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Preface

Data mining may be seen as a response, in the first place from the computer science community, to
ways in which advances in computing technology — both software and hardware — have transformed
the collection and use of data. These changes have affected science, commerce and government.

Since the 1960s, each passing decade has set new records set in the size of the largest of the data
sets that are analysed. Often also, both in science and commerce, there has been an increase in
complexity. The primary challenge is, often, data management.

There are important classes of problem where the analysis can to a large extent be automated, or
at least handled without great attention to statistical considerations. It is here that the general style
of approach that has been typical of data mining can be successful. Much of the statistical theory
that supports data mining falls comes, broadly, within the framework of statistical learning.

Notwithstanding emphases and origins that differ somewhat from those of traditional applied
statistics, data mining makes demands of the data analyst that are entirely comparable to those of
traditional statistical analysis. Just as with statistical analysis, what is done should be driven by the
questions that are asked, by prior knowledge, and by the demands of the data themselves. Typically,
the aim is to make comments, or reach conclusions, that are valid beyond the particular data that
are analysed. Statisticians are likely to speak of extracting information from data. The data mining
literature may prefer to speak of extracting patterns from data.

Commonly, data mining has prediction as its aim. Data analysis demands that can be addressed
from this limited purview do however often morph into a demand to identify the main factors that
are driving the prediction. This is an exercise that is fraught with hazard, with challenges that go
well beyond those of prediction. This present account makes some limited attempt to draw attention
to those hazards and challenges.

This text has only limited coverage of the extensive statistical theory that offers important insights
on all data analysis, and that can be important for understanding the benefits and limitations of
automation. Consistent with this:

e There will often be recourse to a relatively informal ideas-based approach that makes little
explicit use of mathematical formulae.

e Empirical approaches, e.g., to assessing accuracy, will be emphasized at the expense of modeling
approaches that rely more heavily on statistical theory.

e Hints will be given on areas of statistical theory that it will be useful to master, in parallel with
this text or following on from it.

Statistical theory, as it affects practical data analysis, is currently developing rapidly. This is a
result of a synergy between new theoretical developments, and the computational power (software and
hardware) of modern computer systems. The R system, used for the computations that are described
here, is a product of such a synergy.

A Text in Eight Parts

The text is structured as follows:
I: Overview of Major themes

II: Data Summary Appropriate forms of summary can often provide useful insight. Be careful
however of the potential for misleading forms of summary. Summary may also be a useful or necessary
preliminary to further analysis.

ITI: Populations, Samples & Sample Statistics These chapters give an overview of statistical
theory and ideas that will be important in the later discussion.
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IV: Linear Models, GLMs and GAMs GLMs are Generalized Linear Models. GAMs are Gen-
eralized Additive Models. Linear Models and GLMs are the stock in trade of large areas of applied
statistics. Generalized Additive Models extend linear models to allow the automatic fitting of smooth
curves and surfaces, with the smoothing parameters chosen automatically. These are all regression
methods with an outcome that can be continuous or integer or binary.

V: Discrimination and Classification Discrimination and classification have been the stock-in-
trade of data mining. These are all regression methods with a categorical outcome.

VI: Ordination Ordination aims to achieve dimension reduction, often with the aim of allowing a
2 or 3-dimensional graphical representation.

VII: Some Further Types of Model Statistics has many more types of model on offer than have
been described in the previous six parts. Note in particular models for data with a complezr error

structure, where observations are not independent.

VIII: Technical Mathematical Results



Part 1
Overview of Major Themes

1 Advance and Change in Science, Commerce and Technology

Changes that the data mining literature emphasizes, a result of or made possible by computer tech-
nology, are:

o Huge data sets! have become common. Often these hold new types of data — web pages, medical
images, expression arrays, genomic data, NMR spectroscopy, sky maps, ...

e Sheer size brings challenges. In the first place, these are challenges for data management.
Challenges for data analysis are less simply described.

e New algorithms; “algorithmic” models.

— Examples are trees, random forests, Support Vector Machines, ...

— They are algorithmic in the sense that the motivation was algorithmic.
e Automation, especially for data collection

The effects of these changes have spread across commerce, government and society, as well as across
science. The same or similar technology may be used across these different areas of application.

Database issues, size of dataset, and new algorithms, are strongly emphasized in the data mining
literature. Changes that get much less attention in the data mining literature are:

e Data set size is not necessarily a useful guide to the amount of information in the data.

— A key question is whether there are many observations, or many variables, or both.

— Where the number of observations is large, there is often a structure (eg, changes in time)
that requires attention.

e While there has been huge progress in automating much of the detail of data analysis, there are
severe limits to the automation that is, currently, satisfactorily possible.

— Except in limited areas of application, complete automation remains a pipe dream. In those
areas where it has proved effective, automation typically has a large setup and maintenance
cost.

— Automation is most feasible in applications where mistakes can be tolerated, where it is
not necessary to be consistently correct.

e There is a synergy between the development of computing power, the challenge from new types of
data, and the development of new theory. Much of the new development in theoretical statistics
has been driven and facilitated by the demand to take advantage of new computational power.

e New data analysis methodologies often allow analyses that make better use of the data, and are
more directly attuned to the questions of scientific interest, than was readily possible 15 years
ago.

e The account given here will emphasize the importance of statistical issues and insights. Advances
in statistical methodology have widened the gap between those whose statistical knowledge has
not advanced much in the past decade, and those professionals who are fully au fait with modern
methods.

Hssues of data set size have generated some modest smount cf hype, as the frequent reference to Big Data in Weiss
and Indurkha (1997)
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e Algorithms become important once the required analysis task has been closely prescribed. Al-
gorithms are required that will be efficient in extracting the information that is required from
the data.

o New statistical “meta-analysis” approaches that combine data from multiple studies into a single
analysis may allow the detection of patterns that were not apparent from the individual studies.
They may resolve some discrepancies between the separate analyses, while raising further ques-
tions. Note that meta-analysis typically has complications that make automation hazardous.

While emphasizing the synergy with new algorithmic development, the data mining literature has
pretty much ignored the synergy with new developments in statistical theory.

Other responses to the changes, with much in common with data mining, have the names “machine
learning”, and “analytics”. Machine learning has grown out of an engineering context, while the name
“analytics” is widely used in a business context. Other such names are in use also, most of them with
a focus on a specific area of application.

Data mining is sometimes presented as a collection of algorithms. Validation issues are, largely,
left to one side. The present account will widen the scope, to describe an enterprise that builds on
advances in data collection and data analysis technology in ways that pay serious regard to model
validation issues. In this account, statistical considerations have a large role.

Maindonald, J.H. (2006) comments, from a somewhat different perspective, on a number of the
issues that are raised below.

2 Mining, Learning and Training
Mining is used in two senses:

e Mining for data

e Mining to extract meaning is a scientific/statistical sense.

The pre-analysis data extraction & processing often relies heavily on computer technology. Addition-
ally, there are design of data collection issues that demand more attention than has been common.

In mining to extract meaning, statistical considerations come to the fore. Computer power does
however provide a major part of the “how”.

Learning & Training
e The (computing) machine learns from data.

e Use training data to train the machine or software.

Modeling (or a machine?) that learns from the data

The reference is to modeling in which the data have a substantial role in determining the form of
model. The demand for such models arises, in part, from the size of the data sets (many observations)
that are now commonly available. Deviations from the strict form of model that are described by
theory are more readily detectable. Statistical learning approaches are then used to accommodate
deviations from the theoretical model. The plot of residuals in Figure 1 suggests that, for the data
displayed there, a statistical learning approach may be appropriate.

For classification models, theory rarely gives much help in deciding on the form of model. A
statistical learning approach is, to a greater or lesser extent, inherent in the nature of the modeling
problem.

In the applications of statistical learning that are prominent in the data mining literature, the aim
is usually prediction rather than the obtaining of interpretable model parameters. Hence the name
“predictive modeling”. Interpretation of model parameters raises additional issues that will be the
subject of brief comment in a later section.
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2.1 Statistical Learning Example
2.1.1 Continuous Outcome

The first example (Figure 1) is for a continuous outcome variable. Data are world record times for
athletic track and road races, as at October 2006. The range of distances and times is huge, from
100m in 9.6sec to 292.2km in 24h.

107-1 10"0 107 1012
0.15
—_ 0.10
g. 0.05 s
s Figure 2: Here a smooth curve
g 0w has been fitted to the residuals,
S 00 using a routine that does the job
040 pretty much automatically. It is
oss [ T T T 7 assumed that residuals from the
oo b | curve are independent. This as-
8 sl o . sumption is. especially crucial 'for
% ool . e PRI ‘.che 95% pointwise confidence lim-
o °°, 08 ° os its about the curve. The lower
s T ° B panel shows residuals from the
Rl . . . smooth.
10M-1 10”0 10M 1072
Distance

We can fit a curve rather than a line (Figure 2), in what is a statistical learning approach. Here,
a curve will be fitted to the residuals — this corrects for the biases in the line.
Questions are:

Will the pattern be the same in 20307

Is it consistent across geographical regions?

Does it partly reflect greater attention paid to some distances?

So why/when the smooth, rather than the line?
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Clearly the smooth curve (line, with ‘corrections’ from the line) would be useful to race organizers
who wished to estimate the time at which a race winner could be expected to appear.

This is a very simple example of the use of the methodology. It generalizes, allowing the fitting of
curves and surfaces, in principle in an arbitrary number of dimensions.? The ability to fit such curves
and surfaces automatically is remarkable, relative to what was available a decade ago.

2.1.2 Binary data

Data, extracted by John Aggleton (now at Univ of Cardiff), are from records of UK first class cricketers
born 1840 — 1960. Variables are

Year of birth

Years of life (as of 1990)

1990 status (dead or alive)

Cause of death: killed in action / accident / in bed
Bowling hand — right or left

The key assumption is that bowling arm is independent between cricketers. This assumption would
be vitiated if for example data were comprised entirely of identical twins, with the two members of a
twin pair generally expected to use the same bowling hand!

Given this assumption, the changes in the proportion of left-handers must then reflect changing
external conditions, perhaps changing opportunities for left-handed players to join clubs and get good
coaching.

We can check that the methodology does not have any tendency to produce curves where there
are none. Figure 4 was obtained by simulating a situation where, each time a new cricketer is born,
the probability of left-handedness is 0.2.

2Note in particular the abilities in the R package mgcv, documented in detail in Wood (2006).
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2.1.3 Classification example — forensic glass identification:

Now consider a classification example. intended to help illustrate some of the important issues. As
is common in many of the examples that are the stock-in-trade of the data mining literature, the
interest is in prediction rather than interpretation of model parameter of estimates.

The example relates to glass fragments that were collected in the course of forensic work. Glass
was of the following types. Numbers of pieces of glass of each of the different types are given:

Window float (70) Window non-float (76)  Vehicle window (17)
Containers (13) Tableware (9) Headlamps (29)

Variables are %’s of Na, Mg, ..., plus refractive index. In all there are 214 rows of data (observa-
tions) x 10 columns (variables).

The aim is to find a rule that predicts the type of any new piece of glass. Figure 5 is a visual
summary of the result from the use of a simple form of classification methodology, with the name
linear discriminant analysis.

Questions, for any use of the results (e.g., to identify glass on a suspect)
How/when were data generated? (1987)

e Are the samples truly representative of the various categories of glass? (To make this judgement,
we need to know how data were obtained.)

