DISTANCES 54

Now calculate distances, using Kimura’s F84 model, thus

> if (hasdata) primates.dist <- dist.dna(primates.dna, model = "F84")

We now try for a two-dimensional representation, using cmdscale().

> if (hasdata) {
+ primates.cmd <- cmdscale(primates.dist)
+ eqscplot(primates.cmd)
+ rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.cmd[, 1], breaks = 4))]
+ text(primates.cmd[, 1], primates.cmd[, 2], row.names(primates.cmd),
+ pos = rtleft)
+ }

Now see how well the distances are reproduced:

> if (hasdata) {
+ d <- dist(primates.cmd)
+ sum((d - primates.dist)^2)/sum(primates.dist^2)
+ }

[1] 0.1977138

This is large enough (20%, which is a fraction of the total sum of squares) that it may be worth
examining a 3-dimensional representation.

> if (hasdata) {
+ primates.cmd <- cmdscale(primates.dist, k = 3)
+ cloud(primates.cmd[, 3] ~ primates.cmd[, 1] * primates.cmd[,
+ 2])
+ d <- dist(primates.cmd)
+ sum((d - primates.dist)^2)/sum(primates.dist^2)
+ }

[1] 0.1045168

Now repeat the above with sammon() and mds().

> if (hasdata) {
+ primates.sam <- sammon(primates.dist, k = 3)
+ eqscplot(primates.sam$points)
+ rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.sam$points[,
+ 1], breaks = 4))]
+ text(primates.sam$points[, 1], primates.sam$points[, 2],
+ row.names(primates.sam$points), pos = rtleft)
+ }

Initial stress : 0.11291
stress after 10 iters: 0.04061, magic = 0.461
stress after 20 iters: 0.03429, magic = 0.500
stress after 30 iters: 0.03413, magic = 0.500
stress after 40 iters: 0.03409, magic = 0.500

There is no harm in asking for three dimensions, even if only two of them will be plotted.

> if (hasdata) {
+ primates.mds <- isoMDS(primates.dist, primates.cmd, k = 3)
+ eqscplot(primates.mds$points)

4 *DISTANCES BETWEEN FLY SPECIES 55

+ rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.mds$points[,
+ 1], breaks = 4))]
+ text(primates.mds$points[, 1], primates.mds$points[, 2],
+ row.names(primates.mds$points), pos = rtleft)
+ }

initial value 19.710924
iter 5 value 14.239565
iter 10 value 11.994621
iter 15 value 11.819528
iter 15 value 11.808785
iter 15 value 11.804569
final value 11.804569
converged

. .

. .
The two remaining examples are optional extras.

4 *Distances between fly species

These data have been obtained from databases on the web. We extract them from an Excel .csv
file (dipt.csv) and store the result in an object of class "dist". The file dipt.csv is available from
http://www.maths.anu.edu.au/~johnm/datasets/ordination.

Only below diagonal elements are stored, in column dominant order, in the distance object
dipdist that is created below. For manipulating such an object as a matrix, should this be re-
quired, as.matrix() can be used to turn it into a square symmetric matrix. Specify, e.g., dipdistM
<- as.matrix(dipdist). For the clustering and ordination methods that are used here, storing it as
a distance object is fine.

> webpage <- "http://www.maths.anu.edu.au/~johnm/datasets/ordination/dipt.csv"
> test <- try(readLines(webpage)[1])
> if (!inherits(test, "try-error")) {
+ diptera <- read.csv(webpage, comment = "", na.strings = c(NA,
+ ""))
+ dim(diptera)
+ species <- as.character(diptera[, 1])
+ table(substring(species, 1, 1))
+ species <- substring(species, 2)
+ genus <- as.character(diptera[, 2])
+ dipdist <- as.dist(diptera[1:110, 5:114])
+ attributes(dipdist)$Labels <- species
+ length(dipdist)
+ hasdata <- TRUE
+ } else hasdata <- FALSE

Two of the functions that will be used – sammon() and isoMDS() – require all distances to be
positive. Each zero distance will be replaced by a small positive number.

> if (hasdata) dipdist[dipdist == 0] <- 0.5 * min(dipdist[dipdist >
+ 0])

Now use (i) classical metric scaling; (ii) sammon scaling; (iii) isometric multi-dimensional scaling,
with i as the starting configuration; (iv) isometric multi-dimensional scaling, with ii as the starting
configuration.

5 *ROCK ART 56

> if (hasdata) {
+ dipt.cmd <- cmdscale(dipdist)
+ genus <- sapply(strsplit(rownames(dipt.cmd), split = "_",
+ fixed = TRUE), function(x) x[1])
+ nam <- names(sort(table(genus), decreasing = TRUE))
+ genus <- factor(genus, levels = nam)
+ plot(dipt.cmd, col = unclass(genus), pch = 16)
+ dipt.sam <- sammon(dipdist)
+ plot(dipt.sam$points, col = unclass(genus), pch = 16)
+ dipt.mds <- isoMDS(dipdist, dipt.cmd)
+ plot(dipt.mds$points, col = unclass(genus), pch = 16)
+ dipt.mds2 <- isoMDS(dipdist, dipt.sam$points)
+ plot(dipt.mds2$points, col = unclass(genus), pch = 16)
+ }

5 *Rock Art

Here, we use data that were collected by Meredith Wilson for her PhD thesis. The 614 features were
all binary – the presence or absence of specific motifs in each of 103 Pacific sites. It is necessary to
omit 5 of the 103 sites because they have no motifs in common with any of the other sites. Data are
in the DAAGxtras package.

The binary measure of distance was used – the number of locations in which only one of the sites
had the marking, as a proportion of the sites where one or both had the marking. Here then is the
calculation of distances:

> library(DAAGxtras)
> pacific.dist <- dist(x = as.matrix(rockArt[-c(47, 54, 60, 63,
+ 92), 28:641]), method = "binary")
> sum(pacific.dist == 1)/length(pacific.dist)

[1] 0.6311803

> plot(density(pacific.dist, to = 1))
> symmat <- as.matrix(pacific.dist)
> table(apply(symmat, 2, function(x) sum(x == 1)))

13 21 27 28 29 32 33 35 36 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56
1 1 1 1 2 1 2 1 2 2 1 2 4 3 1 3 1 2 1 1 2 2 3 2 2 2
57 58 61 62 64 65 66 67 68 69 70 71 73 75 76 77 79 81 83 84 85 90 91 92 93 94
1 3 3 1 2 1 1 1 3 3 1 1 4 1 2 1 1 1 2 1 1 3 1 1 3 1
95 96 97
1 3 4

It turns out that 63% of the distances were 1. This has interesting consequences, for the plots we now
do.

> pacific.cmd <- cmdscale(pacific.dist)
> eqscplot(pacific.cmd)