Are they relevant to current forensic use? (Glass manufacturing processes and materials have
surely changed since 1987.)

What are the prior probabilities? (Would you expect to find headlamp glass on the suspect’s
clothing?)

These data are probably not a good basis for making judgements about glass fragments found, in
2008, on a suspect’s clothing. Too much is likely to have changed since 1987. We’d want data that
are a better match with the glass fragments that one might currently expect to find. We can then
generalize with confidence, from the sample from which results have been obtained to some wider
population.
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In practice, that may be an almost impossible ask. We may have to be content with data that
are from a population that is a less than perfect match to the population to which results are to be
applied.

Analysis results: The overall classification error, from use of the random forests algorithm that
will be described later, 20.1%. The confidence with which different glass types can be classified does
however vary greatly from one type to another. For glass types other than Window float and Window
non-float, the evidence is rather scanty.

The classification error rates were:

Classification error

Window float ("WinF’: 70) 0.10
Window non-float ("WinNF’: 76) 0.22
Vehicle window ("Veh’: 17) 0.59
Containers (’Con’: 13) 0.23
Tableware ("Tabl’: 9) 0.22
Headlamps ("Head’: 29) 0.14

2.2 Some further reflections — What is data mining?

Daryl Pregibon’s definition of data mining as “Statistics at scale and speed” may be as apt as any.
Scale and speed create, inevitably, a large demand for automation. The skill lies in knowing what
to automate, when to call on the skill of the human expert, and in the use of tabular and graphical
summaries that will assist the judgment of skilled data analysts or call attention to features of the
data that might not otherwise be obvious. The demand for scale, speed and automation has created
many opportunities for researchers from a computer science tradition to take a lead role.

Data mining, and indeed all data analysis, draws both from statistics and from computing;:

e Statistics contributes: methods for the design of data collection, models, the distinction between
signal and noise, attention to issues of generalization, well-tested modeling approaches, and a
long tradition of experience in the analysis of data.

e Computing has contributed the means for managing data, for automating large parts of com-
putations, for maintaining an audit of all steps in an analysis, and some novel algorithms and
algorithmic approaches.

Comments in Witten and Frank (2000), with respect to machine learning. seem relevant also to
data mining:

In truth, you should not look for a dividing line between machine learning and statistics,
for there is a continuum, and a multidimensional one at that, of data analysis techniques.

Right from the beginning, when constructing and refining the initial data set,
standard statistical methods apply: visualisation of data, selection of attributes, discarding
of outliers, and so on. Most learning algorithms use statistical tests . . . (p.26).3

There are then several alternative names for disciplines, or traditions, that operate in the same general
arena as statistics — including especially machine learning and data mining. Another name that has
some currency is analytics, witness Davenport and Harris’s text that Competing on Analytics. 1 will
use data analysis as a name for activites that attract one or more of these names.

3Be careful, though, what you do with outliers! Unless demonstrably erroneous, they should, although perhaps
omitted from the main analysis, be reported and included in graphs. In some analyses the interest may be in a small
number of points that lie away from the main body of the data.
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3 Purpose, Context, Interpretation and (Generalization

A data mining style of analysis, if it is done properly, offers exactly the same range of challenges as
data analysis more generally. Key issues for any study are:

1. Why am I undertaking this investigation?
2. What is the intended use of results?
3. How widely is it hoped that results will apply?

4. What limitations, arising from the manner of collection or from the incompleteness of the infor-
mation, may constrain that intended use?

When the analysis is complete, a key question will be: “What is the relevance of these results?”

3.1 Purpose

The following is a (perhaps incomplete) list of the purposes that a data analysis may aim to serve:

1. Data collection and summarization may be an end in itself. A business needs to have accurate
accounts just so that it can know whether it is making a profit.

2. Prediction; i.e., the aim is to make statements that generalize beyond the circumstances that
generated the particular data that are under study.

3. Understanding — the elucidation of pattern. To be of interest, the pattern must usually be
relevant beyond the immediate data in which it was found, i.e., generalization is an issue here
also.

It is then important to ask which of these apply.

The answers may have strong implications for the any decision on how to handle the data. Data
mining exercises typically are mainly interested in predictive accuracy. Questions of what interpreta-
tion can be placed on model parameters do however often arise, often as an afterthought to the main
analysis. It is therefore important to understand the potential for misinterpretation.

Most (all?) data mining analyses involve an element of generalization. In predictive modeling,
generalization is an explicit concern. The nature of the generalization will typically have large impli-
cations for the investigations that are to be undertaken, of a kind that this module will explore.

Is an hypothesis essential?

The hypothesis testing approach to inference, while in wide use in some areas of statistical application,
seems relatively uncommon in the data mining literature. Certainly, it offers a means for making
statements that apply beyond the specific data used to generate and/or test them. It is not however
always the best or most appropriate approach for this purpose.

3.1.1 Example —the different uses of Australian Bureau of Statistics data

Note the variety of uses of data that are collected by the the Australian Bureau of Statistics. By
explicit use of samples, or (less often) census data, statements will be made that apply to one or
other Australian population — to humans, sheep, farms, or whatever. Results may be used directly to
allocate resources, e.g., the distribution of GST revenue to states. They are also a resource that will be
used by researchers (statisticians, data miners) to find that patterns that will guide decision-making.
As those decisions will affect the future, the interest is in those patterns that can be expected to
persist into the future, i.e., there is a predictive element.



3 PURPOSE, CONTEXT, INTERPRETATION AND GENERALIZATION 14

3.1.2 Exercises:
Set out aims for analysis for the studies that have generated the following data:

The forest cover type data set, available from the web site noted in connection with Blackard
(1998). See the file covtype.info for details of these data.

The data set ant111b that gives yield of corn for each of four blocks at each of eight sites on
the island of Antigua in the Caribbean, in a single year.*

The data set on tinting of car windows (tinting (also in DAAG).
The attitudes to science data set (science,DAAG).

Data on diet-disease associations, with the food frequency questionnaire as the diet measurement
instrument.

Data on diet-genotype associations, with SNP (single nucleotide polymorphism) information for
each of a number of positions on the chromosome used to indicate genotype.

Studies and/or associated data sets that may be encountered in remaining modules of the course.

3.2 Analysis, and interpretation

This section will note some of the issues that become important for any detailed analysis. These are
phrased as questions:

e There are many different methods/algorithms. How should the analyst choose between them?
What are good ways to assess the performance of one or other algorithm?

e Often, the analyst would like to know which data columns (variables, or features) were important
for the classification. Could some of them be omitted without loss?

e The analyst may want to attach an interpretation to one or more coefficients? Does the risk of
heart attack increase with the amount that a person smokes?

e Above, I jumped directly into fitting a classification model, with no preliminary scrutiny of the
data. This is risky. What sorts of preliminary scrutiny can be used to identify problems with
the data, or issues that ought to be addressed?

e | offered a two-dimensional summary of the results, allowing some insight into the classification
result. What can be learned from such a plot? What other investigations might give useful
insight on the analysis results?

3.2.1 Analysis methodology

The discussion to date has focused on regression with a continuous outcome, and classification, with
a categorical outcome. In a broader view of regression classification is however a type of regression
— a regression where the outcome is a classification rather than an outcome values for a continuous
variable. The two types of problem have important common features, as well as important differences.
Where the focus is on features that they have in common, it makes sense to consider them together
in the same discussion. When the differences seem more important than the common features, they
will be considered together.

The data mining literature places a great deal of emphasis on the new “algorithmic” methods — tree-
based methods (including ensemble methods such as random forests), methods that use “bagging” and
“boosting”, neural nets, and support vector machines. These (some of them at least) are undoubtedly
useful additions to the analyst’s kit. Their usefulness, in preference to alternatives, should however be

4These data are included in the DAAG package for R. Several of the data sets that appear in illustrative examples in
these notes are from DAAG.
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demonstrated in the context of the demands of one or other data-based investigation. That includes,
in particular, the demand to demonstrate that the result has a relevance become the particular
circumstances that generated the data that were used.

3.2.2 The Interpretation of Model Parameters

Consider data® that gives record times for Northern Ireland mountain races.
The “obvious” simple model has log(time) as a linear function of log(dist) and log(climb).

logﬁne) = -5.0 + 0.68 log(dist) + 0.47 log(climb)

Note the coefficients 0.68 (for log(dist)) and 0.47 (for log(climb))! Do they make sense? Thus, the
coefficient 0.68 for log(dist) implies that the relative rate of increase of time with distance is, if climb
is held constant, 68% of the relative rate of increase of distance. If a second kilometer is added to a
1 kilometer race, the time per unit distance will be better than for the 1 kilometer race.

The clue is that the coefficient predicts what will happen if climb is held constant. The one
kilometer race then involves much steeper climbing (and decent) than the two kilometer race.

More interpretable coefficients can be obtained by regressing on log(dist) and log(climb/dist). The
comparison between different distances is then fair.

For a meaningful interpretation of model parameters, it is necessary to be sure that:

o All major variables or factors that affect the outcome have been accounted for.
e Those variables and factors operate, at least to a first order of approximation, independently.

Rosenbaum (2002) suggests approaches that are often useful in the attempt to give meaningful
interpretations to coefficients that are derived from observational data.

3.2.3 Accuracy assessment

Primarily, the accuracy assessment methods that are discussed here assume that the target population
is essentially the same as the source population from which the data have been obtained. Even for
this limited purpose, there is serious scope for getting answers that can be grossly optimistic.

Accuracy assessment is important for its own sake. It is helpful to know what the finally fitted
model has been able to achieve. Unless however there is effective accuracy assessment, it will not be
possible to fit a good model:

e Many methods work by starting with an initial model, which is successively refinement. Too
much refinement (over-fitting) will lead to a model with reduced predictive power. It is necessary
to know when to stop.

e Good accuracy assessments are required so that a model fitted using one methodology can be
compared with a model fitted using another methodology.

Here are further, more specific, comments:

Continuous outcome data: For regression with a continuous outcome, normal theory accuracy
estimates can, if the independent normal error assumptions are not too badly wrong, work quite well.
Note however that:

e If the model is selected from a wide class of models, or if there is extensive variable selection
(e.g., select the best 3 explanatory variables out of 10), the accuracy estimates may be grossly
optimistic.

e If observations are not independent, accuracy estimates may again be wrong, usually optimistic.
Note however that that the situation can in special cases be rescued by choosing a more realistic
model for the “error”. Some of the possibilities are:

5from http://www.nimra.org.uk/calendar.asp
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— For data that are collected over time, models are available that can account for the likely
sequential correlation.

— Variation is often multi-layered — variation between different countries, variation between
humans in an individual country, variation between clinical assessment made on the same
human, and so on. Again modeling approaches are available that can account for such
different sources of variation.

— Spatial models are another possibility.

Empirical methods for accuracy assessment can in principal be adapted for use where there is a
complex error structure. This does however require a clear understanding of the theoretical issues,
and is not straightforward.

Categorical outcome data: Here, the theoretical accuracy estimates that are available for certain
of the methods rely on asymptotic approximations. For ‘algorithmic’ methods, including tree-based
methods and random forests, theoretical results have limited relevance. Accuracy assessment almost
inevitably relies on empirical methods.

The empirical methods do if used correctly cope with the effects of model and variable selection.

The accuracy that matters

As has been pointed out, the source population from which data have been obtained will often not be
exactly the same as the target population. There are two important issues here:

e Where predictive modeling of a comparable type is being carried out repeatedly, the analyst
should keep a record of the comparison between after-the-event model performance and predicted
performance, e.g., from cross-validation on the original data.

e Often, predictions are successively made ahead in time. If a long enough data series is available,
time series methods may be apprropriate. In effect, past changes from one time to the next are
used as a guide to likely future changes.

The modeling of changes over time is in principle a good idea. Do not however put too much faith in
the model. A lesson from the recent financial crisis is, surely, that it is unwise to put much faith in
any financial model that does not allow for occasional “shocks”. The warnings in Taleb (2004) merit
attention.

3.2.4 When are rough and ready methods enough?
Rough and ready methods are fine, if they do the job. How does one know whether the job is done?
e Watch for source/target (eg, 2008/2009) differences.
e Allow for effects of model and variable selection.
e For interpretation of individual model parameters, know the traps.
e Are there dependence issues (time series, ...)?

Rough and ready methods may yield useful clues that make a start on gaining understanding
in new areas. Greater finesse will almost invevitably be needed in order to make progress once the
low-hanging fruit have been harvested.

Work with expression array data provides an example. Leek and Storey (2007) argue that in
expression array analyses involving samples from biological organisms, there is commonly a depen-
dence structure that arises because some samples (observations) share common features that are not
accounted for by available covariates. This is, for example, likely to be the case for cancer tissue sam-
ples. The SVD (singular value decomposition) can provide a low rank approximation that accounts
for most of the dependence structure. This leads to changes in the set of sequences that are identified
as differentially expressed. The list, and the order, are at the same time more stable with respect to
sampling variability.
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Automation

As much as is reasonable, it makes sense to automate. Attention can then be focused on those aspects
of the investigation that are not susceptible to automation.

Automation can however only be properly effective when the science is well understood. Analysis
methodology can be effectively automated, to a smaller or larger extent, once the analysis has been
run a number of times with similar data, and results validated. Even then, it is necessary to be open
to new insights, or new wrinkles that emerge in the course of the analysis.

4 Challenges from Size of Dataset

Datasets may be large because there are a large number of observations. Or they may be large because
there are many variables (features).

4.1 Many Observations

e Additional structure often comes with increased size — data may be less homogeneous, span
larger regions of time or space, ...

e Or there may extensive information about not much!

— e.g., temperatures, at second intervals, for a day.

— SEs from modeling that ignores this structure may be misleadingly small.
e In large homogeneous datasets, spurious effects are a risk

— Small SEs increase the risk of detecting spurious effects that arise, e.g., from sampling bias
(likely in observational data) and/or from measurement error.

Sheer size brings challenges. In the first place, these are challenges for data management. The
analysis challenges that result from huge numbers of observations are not, however, primarily those
of scaling up regression and related models for use with large datasets.

The analysis challenges are most important for models with a complex error structure — repeated
measures and times series, spatial models, and so on. They are much less important for the use of
regression models.

Where a straightforward use of a regression model really does seem appropriate, there can be
advantages in structuring the analysis as a series of separate regressions:

e As an example, consider data that have been collected over a non-trivial interval of time. It is
then sensible, as a check, to do separate analyses for separate times.

e Where there is no time or other such structure in the data, the analysis can usefully be repeated
for separate random samples of the data. Variation in model parameters and predictions under
such repeated sampling provides a check on theoretically based estimates of standard errors. If
the empirical standard errors are larger, it is those that should be believed.

4.2 Many variables (features)

Huge numbers of variables spread information thinly! Strong assumptions are needed:
(a) most variables have no effect, and/or:
(b) variables act in concert.

Common approaches are to select, or to penalize (eg, A|[bll,, where 0 < p <2)

e Either way, there are selection effects — with enough lottery tickets, prizes are pretty much
inevitable



4 CHALLENGES FROM SIZE OF DATASET

e A pattern based on the ‘best’ 15 features, out of 500, may well be meaningless!

Note that any over-fitting with respect to the target is likely to reduce real accuracy!
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Part 11
Data Summary

Data analysis has as its end point the use of forms of data summary that will convey, fairly and
succinctly, the information that is in the data. Considerable technical skill may be required to extract
that information.

5 Weighting Effects in Summary Tables

Several examples will be given. Care is required, when summary tables are formed, that the informa-
tion in the data not misrepresented. The effects of interest were very evident in the UCBAdmissions
data. In tables of counts, they are associated with Simpson’s paradox, alternatively known as the
Yule-Simpson effect or, in the genetic context, as epistasis.

5.1 Bias from addition over unequally weighted sub-categories

Here is a contrived example; data are admissions to a fictitious university:

Engineering Sociology Total
Female Male Female Male Female Male
Admit 10 30 30 15 40 45
Deny 10 30 10 5 20 35

Summing over the two separate tables is equivalent, for purposes of calculating overall admission
rates, to the following:
Females: 10 x 20 4 30 5 40 [0.33 (Eng) : 0.67 (Soc)]

Males: DxB+Bxd [0.75 (Eng) : 0.25 (Soc)]
The Overall Rates are:

e females (%): bias (0.33:0.67) is towards the Sociology rate (0.75)
e males (32): bias is (0.75:0.25) towards the Engineering rate (0.5).

Several further examples, of this same general character, appear below.

Simpson’s paradox and epistasis

In population genetics, Simpson’s paradox type effects are known as epistasis. Most human societies
are genetically heterogeneous. In San Francisco, any gene that is different between the European
and Chinese populations will be found to be associated with the use of chopsticks! If a disease
differs in frequency between the European and Chinese populations, then a naive analysis will find
an association between that disease and any gene that differs in frequency between the European and
Chinese populations.

Such effects are a major issues for gene/disease population association studies. It is now common to
collect genetic fingerprinting data that should identify major heterogeneity. Providing such differences
are accounted for, large effects that show up in large studies are likely to be real. Small effects may
well be epistatic.

5.1.1 The UCB Admissions Data

Data are admission frequencies, by sex, for the six largest departments at the University of California
at Berkeley in 1973. For a reference to a web page that has the details; see the belp page for
UCBAdmissions. Type
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> help(UCBAdmissions) # Get details of the data
> example (UCBAdmissions) # Example code gives tabular and graphical

Note the margins of the table:

> str(UCBAdmissions)

table [1:2, 1:2, 1:6] 512 313 89 19 353 207 17 8 120 205 ...
- attr(*, "dimnames")=List of 3

..$ Admit : chr [1:2] "Admitted" "Rejected"

..$ Gender: chr [1:2] "Male" "Female"

..$ Dept : chr [1:6] "A" "B" "C" "D"

Notice that what we have is a 3-way table, with margins Admit, Gender and Dept.

Here, we will calculate overall admission rates separately for males and females, admission rates
by department separately for males and females, and for each department the number of males and
females applying, as a proportion of the total number of the relevant Gender. The reasoning is that,
if different genders have different departmental preferences, overall admission rates for males will be
biased towards admission rates for departments that are popular with males, while overall admission
rates for females will be biased towards admission rates for departments that are popular with females.

Two functions that will be important for the calculations are margin.table() and prop.table().

e The following are the overall admission rates:

> alltab <- margin.table(UCBAdmissions, margin=c(1,2))
> alltab

Gender
Admit Male Female
Admitted 1198 557
Rejected 1493 1278

Now calculate, for each Gender (margin 2), the proportions admitted and rejected. We require
a table with the margin Gender (=2). Proportions are calculated across the elements of the
remaining margin of the table, which is Admit. The proportion admitted provides all the needed
information. Hence the restriction to row 1 ([1, 1).

> round(prop.table(alltab, margin=2)[1, 1, 3)

Male Female
0.445 0.304

e The following are the admission rates for the different departments. We require a table with
margins Gender (=2) and Dept (=3). Proportions are calculated across the elements of the
remaining margin of the table. We require only the proportion admitted. Hence the restriction
torow 1 ([1, , 1), which at the same time gives a compact table:

> round(prop.table(UCBAdmissions, margin=2:3)[1, , 1, 3)

Dept
Gender A B
Male 0.621 0.63 0.36
Female 0.824 0.68 0.341

C D E F
9 0.331 0.277 0.059
0.349 0.239 0.070

e Now calculate the numbers of males and females applying to each department. The margins
that we require in the table are Gender (=2) and now Dept (=3).

> (totbydept <- margin.table(UCBAdmissions, margin=c(2,3)))
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Dept
Gender A B C D E F
Male 825 560 325 417 191 373
Female 108 25 593 375 393 341

Proportions will now be calculated for the margin Dept of the table totbydept just obtained:

> round(prop.table(totbydept, margin=1), 3)

Dept
Gender A B C D E F
Male 0.307 0.208 0.121 0.155 0.071 0.139
Female 0.059 0.014 0.323 0.204 0.214 0.186

Do the data provide evidence, across the University as a whole, of sex-based discrimination?

A relatively small proportion of females (5.9%) applied to department A where admission rates
were relatively high, while a high proportion (32.3% and 21.4% respectively) applied to departments
C and E where admission rates were relatively low. The very high number of males applying to
departments A and B has biased the male rates towards the relatively high admission rates in those
departments, while the relatively high number of females applying to departments C, D and F biased
the overall female rates towards the low admission rates in those departments. The overall bias arose
because males favored departments where there were a relatively larger numbers of places.

What model is in mind? Is the aim to compare the chances of admission for a randomly chosen
female with the chances of admission for a randomly chosen male? The relevant figure is then the
overall admission rate of 30.4% for females, as against 44.5% for males. Or, is the interest in the
chances of a particular student who has decided on a department? The female had a much better
chance than a male in department A, while a male had a slightly better chance in departments C and
E.

Here, information was available on the classifying factor on which it was necessary to condition.
This will not always be the case. In any such tabulation, it is always possible that there is some
further variable that, when conditioned on, can reverse or otherwise affect an observed association.

The results that give the overall proportions are, for these data and depending on the intended
use, an unsatisfactory and potentially misleading summary. The phenomenon that they illustrate,
known as Simpson’s paradox or as the Yule-Simpson effect, is discussed in Aldrich (1995); Simpson
(1951).

5.2 Analysis of a substantial dataset — US accident data

Each year the National Highway Traffic Safety Administration (NHTSA) in the USA collects, using
a random sampling method, data from all police-reported crashes in which there is a harmful event
(people or property), and from which at least one vehicle is towed. The data frame nassCDS (DAAG)
is derived from NHTSA data.b

The data are a sample, for the years 1997 — 2002. The use of a complex sampling scheme has the
consequence that the sampling fraction differs between observations. Each point has to be multiplied
by the relevant sampling fraction, in order to get a proper estimate of its contribution to the total
number of accidents. The column weight (national = national inflation factor in the SAS dataset)
gives the relevant multiplier.

Meyer (2006) argues that on balance (over the period when their data were collected) airbags cost
lives. In order to obtain a fair comparison, it is necessary to adjust, not only for the effects of seatbelt
use, but also for speed of impact. When this is done, airbags appear on balance to be dangerous,
with the most serious effects in high impact accidents, but the effect is at the level of statistical error.

6They hold a subset of the columns from a corrected version of the data analyzed in the Meyer (2005) paper that is
referenced on the help page for nassCDS. More complete data are available from one of the web pages
http://www.stat.uga.edu/ mmeyer/airbags.htm (SAS transport file)
or http://www.maths.anu.edu.au/~ johnm/datasets/airbags/ (R image file).
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Strictly, the conclusion is that, conditional on involvement in an accident that was sufficiently serious
to be included in the database (at least one vehicle towed away from the scene), there is a suggestion
that airbags are harmful.

Farmer (2006) argued that these data have too many uncertainties and potential sources of bias
to give reliable results when analyzed as will be done here. He presented a different analysis, based
on the use of front seat passenger mortality as a standard against which to compare driver mortality,
and limited to cars without passenger airbags. In the absence of any effect from airbags, the ratio of
driver mortality to passenger mortality should be the same, irrespective of whether or not there was
a driver airbag. In fact the ratio of driver fatalities to passenger fatalities was 11% lower in the cars
with driver airbags.

5.2.1 From Highly to Mildly Misleading Analyses

The analyses presented here will be for a subset of the data that are further restricted. The oldest
vehicles with airbags, represented in these data, were from 1986. In an analysis that does not allow for
age of vehicle, this risks biasing results for vehicles without airbags towards results for older vehicles.
If there is an adjustment for age of vehicle, vehicles that are older than 1986 do not contribute useful
information, for purposes of assessing the effectiveness of airbags. In addition to omitting vehicles older
than 1986, observations with weight 0, and one observation where the year of vehicle was unknown.
This omits 2726 records out of the total of 26217, leaving 23491 records.

> library (DAAG)
> nassnew <- subset(nassCDS, !is.na(yearVeh) & yearVeh>=1986 & weight>0)

The following uses xtabs () to estimate numbers of front seat passengers alive and dead, classified
by airbag use:

> library (DAAG)
> (abtab <- xtabs(weight ~ dead + airbag, data=nassnew))

airbag
dead none airbag
alive 4357429.74 6614169.17
dead 29897.41  25919.11

The function prop.table() can then be used to obtain the proportions in margin 1, i.e., the propor-
tions dead, according to airbag use:

> round(prop.table(abtab, margin=2)["dead", ], 4)

none airbag
0.0068 0.0039

The above might suggest that the deployment of an airbag substantially reduces the risk of mor-
tality. Consider however:

> abSBtab <- xtabs(weight ~ dead + seatbelt + airbag, data=nassnew)
> ## Take proportions, retain margins 2 & 3, i.e. airbag & seatbelt
> round(prop.table(abSBtab, margin=2:3)["dead", , 1, 4)

airbag
seatbelt none airbag
none 0.0180 0.0155
belted 0.0039 0.0021

The results are now much less favorable to airbags. The clue comes from examination of:

> margin.table(abSBtab, margin=2:3) # Add over margin 1
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airbag
seatbelt none airbag
none 916169.2 885635.3
belted 3471157.9 5754452.9

In the overall table, the results without airbags are mildly skewed (~4.12:1.37) to the results for
belted, while with airbags they are highly skewed (~57.6:8.86) to the results for belted.

5.2.2 Taking Account of Estimated Force of Impact

Now take account, additionally, of estimated force of impact (dvcat):

> ASdvtab <- xtabs(weight ~ dead + seatbelt + airbag + dvcat,
data=nassnew)

> ## Use ftable to get a compact, flattened version of the table

> round(ftable(prop.table(ASdvtab, margin=2:4)["dead", , , 1), 6)

dvcat 1-9km/h 10-24 25-39 40-54 55+

seatbelt airbag
none none 0.000000 0.002583 0.020300 0.040323 0.204534
airbag 0.004023 0.004873 0.010982 0.075990 0.269959
belted none 0.000000 0.000380 0.005743 0.028141 0.139204
airbag 0.000000 0.000195 0.003331 0.022666 0.157394

It will be apparent that differences between none and airbag are now below any reasonable threshold
of statistical detectability.

5.2.3 Changes in the Risk
The package DAAG includes the function excessRisk(). Run it with the default arguments, i.e. type

> excessRisk()

seatbelt none_dead none_tot airbag_dead airbag_tot noneProp airbagProp
1 none 24067 1366089 13760 885635 0.0176 0.0155
2 belted 15609 4118833 12159 5762975  0.0038 0.0021

Difference: airbag_dead - none_dead
1 -1842.471
2 -9681.088
Differences in expected number of deaths are calculated
relative to the level 'none' of the factor 'airbag'.

Here are several exercises.

1. Classify according to dvcat as well as seatbelt. All you need do is add dvcat to the first
argument to excessRisk(). What is now the total number of excess deaths?
[The categories are 0-9 kph, 10-24 kph, 25-39 kph, 40-54 kph, and 55+ kph]

2. Classify according to dvcat, seatbelt and frontal, and repeat the calculations. What is now
the total number of excess deaths?

Explain the dependence of the estimates of numbers of excess deaths on the choice of factors for the
classification.
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5.2.4 More Variables Still

There are at least two other variables that may affect the risk of death. These are the year of
manufacture of the vehicle, and the age of the occupant. Possibly also the year of the accident might
be important, but the data do not have enough information to allow this effect to be modeled in
addition to all the others. These will be investigated in Subsection 5.2.

5.3 Summary of Continuous Outcome Data

Unequal subgroup weights create exactly the same potential, as with binary (or categorical) outcome
data, for misleading summary.

Unequal subgroup weights with continuous data — an example

Figure 5.3 relates to data collected in an experiment on the use of painkillers.”. Notice that the overall
comparison (average for baclofen versus average for no baclofen) goes in a different direction from the
comparison for the two sexes separately.

Researchers had been looking for a difference between the two analgesic treatments, without and
with baclofen. When the paper was first submitted for publication, an alert reviewer spotted that some
of the treatment groups contained more women than men, and proposed a re-analysis to determine
whether this accounted for the results.® When the data were analysed to take account of the gender
effect, it turned out that the main effect was a gender effect, with a much smaller difference between
treatments.

Baclofen e No baclofen

' ' ' ' ' Figure 6: Does baclofen,
following operation
® (additional to earlier
female . painkiller), reduce pain?
15 7 Subgroup numbers,
shown below each point
all ° . .
12 2 in the graph, weight the
T T T T T T overall averages when sex
15 20 25 30 35 40 is ignored.

Average reduction: 30 min vs 0 min

male

we

The overall averages in Figure 5.3 reflect the following subgroup weighting effects:

Baclofen: 15f to 3m, i.e. 13 to & (a little less than f average)
1

No baclofen: 7f to 9m, i.e. & to & (~ 3-way between m & f)

This is still only part of the story. More careful investigation revealed that the response to pain
has a different pattern over time. For males, the sensation of pain declined more rapidly over time.

Strategies

(i) Simple approach Calculate means for each subgroup separately.
Overall treatment effect is average of subgroup differences.
Effect of baclofen (reduction in pain score from time 0) is:

Females: 3.479 - 4.151 = -0.672 (-ve, therefore an increase)

Males: 1.311 - 1.647 = -0.336

“Gordon, N. C. et al.(1995): “Enhancement of Morphine Analgesia by the GABAB against Baclofen”. Neuroscience
69: 345-349
8Cohen, P. 1996. Pain discriminates between the sexes. New Scientist, 2 November, p. 16.
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Average over male and female = -0.5 x (0.672+0.336) = -0.504

(ii) Fit a model that accounts for sex and baclofen effects y = overall mean + sex effect +
baclofen effect 4 interaction
(At this point, we are not including an error term).

Why specify a model?

It makes assumptions explicit.

5.3.1 Cricket — Runs Per Wicket:

1st innings 2nd innings Overall

Runs Wickets || Runs Wickets
Bowler A 40 4 240 6 || 280 10
Bowler B 70 5 50 1120 6

Table 1: Runs per wicket for each bowler in the two innings.

The runs per wicket are:

1st innings  2nd innings
Bowler A 10.00 40.00
Bowler B 14.00 50.00

Table 2: Runs per wicket for each bowler in the two innings.

Observe that although Bowler A does better than bowler B in each innings, his overall average is
worse — 28 runs per wicket as opposed to 20.

A fair way to make the comparison is to model the effects both of bowler and of innings, using a
linear model.

5.4 Further Examples
5.4.1 Do the left-handed die young

A number of papers, in Nature, in the psychological literature and in the medical literature, have
argued that left-handed people have poorer survival prospects than right-handers. It turns out that,
in a large cross-sectional sample of the British population that was studied in the 1970s, the proportion
of left-handers declined from around 15% for ten-year-olds to around 5% for 70-year olds. If average
age at death is compared between left-handers and right-handers, left-handers will be over-represented
among those dying young, and over-represented among those dying in older years. Hence the average
age will be be lower for left-handers than for right-handers. Disturbingly it has been easier to get this
nonsense published than to get refutations published.

Again survival analysis methods are required for a proper analysis. Once the effect noted above
has been removed, there may be a small residual effect from left-handedness. See Bland & Altman
(2005).
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5.4.2 Hormone replacement therapy

Cohort and other population based studies have suggested hormone replacement therapy (HRT) re-
duces the risk of coronary heart disease (CHD). A large meta-analysis of what were identified as the
best quality observational studies found a relative reduction in risk of 50% from any use of HRT.

A large randomized controlled trial found an increase in hazard, from use of CRT, of 1.29 (95%
CI 1.02-1.63), after 5 years of follow-up. Thus, so far from reducing CHD risk, it increases the risk.
The conclusion given in a 2006 ABC Health Report interview is that:

Hormone therapy, both oestrogen combined with progesterone and oestrogen alone, in-
crease risk of cardio vascular disease, stroke, blood clots and the hormone therapy that
was combined meaning oestrogen and progesterone increase risk of breast cancer.

[This is taken from: http://www.abc.gov.au/rn/healthreport/stories/2006/1530042.
htm]

This was an especial puzzle because the results of the observational studies have been consistent
with the results of randomized trials for other outcomes — breast cancer (increased risk for the combined
oestrogen/progesterone HRT; for a 50-year old from 11 in 1000 to maybe 15 in 1000), colon cancer
(reduced risk), hip fracture (reduced risk, but diet, exercise and other drugs can achieve the same or
better results) and stroke (increased risk; for a 50-year old from 4 in 1000 to 6 in 1000). See the ABC
web page just noted and, e.g., Rossouw et al. (2002) for further details and references.

A recent analysis by Hérnan et al. (2008) of the observational data gave the following factors by
which the average risk is multiplied: These effects are assumed to add.

Years of follow-up 0-2 >2-5 >5
Multiply risk by 1.5 1.3 0.67
Years since menopause <10 10-20 >20
Multiply risk by 0.89 1.24 1.65

The observational data included some individuals with long follow-up times, whereas the nature
of a randomized trial (after randomization, there is a limited follow-up time) rules out long follow-up
times. Moreover, in order to make up numbers, the randomized trials included many women with long
times following menopause. Both these factors increase the average estimated risk for the randomized
trials, relative to the observational data. The analysis will appear later this year, in a paper in the
journal Epidemiology.

In part, the issue is that both the randomized trials and the observational studies yielded averages
for populations that were heterogeneous in ways that gave different relative weights to relevant sub-
populations. Earlier analyses failed to identify important relevant covariates.

5.5 Biases from omission of features — further comments

Some of the possibilities that it may be necessary to contemplate, for this specific example and more
generally, are:

1. The issue is one of design of data collection, as well as analysis. If information has not been
collected on relevant variables, the analyst cannot allow for their effect(s).

2. If the data are observational, there may be crucial variables on which it is impossible to collect
information. Or there may be no good understanding of what the relevant variables are.

3. Providing the problem is understood and handled appropriately, large effects are unlikely, in
large data sets, to arise from differences between sub-populations.

4. Small effects are highly likely, and should always be treated with scepticism. Small effects that
are artefacts of the issues noted here show up more readily than small effects that are genuine.
This is because the effects that will be noted here will almost invitably skew estimates of genuine
effects, either exaggerating the effect or (just as likely) reversing the direction of its apparent
effect.
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Part 111
Populations, Samples & Sample Statistics

6 Populations and Samples

The available data rarely comprises a total population. At best, it is likely to be a sample, preferably
a random sample in which all population values appear with equal probability, from the population.

This is likely to be true even if the sample comprises all the data that were available at the time.
Results will typically be applied in some new context, later in time, where the available data have
changed. At best, changes between the original data and the later point in time for which predictions
will be made will be rather similar to changes between one sample and another. This is however a
best case scenario. Commonly there will be changes similar to those between one sample and another,
plus systematic changes in time.

Thus a bank will have, in principle at least, complete information on financial transactions with
current customers. As a guide to future financial transactions for those same customers, this is a
sample of customer behavior that may or may not be a good guide to future transactions.

6.1 Samples

The function sample () takes samples from a set of data values. Samples may be taken without (the
default) or with replacement. In without replacement sampling from a set {x;,i = 1,...n} each element
X; can appear at most once in the sample.

The R function sample() models what should happen when a random sample is taken. Each
successive value is chosen at random from the values that remain in the population, indepndently
of the values previously chosen. In without replacement sampling (the default for sample()) from a
finite population, values that are removed are not available for selection when the next sample value
is chosen. In with replacement sampling, the same value can be selected any number of times.

> sample(1:10, size=5) # Yields 5 distinct values
> sample(1:10, size=5, replace=TRUE) # Values can be repeated

An important use of with replacement sampling is for bootstrap sampling. Here, the sample is
usually chosen to be of the same size (i.e., the same number of values) as the set of values from’ which
the sample is taken.

6.2 Continuous distributions
6.2.1 Contexts in which continuous distributions appear

The following are some of the contexts in which it may be useful to characterize and/or compare
continuous distributions:

e Before fitting a classification model, it is desirable to do exploratory analyses that compare the
groups with respect to both discrete and continuous variables.

e For regression modeling, various prior checks are desirable on dependent as well as on explana-
tory variables.

e Categories will in some instances be formed by discretizing a continuous variable. Where possi-
ble, comparisons on the continuous scale should precede or accompany the discrete comparisons.

e For each category A, suppose that p, is the probability, assessed independently of the data
for an observation, that an observation belongs to category A. Many classification algorithms
model log(pa/(1 — pa)), as a function of the explanatory factors and variables. The distribution
of log(pa/(1 — pa)) is then of interest.
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6.2.2 Empirical vs theoretical distributions
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Consider now data that give the heights of 118 female students attending a first year statistics class
at the University of Adelaide. Figure 7 plots a histogram and overlays it with a density plot. (The
parameter setting prob=TRUE for the histogram is needed so that the units on the vertical scale are
the same both for the histogram and for the density plot.) Vertical bars above the x-axis give the
positions of the actual points. The function na.omit() omits missing values.

The vertical scale is chosen so that multiplying the height of each rectangle by the width of its
base (5cm in each case) gives an estimate of the proportion of data values in that range. The same
scale is used for the density plots, except that the density now changes continuously. It estimates, at
each point, the proportion of values per unit interval.

vV V.V Vv VvV

library (MASS)

library(lattice)

heights <- na.omit (survey[survey$Sex=="Female", "Height"])

## NB: For consistency with the density plot, the vertical scale

## for the histogram must be a density scale (freq=FALSE),

hist(heights, freq=FALSE,
xlab=paste("Heights (cm)"),

# MASS has the survey data set

main="", cex.axis=1.25, cex.lab=1.25)

vV Vv

> rug(heights, side=1)

lines(density(heights))
## Show data values along the x-axis

The data set survey is included with the MASS package.
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Figure 7: Vertical bars along the axis show the
heights of 118 female students in a first year
statistics class at the University of Adelaide. Al-
ternative summaries of the distribution are a his-
togram, the overlaid density plot (solid curve),
and a fitted normal curve (dashed).

e The vertical bars that show the distribution of data values are not very informative.

e The top of each histogram estimates the relative number of points (students) per unit along the
x-axis, within the class boundaries of that histogram. That estimate changes suddenly at the
class boundaries; this is an unsatisfactory feature of the histogram.

e The density curves give smooth estimates of the relative number of points (students) per unit
along the x-axis. This is much preferable. However there is still an issue of the choice of bandwith
for the smoother. This corresponds to the need to choose, for the histogram, the class width.

e The solid curve is a density estimate that makes very limited assumptions about the population
density. The appearance of the curve will, depending on the sample size, be quite strongly
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affected by sampling variation. Try repeating the plot with random samples of size 102 (the
same size as the sample of Adelaide students) from the normal distribution.

e The dashed curve makes the strong assumption that the population distribution is normal.

Histograms are almost never used for formal inference, i.e., for reaching precisely formulated conclu-
sions about the population from which the data have come. At best, they give a rough indication of
the population distribution. To give more than a very crude indication of the population distribution,
the sample size must however be large, perhaps several hundred. A density curve does somewhat
better. Even so, it is easy to over-interpret density curves from small samples.

6.2.3 Boxplots, and the inter-quartile range:

The boxplot is a widely used summary of a distribution of data values that focuses on key features
only. Visual comparison of boxplots is much easier than visual comparison of density plots.
Figure 8 shoes such a plot. The key features are:

- an upper “whisper”; points larger than this are plotted separately; they are identified as possible
outliers.

- the upper quartile, dividing off the lower 75% of the distribution from the upper 25%.
- the median, dividing off the lower 50% of the distribution from the upper 50%.
- the lower quartile, dividing off the lower 25% of the distribution from the upper 75%.

- a lower “whisper”; points smaller than this are plotted separately; they are identified as possible
outliers.

The central rectangular box thus extends from the lower quartile to the upper quartile, and takes in
the central 50% of the data.’
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Figure 8: Boxplot, with annotation that explains boxplot features. Lines in gray show mean-SD,
mean, and mean+SD. Data are heights of 118 female students in a first year statistics class at the
University of Adelaide.

For a normal distribution, around one point in 100 can be expected to lie below the lower whisker,
or above the upper whisker. Do not too readily identify points as outliers. If the distribution is skewed
to the right, i.e. values are more spread out above than below the median, some points are likely for

9The range from the lower quartile to the upper quartile is known as the inter-quartile range, abbreviated to IQR.
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this reason to appear beyond the upper whisker. The present data are slightly skewed to the left, and
it is therefore not surprising that one point has appeared below the lower whisker.
The following code reproduces a simplified version of Figure 8:

> attach(survey)
> boxplot (Height [Sex=="Female"])
> detach (survey)

6.2.4 Samples from an empirical distribution

Here, the interest is in taking repeated with replacement samples, or bootstrap samples, from a sample
that is the immediate subject of investigation. In with replacement sampling, each sampled element is
placed back in the population before taking the next element. This is equivalent to sampling without
replacement from the infinite population obtained by specifying a uniform distribution on the sample
values. Try

> sample(1:8, size=5) # replace=FALSE

> sample(1:8, replace=TRUE) # permutes the original data
> # By default, as there were 8 values, size=8

> sample(c(2,8,6,5,3), replace=TRUE)

6.2.5 How accurate is the density curve or boxplot?

Resampling can be a good way to get an indication of the accuracy of a density curve or boxplot.
Take repeated random with replacement samples, of the same size as the initial sample, from the one
available sample. Fit a density curve to each such sample. The differences between these density
curves should give a good idea of the range of variation that could be expected in repeated samples
from the population.

We will take five bootstrap samples from the data on Adelaide University statistics students. Or
equivalently, take one sample of five times the size of the source sample, and split it into five.
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Figure 9: Panel A shows heights (cm) of female 1st year Adelaide University statistics
students. The density curve from the sample is shown with a solid line, while the 5 bootstrap
samples are shown with dashed lines. Panel B shows boxplot representations of the data
and the same five bootstrap samples.
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Here is the code

library (MASS) # MASS has the survey data set

library(lattice)

heights <- na.omit (survey[survey$Sex=="Female", "Height"])

sampsize <- length(heights)

par(fig=c(0,0.65, 0,1))

plot(density(heights), main="", bty="n")

xdf <- matrix(0, ncol=6, nrow=sampsize)

xdf[,1] <- heights

leg <- c("Source", paste("boot", 1:5))

for(i in 2:6){xb <- sample(heights, replace=TRUE)
xdf[,i] <- xb

lines(density(sample (heights, replace=TRUE)), lty=i, xpd=TRUE)

}

> legend(x="topleft", legend=leg, lty=1:6, cex=0.75)

> mtext (side=3, line=1.0, "A:", adj=0)

> par(fig=c(0.65,1, 0,1))

>

>
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mtext (side=3, line=1.0, "B:", adj=0)
sampleID <- factor(rep(c("Source", paste("boot", 1:5, sep="")),
each=sampsize))
> xdf <- data.frame(x=as.vector(xdf), Sample=sampleID)
> bplt <- bwplot(Sample ~ x, data=xdf,
xlab="Heights (cm)", auto.key=list(columns=3),
par.settings=simpleTheme (1ty=c (1, rep(2,5)))
)
> print (update(bplt, scales=1list(tck=0.5)), pos=c(0.6,0,1,1), newpage=FALSE)

6.2.6 Use of the sample to make inferences about the population

For reaching conclusions about the population from which the data have come there are two common
approaches:

1. Resampling approaches work with the actual data values.

2. Reasoning may proceed as though the population distribution is normal, i.e., use the dashed
density curve.

Proceeding as though the population distribution is normal is fine provided that
e Inferences will be based on the sample mean.

e The population distribution is not too far from normal. (NB: Greater deviations from normality
can be tolerated for larger sample sizes).

6.3 Theoretical probability distributions

This subsection will introduce mathematical and computing tools that are important for working with
theoretical distributions. As has been hinted, the normal distribution has a particular importance.

Models that are commonly used for population distributions include the normal (heights, weights
and other morphometric measures, preferably on a logarithmic scale), exponential (lifetimes of compo-
nents, where the probability of failure is unchanged over time), uniform, binomial (number of female
children in a family of size N), and Poisson (failures in some fixed time interval, where the probability
of failure is unchanged over time). Even if not a completely accurate model, one of these distibutions
may be a reasonable starting point for investigation.
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6.3.1 Mathematical definition

A probability distribution for a random variable X that has a subset of the real line as support, defines
for all x; and x; in its support:
Prix; < X <x5].

In a discrete population, each value has a probability (or probability mass) associated with it. In
a continuous population, each value x has an associated density f(x), such that for any two values a
and b in the support of f(),

b
Prla< X <=Db] = f f(x)dx
a
A very important continuous distribution is the normal. This has

(x—p)?
202

1
f) = exp(— )
o

V2n

where u is the mean, and o is the variance.
Set Z = X(—;” Then if X is distributed as normal with mean u and variance 0%, Z has a standard
normal distribution, i.e.
f@) = —= exp-5)
7) = —— exp(——
V2r 2
Mean and variance will be defined shortly, in Subsection 6.3.3. In a symmetric distribution such as

the normal, the mean lies at the axis of symmetry. The square root of the variance, which is the
standard deviation, is a measure of variability about the mean.

Note: More generally, a distribution may have both continuous and discrete components. Any
discrete components are commonly called probability masses or spikes.

For example, modeling of the distribution of 1978 income in the data frame nswdemo (MASS)
requires a spike at 0.

6.3.2 Density Curves and Cumulative Distribution Functions

These may be defined either by a density function, or by a cumulative distribution curve.

> curve(pnorm(x), from = -3, to = 3)
o
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The following plots the density of a normal distribution with a mean of 0 and SD=1:

> curve(dnorm(x), from = -3, to = 3)
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Why were the limits for the curve taken to be -3 and 3?7
The height of the curve is the probability density. For a small interval of width % including the
point, the probability is
h X normal density

The area under the curve between x = x; and x = x; is the probability that the random variable X
will lie between x = x; and x = xp.

Cumulative probability curves The following plots the cumulative probability curve of a normal
distribution with a mean of 0 and SD=1 (these are the defaults):

The ordinates of the cumulative density curve give the cumulative probabilities, i.e., the height of
the curve at x is Pr[X < x]. It follows that

Prix; < X <x; = Pr[X < x5] = Pr[X < xq]

Thus, suppose that X has a normal distribution with a mean of 0 and a standard deviation equal
to 1. The probability that X is between -1 and 1 can be calculated as:

> pnorm(1) - pnorm(-1)

[1] 0.6826895

6.3.3 The mean and variance of a population

See Section 22 for the definition of the expectation of a random variable. The population mean is

p=E[X] = f xf(x)dx

while the variance is

o = B[(X - ] = f (x — w2f(x)dx

6.3.4 Samples from a population — R functions

Unless stated otherwise, “sample” will mean “simple random sample”.
The R functions rnorm() (normal), rexp() (exponential), runif () (uniform), rbinom() (bino-
mial), and rpois() (Poisson), all take samples from infinite distributions.

> rnorm(n=10, mean=11, sd=2)
> rnorm(n=10)
> runif (n=10)

6.4 Displaying the distribution of sample values — some further comments

Examination of a the sample distribution may allow an assessment of whether the sample is likely to
have come, e.g., from a normal population distribution. There is an art to making this comparison.
In the sequel, some of the different ways in which the comparion might be made will be investigated.

6.4.1 Estimated density curve — the choice of bandwidth

Earlier, in Figure 7, we fitted a density curve to the distribution of heights of 118 female students
attending a first year statistics class at the University of Adelaide. We now continue that discussion.

First, repeat the plot with a wider smoothing window, or bandwidth. In the figure, I've added
marks on the horizontal axis that show the actual heights. Also marked off, in gray lines, are the
mean, mean-SD and mean+SD.
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smoothing window (bw) and with a gaussian (nor-
: mal) kernel, showing the distribution of heights
) of 118 female students in a first year statistics
class at the University of Adelaide. A normal
density curve has been added. Marks on the hori-
zontal axis show the actual heights. Also marked
off, in gray lines, are the mean, mean-SD and
mean+SD.
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Here is the code

heights <- na.omit(survey[survey$Sex=="Female", "Height"])

## NB: The vertical scale for the histogram must be a density scale.

## for consistency with the density plot.

## bw is the bandwidth of the smoother, in x—-axis units

heights <- na.omit (survey[survey$Sex=="Female", "Height"])

## NB: For consistency with the density plot, the vertical scale

## for the histogram must be a density scale (freq=FALSE),

hist(heights, freq=FALSE, main="", , cex.axis=1.25, cex.lab=1.25,
xlab=paste("Heights (cm)"))

lines(density(heights))

## Show data values along the x-axis

rug(heights, side=1)

av <- mean(heights); sdev <- sd(heights)

abline(v=av, col="gray")

abline(v=av-sdev, col="gray", 1ty=2)

abline(v=av+sdev, col="gray", 1lty=2)

xval <- pretty(heights, n=40)

den <- dnorm(xval, mean=av, sd=sdev)

lines(xval, den, col="gray40", lty=2)

ytop <- par()$usr[4]-0.25%par () $cxy[2]

text (av-sdev, ytop, adj=0.75, labels="mean-SD", col="gray40", xpd=TRUE)

text (av+sdev, ytop, adj=0.25, labels="mean+SD", col="gray40", xpd=TRUE)

V VVVVVVYyV
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Note: If data have a sharp lower or upper cutoff (a sharp lower cutoff at zero is common), parameters
from and/or to can be set to ensure that this sharp cutoff is reflected in the fitted density.

Exercise: Draw a random sample of size 20 from an exponential distribution with rate = 1. Plot
an estimated density curve.

6.4.2 Normal and other probability plots

Although preferable to histograms, density plots are not in general an ideal tool for judging whether
the sample is likely to have come from one or other theoretical distribution, most often the normal
distribution. The appearance depends too much on the choice of bandwith. They do provide visual
cues that might be used to identify differences from the theoretical distribution, but those clues and
hard to interpret.
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Normal Q-Q Plot
8 : & Figure 12: Normal probability plot for the distribution of
E <] ’J—' heights of 118 female students in a first year statistics class
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Theoretical Quantiles

A much better tool is the Q-Q plot, which is a form of cumulative probability plot. Here, the
focus will be on the comparison with a normal distribution, and the relevant Q-Q plot is a normal
probability plot, using the function qgnorm(). Figure 12 shows a normal probability plot for the
distribution of heights of the 118 female students in a first year statistics class at the University of
Adelaide.

If data are from a normal distribution, points should lie close to a line. For a small sample size,
quite large deviations from a line can be accepted. If the sample is large, points should lie close to
a line. It is useful to draw repeated Q-Q plots with random samples of the same size from a normal
distribution, in order to calibrate the eye. The function qreference() from the DAAG package may
be useful for this purpose. For example:

> y <- na.omit (survey[survey$Sex=="Female", "Height"])
> greference(y, nrep=6)
6.4.3 A further note on density estimation — controlling smoothness

We can control the smoothness of the density plot. There are various ways to do the smoothing. By
default, with a normal “kernel”, a mixture of normal densities is used.
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Figure 13: Density curves for Adelaide female student heights. Curves are shown for three different
choices of bandwidth: 0.25, 1.98 (the default for these data), 2.5 and 5.0. The normal kernel (the
default) is used in each case, so that increasing the bandwidth forces the curve closer to normal.

Increasing the bandwidth makes the estimated density more like the density that is used as the
kernel. Thus increasing the bandwith, with a "gaussian" kernel, is alright providing that the sample
really is from a normal distribution. Figure 13 shows, for the Adelaide female student data, the effect
of varying the bandwidth. The default bandwith usually gives acceptable results. Experimentation
with different choices of bandwidth is sometimes insightful. The code is:
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> plot(density(rnorm(50), kernel="rectangular", bw=0.5), type="1")
> plot(density(runif (50), kernel="rectangular", bw=0.5), type="1")
> plot(density(runif (50), kernel="gaussian", bw=0.5), type="1")

7 Sample Statistics and Sampling Distributions

7.1 Variance and Standard Deviation:

In a sample, the variance is the average of the sum of squares of the deviations from the mean. If n
is the sample size then, to correct for the fact that deviations are measured from the sample mean
(rather than from the true mean), the sum of squares of deviations from the mean is usually divided

by n — 1. Thus, given sample values xi, x,. .., X,, the usual estimate of the variance ol is
n =\2
g e (Xi — )
n—1

Why divide by n — 1 rather than by n. A sample of one gives no information on the variance.
Every value additional to the first gives one additional piece of information.

The standard deviation (SD) is the square root of the variance. The standard deviation is widely
used, both in statistical theory and for descriptive purposes, as a measure of variability. The most
obvious intuitive interpretations of the SD assume a normal population, or a random sample from
a normal population. If data are from a normal population, then 68% of values will on average be
within one standard deviation either side of the mean.

A key idea is that sample statistics have a sampling distribution — the distribution of values that
would be observed from repeated random samples. This is an idea that will be illustrated in laboratory
exercises.

Sample survey theory is one of several areas where there has been a strong tradition of basing all
inferences on variances. This works well when inferences are mostly for means or totals and samples are
large. The reason for this will become apparent below, in the discussion of the sampling distribution
of the mean. There are however important small sample applications where it does not work well, and
sample survey analysts are now moving away from the former relatively exclusive reliance on variance
based inferences.

7.2 The Standard Error of the Mean (SEM):

The standard deviation estimates the variability for an individual sample value. This variability does
not change (though the estimate will) as the sample size increases. On the other hand, the sample
mean does become less susceptible to variability as the sample size increases. If o is the standard
deviation then, for a random sample, the standard error of the mean is o/ v/n.

Here are calculations that give, for the student heights, the mean, the standard deviation and the
standard error:

> attach(survey)
> y <- na.omit (Height [Sex=="Female"])
> sd(y)

[1] 6.151777

> sd(y)/sqrt(length(y))
[1] 0.6091167

> detach(survey)

The standard error of the mean is, with a sample of 118, less than a tenth the size of the standard
deviation. This result relies crucially on the i.i.d. assumption. This will be an important issue for
multi-level models.
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7.3 The sampling distribution of the mean:

We have just one sample, and therefore just one mean. The standard error of the mean relates to the
distribution of means that might be expected if multiple samples (always of size 118) could be taken
from the population that provided the sample.

It is however possible to simulate the taking of such repeated samples. There are two ways that
this sampling distribution might be obtained:

1. As the sample distribution seems close to normal, the use of repeated samples of size 118 from
a normal distribution may be reasonable. This simulation might assume a a mean of 165.69, as
for the sample, and an SD of 6.15 as for the sample.

2. An alternative is to take repeated samples, with replacement, from the original sample itself.
This is equivalent to sampling from a population in which each sample value is repeated an
infinite number of times. if no use is made of theoretical results or approximations, this repeated
sampling from the one available sample is the best approximation that is available to repeated
sampling from the original population.

Figure 14A was obtained using the simulation approach, while Figure 14B used the bootstrap
approach. In Panel A, the normal density function from which the samples are taken is in gray. In
Panel B, the estimated density function for the sample in gray.

Alternatively, and
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Figure 14: Panel A shows a density plot for a simulated distribution of the mean, for samples of size
118 from a normal distribution with mean=165.7 and SD=6.15, as for the sample of University of
Adelaide students. Panel B shows the estimated sampling distribution when bootstrap samples of
size 118 are taken from the sample of University of Adelaide students.

Code for Panel A (simulation) is:

> av <- numeric(1000)

> for (i in 1:1000)
av[i] <- mean(rnorm(118, mean=165.69, sd=6.15))

> avdens <- density(av)

> xval <- pretty(c(165.69-3*6.15, 165.69+3*6.15), 50)

> den <- dnorm(xval, mean=165.69, sd=6.15)

> plot(xval, den, type="1", xlab="", ylab="Density",
ylim=c(0,max (avdens$y)), col="gray", lwd=2)

> lines(avdens)

> title(main="A: Simulation", adj=0)

> legend("topleft", legend=c("Source", "Sampling\ndistribution"),
col=c("gray", "black"), lty=c(1,1), lwd=c(2,1), bty="n")
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Code for Panel B (the bootstrap) is:

A\

av <- numeric(1000)

for (i in 1:1000)
av[i] <- mean(sample(y, size=length(y), replace=TRUE))

avdens <- density(av)

plot(density(y), ylim=c(0, max(avdens$y)), xlab="", ylab="",
col="gray", lwd=2, main="")

lines(avdens)

title(main="B: Bootstrap samples", adj=0)

par (oldpar)

legend("topleft", legend=c("Source", "Sampling\ndistribution"),

col=c("gray", "black"), lty=c(1,1), lwd=c(2,1), bty="n")

A\

vV Vv

vV V. Vv Vv

The sampling distribution for the mean looks, in the company of the distribution of sample values.
like a veritable Eiffel tower!

A practical consequence of the Central Limit Theorem is that the sampling distribution will for a
sample of this size be much the same (close to a normal distribution) irrespective of the distribution
from which the sample is taken, providing that the distribution is roughly symmetric and not unduly
spread out in the tails. Try the following, which takes samples from a uniform distribution on the
interval (0,1):

> par(mfrow=c(1,2))

> av <- numeric(1000)

> xval <- pretty(c(-.5, 1.5), 500)

> plot(xval, dunif(xval), type="1")

> for (i in 1:1000) av[i] <- mean(runif (n=118))
> plot(density(av))
> par(mfrow=c(1,1))

All statistics have sampling distributions. For example, there is a sampling distribution for the
median. Unlike the distribution of the mean, this is strongly affected by the distribution from which
the sample is drawn. Coefficients in linear or other models have sampling distributions.

Elegant simulations that demonstrate the Central Limit Theorem can be viewed at http://
animation.yihui.name/prob:central_limit_theoremand http://animation.yihui.name/prob:
law_of_large_numbers. The R code for running theses simulations, using the package animation, is
available from theses same web pages.

Exercise 1: Try varying the sizes of the samples for which the averages are calculated. Even with n
as small as b or 6, the distribution will be quite close to normal. Try also varying the number of samples
that are taken. Taking some number of samples greater than 1000 will estimate the distribution more
accurately; with fewer samples the estimate will be less accurate.

Exercise 2: Repeat, but now sampling from: (a) a uniform distribution, and (b) an exponential
distribution.

8 Accuracy Assessment

Having trained a model, we would like to know how well the model has performed. If model A
performs better than model B we will, other things being equal, prefer model A.

An ideal is that predictions should be accurate for test data that accurately reflect the context in
which the model will be used. Accuracy measures that are widely used are:

1. For a regression model with a continuous outcome, define the prediction error to be the difference
between the model prediction and the observed value. The root mean square prediction error is
then a measure of accuracy.
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2. For a classification model, the percentage of correct classifications is often a suitable measure of
accuracy. The deviance, or another “information” measure may by used, in some computational
and theoretical contexts, as a proxy for percentage of correct classifications.

In practice predictive accuracy is commonly assessed, using the above or other accuracy measures,
for the same population from which the sample is derived. Assessment of the extent to which results
are relevant to the target population is then a matter for separate investigation. This is a key issue,
that is too often ignored.

The initial focus will be on model accuracy, which is an over-riding requirement. This will be
followed by discussion of the accuracy of parameter estimates. Accuracy of parameter estimates has
additional complications, beyond those involved in assessing accuracy of model predictions.

Elegant simulations that demonstrate the bootstrap and cross-validation be viewed by going to
http://animation.yihui.name/dmml:start. The R code for running these simulations, using the
package animation, is available from the web pages for the individual animations.

8.1 Mechanisms for assessing predictive accuracy

Mechanisms that can be used for such assessment include:

1. Derivation of a theoretically based estimate, e.g., for the error mean square for an 1m() linear
model.

2. The training/test set approach, using a random split into training and test set.

3. Cross-validation, in which each of k parts of the data become in turn the test set, with remaining
data (k — 1 out of k parts) used for training.

4. Bootstrap approaches can be used in much the same way as cross-validation, c.f., the approach
used by the randomForest package. Observations that for the time being serve as test data are
said to be “out-of-bag”, or OOB.

In many statistical learning contexts, theoretical accuracy assessments are of limited usefulness. It is
frequently necessary to rely on empirical methods. This is especially true for classification models.
Several important methods of this type will now be described.

The final three methods are “resampling” methods, i.e., they rely on taking some form of sample
from the one original available sample. They may be adapted in various ways to make smaller or
greater use of theoretical assumptions. In any case all methods, as described here, assume that
observations have been sampled independently.

The training/test approach is in principle the most general. If test data can be found that accu-
rately reflect the target population, the training/test approach is to be preferred. If however the test
data are derived from a random split of data from the source population, the other methods are in
general preferable, because they at some point to all the data, both for training and for testing.

Here now are some further details of the methods that have been noted.

Simulation: A model is proposed that generated the data. What are its statistical properties? One
answer is repeated simulations. Simple uses of this idea are:

e Simulate repeated sampling of values that follow a normal distribution.

e Simulate repeated sampling of values that follow a non-normal distribution, perhaps an expo-
nential distribution.

e Marks are placed on the circumference of a roulette wheel that divide it into three perhaps
unequal parts. Labeling the outcomes A, B and C, one can simulate, eg, a result from 1000
spins.
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Training Training Training TEST FOLD 4

Training Training TEST Training FOLD 3

Training TEST Training Training FOLD 2

TEST Training Training Training FOLD 1
nNg n; N3 Ny

Figure 15: Schematic, designed to explain cross-validation. Data are first split, randomly, into k
nearly equal parts. Here, for illustration, k = 4, with ny, ny, n3, and n4 observations in the respective.
parts. At the first iteration (fold), the n; observations in the first part are set aside for testing, with
remaining observations used for training, and so on. The split into a part that is used for testing, and
the remaining observations that are used for testing, has the name fold. Once calculations for all 4
folds are complete, predicted values are available for all observations, in each case from a model that
was trained independently of those observations.

Training/Test:
e Split data into training and test sets
e Train (NB: steps 1 & 2); use test data for assessment.

This is the most widely applicable methodology. The test data can in principle be taken from the
target population. If however data from the actual target is available when the model is fitted, one
would want to use this for model fitting. Thus, in practice, testing on data from the actual target
often has to be an “after-the-event” kind of check.

When there is very adequate data, a training/test split of the data achieves all that is needed. It
is not necessary to look for a method, such as will now be described, that makes better use of the
data.

Cross-validation Simple version: Train on subset 1, test on subset 2
Then; Train on subset 2, test on subset 1

More generally, data are split into k parts (eg, k = 10). Use each part in turn for testing, with other
data used to train.
Cross-Validation Steps are:

e Split data into k parts (in Figure 15, k=4)

o At the ith repeat or fold (i =1,...k) use:
the ith part for testing, the other k-1 parts for training.

e Combine the performance estimates from the k folds.
Bootstrap Sampling Bootstrap samples are with replacement samples, of the same size as the

initial sample.
Here are two bootstrap samples from the numbers 1 ...10

136666689 10 (5 6's; omits 2,4,5,7)
223468891010 (2 2's, 2 8's, 2 10's; omits 1,5,7)
1111334678 (41's, 23's; omits 2,5,9,10)

Here is how bootstrap sampling can be used in practice:
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Take repeated (with replacement) random samples of the observations, of the same size as the
initial sample.

Repeat analysis on each new sample (NB: In the example above, repeat both step 1 (selection)
& 2 (analysis).

Variability between samples indicates statistical variability.

e Combine separate analysis results into an an overall result.

8.2 Methods for assessing accuracy of parameter estimates

Quite stringent conditions are necessary to ensure that accuracy estimates for a regression or classifi-
cation model will be unbiased or have negligible bias. The model must be correct. Section 5 illustrates,
with examples, some of the issues.

Some of the possibilities are:

1. Estimates that depend heavily on distributional assumptions may be calculated from the one
available sample. The standard errors, t-statistics, and related statistics that are included in the
output from R’s Im() linear modelling function have this character.

2. Bootstrap samples can be used to derive the sampling distributions of some of the statistics that
may be of interest — means, means and regression coeflicients. This approach does however have
limitations, which can be serious. For extreme quantiles, it will fail.

3. In a limited range of circumstances, permutation methods may be used for tests of statistical
significance.

As described here, all methods assume that observations have been sampled independently from
the relevant population. FExact theoretically based results are available for models with iid normal
errors. If the distribution is not normal results are, under relatively weak independence assumptions,
valid asymptotically, i.e., it is valid in the limit as the sample size goes to infinity.

Bootstrap and permutation methods do not rely, directly, on normality assumptions. Some as-
sumptions are however necessary if results are to be susceptible to ready interpretation. How does one
interpret the result of a bootstrap version of a t-test for comparing two means, if the two distributions
have a markedly different shape?

Laboratory Notes 8 demonstrate bootstrap samping and a permutation distribution approach, for
the comparison of two means. It is assumed that there are no other factors that might, in part or
whole, account for any difference.

8.3 Examples
8.3.1 Comparing two populations

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted and hatched by
the host birds. Newton (1893-1896, p. 123) makes the claim that the eggs that cuckoos lay in the
nests of other birds tend to match the eggs of the host bird in size, shape and color. Latter (1902)
collected extensive cuckoo egg data, in order to investigate these claims.

Figure 16A is a a summary of the data. Eggs laid in the nests of wrens are clearly much smaller,
both in length and breadth, than the eggs laid in the nests of other birds. Visually, it is hard to see
much distinction between eggs laid in the nests of these other species. For now, it therefore seems
reasonable to examine the comparison between eggs laid in the nests of wrens, and eggs laid in the
nexts of other birds, as in Figure 16B. Observe that Figure 16B tells much the same story, whether
we focus on length or on breadth.

There are two types of questions that these data might be used to answer:
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1. Are the apparent differences, between eggs found in the nests of wrens and eggs found in the
nests of other birds, reproducible. If another sample of cuckoo eggs was collected, similarly a
mix of eggs from wrens’ nests and eggs from the nests of other birds, is it likely that similar
differences would again be found?

2. Given a sample of cuckoo eggs is it possible to predict, with some reasonable accuracy, which
eggs are from cuckoos and which from other birds?

The first question is often of interest in a data mining context, but is not usually the question of most
direct interest. The second question is the one that is more commonly the focus of direct interest.

A: B:
hedge.sparrow robin < other
meadow.pipit 4 tree.pipit wren
pied.wagtail + wren
1 1 1 1 1 1 25 A
25 + o
A a 24
24 7 + Ao QA +o “r
A Y
-+ A 23
- o -
P <>+6<o>+AA T s0lR
=) A +o p0RA
< © & A 22 1
o 22 A & T30 AL L
é%
21 o¥X A O + - 21 1
N
20 A L 20 -
A
T T T T T T T T T T T T
150 155 160 165 170 175 150 155 160 165 170 175
breadth breadth

Figure 16: Length versus breadth of cuckoo eggs, identified according to the species of host bird in
whose nest the eggs were laid.

For the moment, the focus will be on the first question, first using informal graphical comparisons,
then moving to more formal methods.

8.3.2 Comparisons for individual variables

Figure 16B provided what is perhaps the most obvious form of graphical comparison. But might the
difference between eggs laid in wren nests and eggs laid in other nests be merely a result of chance?
First, consider how we might do this separately for length. Figure 17 shows the comparison.

Wren e e cee o e oo Figure 17: Dotplot com-

parison between lengths
of eggs laid in wren nests

2'0 2'1 2'2 2'3 2'4 2'5 and eggs laid in other
nests.

Other . . o eece ©e00000000000000000000000 oo .o

Length (mm)

Code is:
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> dotwren <- dotplot(species Jinj, "wren" ~ length, data=cuckoos,
scales=list(y=1ist(labels=c("Other", "Wren"))),
xlab="Length (mm)")

> print (dotwren)

8.3.3 A check that uses the bootstrap

The bootstrap (resampling with replacement) may be used to check whether the difference is likely to
be more than noise. Repeated pairs of with replacement samples are drawn, the first member of the
pair from “other” (non-wren), and the second member from eggs laid in wren nests. For each pair,
calculate the difference between the means. Repeat a number of times (here 100, so that points stand
out clearly, but 1000 would be better), and plot the differences. Figure 18 shows the result of one
such sampling experiment.

Figure 18: Differences,

in successive bootstrap

samples, between mean

T T T length of eggs in non-

10 15 2.0 wren nests, and eggs in
Length difference, non-wren — wren (mm) wren nests.

Suitable code is:

> avdiff <- numeric(100)
> for(i in 1:100)1{
avs <- with(cuckoos, sapply(split(length, species /inj, "wren"),
function(x)mean (sample(x, replace=TRUE))))
avdiff[i] <- avs[1] - avs[2] # FALSE (non-wren) minus TRUE (wren)
}
> dotdiff <- dotplot(~ avdiff, xlab="Length difference, non-wren - wren (mm)")
> print (dotdiff)

Observe that none of the differences are anywhere near zero. This is convincing evidence that the
length differences are unlikely to be due to chance.

8.3.4 A check that uses simulation (the parametric bootstrap)

The difference here is that the random samples are drawn from normal distributions with the same
mean and variance as in the samples.

If the variances can be assumed equal, the relevant distribution (when an infinite number of
bootstrap samples are taken) can be determined theoretically, and except as a learning exercise there
is not much point in such a simulation. If variances are unequal, the situation is more complicated.
The standard theoretical approaches do however have simulation counterparts.

For a t-text comparison that allows for unequal variances, proceed thus:

> id <- as.numeric(with(cuckoos, species /inj, "wren"))+1

> Species <- c("non-wren", "wren")[id]

> with(cuckoos, t.test(length[Species=="non-wren"],
length[Species=="wren"]))

Welch Two Sample t-test

data: length[Species == "non-wren"] and length[Species == "wren"]
t = 7.0193, df = 21.244, p-value = 5.872e-07
alternative hypothesis: true difference in means is not equal to O
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95 percent confidence interval:

1.069984 1.970016
sample estimates:
mean of x mean of y

22.64 21.12

44
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Part IV
Linear Models, GLMs and GAMs

GLMs are Generalized Linear Models, while GAMs are Generalized Additive Models.

Most accounts of linear models assume that errors are independently and identically distributed
(ii.d.). That assumption is by no means necessary. In real world examples, it is often patently false.
It will however be our starting point, for several reasons:

e There are a wide range of situations where the i.i.d. errors assumption is a reasonable approxi-
mation.

e It is enough to deal with one complication at a time.

Generalized linear models (GLMSs) are an extension of linear models. An important special case is
models with a binary outcome. These are essentially classification models where there are two possible
outcomes.

9 Linear Models

The base R system and the various R packages provide, between them, a huge range of model fitting
abilities. In these notes, the major attention will be on the model fitting function is 1m(), where the
1m stands for linear model. Here, we fit a straight line, which is very obviously a linear model! This
simple starting point gives little hint of the range of models that can be fitted using R’s linear model
Im() function. Later discussion will build on these simple ideas to present a more expansive view of
linear models.

R’s implementation of linear models uses a symbolic notation Wilkinson & Rogers (1973), that
gives a straightforward means for describing elaborate and intricate models.

9.1 Straight line Regression

weight  depression

1 1.90 2.00

2 3.10 1.00

3 3.30 5.00

4 4.80 5.00 Table 3: Data showing depression
5 5.30 20.00 in lawn (mm.), for various weights
6 6.10 20.00 of roller (t)

7 6.40 23.00

8 7.60 10.00

9 9.80 30.00

10 12.40 25.00

A straight line regression model for the data in Table 3 can be written
depression = @ + B X weight + noise.
Writing y in place of depression and x in place of weight, we have:
y=a+pfx+e.
Subscripts are often used. Given observations (x1, y1), (x2, y2), ... ,(Xu, Yu), We may write

yi=a+px +&;.
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The a + Bx term is the deterministic component of the model, and ¢ is the random noise. Greatest
interest usually centers on the deterministic term.
The line is chosen so that the sum of squares of residuals is as small as possible. Thus, it is chosen

to minimze
n
2
Z()’i —a—b;x;)
i=1

where a is an estimate of the intercept @ and b is an estimate of the slope 8. The R function 1m()
provides a ready way to obtain the estimates a and b.
Given estimates a and b we can pass the straight line

Y=a+bx

through the points of the scatterplot. Fitted or predicted values are calculated using the above
formula, i.e.
371 =a+ bxy, ?2=a+bx2,....

By construction, the fitted values lie on the estimated line. The line passes through the cloud of
observed values. Useful information about the noise can be gleaned from an examination of the
residuals, which are the differences between the observed and fitted values,

er=y1—Yi, @=y2=Y2.... (1)

In particular, a and b are estimated so that the sum of the squared residuals is as small as possible,
i.e., the resulting fitted values are as close (in this “least squares” sense) as possible to the observed

values. The residuals are shown as vertical lines, gray for negative residuals and black for positive
residuals, in Figure 19.

o Fitted values
X Data values
9’_
o]
T . . .
E Figure 19: Lawn depression for various
g e recida weights of roller, with fitted line. The fitted
s ] —ve residual line is designed to minimize the sum of squares
g of residuals, i.e., the sum of squared lengths
S e of the vertical lines, joining x’s to o’s, that are
shown on the graph.
o]
b r=0.803
T I T T T T T
0 2 4 6 8 10 12
Roller weight (t)

In standard analyses, we assume that the g; are independently and identically distributed as normal

variables with mean 0 and variance o2.
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9.2 Why minimize the sum of squares?

A more fundamental principle is maximum likelihood. The joints density of n independent Normal

random variables Uy, Us, ... U,, each with mean y and variance o2, is:
n
1 (i — p)*
f(uhuz’--'u ) = exp(_ )
! l:l[ o V2n 202
oemi Y 2072

NB: Independence allows us to multiple the individual normal densities, to obtain the joint density.
Replacing the u; by the errors e; in equation 1 yields the likelihood:

1 Ly e
L(a,b,0) = ——exp(- )y ——
(ab.o) = —os exp( le 7)

1 1 <
= —— expl-z— i —a—bx;)*
il e Z}(y )

As log() is a monotonic function, maximizing the log likelihood is exactly equivalent to maximizing
the likelihood. The log likelihood is:

1 n
log(L) = —g log(2r) —nlogo — 757 ;(y,- —a - bx;)*
Equivalently, we can minimize
1 n
—log(L) = g log(2n) + nlogo + ) ;(yi —a-bx;)?

For any given o, the problem reduces to that of minimizing

n
D i—a-bx)
i=1

i.e., to least squares. The argument is quite general. The argument carries through in exactly the
same way, if y; — a — bx; is replaced by y; — g(x;; b;), where x; and b; are vector valued.
Least squares does not tell us how to estimate o2. The maximum likelihood estimate for o2 is

1 n
- i—a—bx)’
5 2 a=b)

This is biased. The theory simplifies if an unbiased estimate is used. If p is the number of parameters
(here there are two parameters, a and b) over which the sum of squares has been minimized, division
is by n— p.

The assumptions of independence, identical distribution and normality are crucial. Least squares
will not in general yield maximum likelihood estimates if:

e Variances are not homogeneous (use weighted least squares if it is known how the variances
change with x;, of if the pattern of change can be inferred with some reasonable confidence)

e Observations are not independent;

e Data are not from a normal distribution.
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9.3 Syntax — model, graphics and table formulae:

The syntax for 1m() models that will be demonstrated here is used, with modification, throughout
the modeling functions in R. A very similar syntax can be used for specifying graphs and for certain
types of tables.

The following plots the data in the data frame roller (shown in Table 3) that is in the DAAG
package.

> library (DAAG)
> plot(depression ~ weight, data=roller)

The formula depression ~ weight can be used either as a graphics formula or as a model formula.
Just to see what happens, try fitting a straight line, and adding it to the above plot:

> Im(depression ~ weight, data=roller)

Call:
Im(formula = depression

weight, data = roller)

Coefficients:
(Intercept) weight
-2.087 2.667

> abline(lm(depression ~ weight, data=roller))

The different components of the model are called terms. In the above, there is one term only on the
right, i.e., weight.

9.4 The technicalities of linear models
9.4.1 The model matrix — straight line regression example

The quantity that is to be minimized can be written:

10
D i—a=-bx)
i=1

Now observe how this can be written in matrix form. Set

119 2 2 —(a+1.9b)
1 3.1 1 1 - (a+3.1b)
1 33 5 5—(a+3.3b)
1 48 5 5—(a +4.8b)
1 53 20 20 — (a + 5.3b) a
X=11 61 Y=1 20 e=yXb=1 )_(u+6.1b) where bz( b )
1 64 23 23 — (a + 6.4b)
1 76 10 10 — (a + 7.6b)
1 98 30 30 - (a + 9.8b)
1 124 25 25 — (a+ 12.4b)

Here a and b are chosen to minimize the sum of squares of elements of e = y — Xb, i.e., to minimize
e’e = (y — Xb)' (y — Xb)

The least squares equations can be solved using matrix arithmetic. For our purposes, it will be
sufficient to use the R function 1m() to handle the calculation:

> Im(depression ~ weight, data=roller)
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Call:
Im(formula = depression ~ weight, data = roller)

Coefficients:
(Intercept) weight
-2.087 2.667

Both weight and depression are variables, i.e., they take values on the real line. They have,
within R, class “numeric”.

Recap, and Next Steps in Linear Modeling

The straight line regression model is one of the simplest possible type of linear model. We have shown
how to construct the model matrix that R uses when it fits such models. Here, it had two columns
only. Omission of the intercept term will give an even simpler model matrix, with just one column.

Regression calculations in which there are several explanatory variables are handled in the obvious
way, by adding further columns as necessary to the model matrix. This is however just the start.
There is a great deal more that can be done with model matrices, as will be demonstrated.

9.4.2 What is a linear model?

The models discussed here are linear, in the sense that predicted values are a linear combination of a
finite set of basis functions. The basis functions can be nonlinear functions of the features, allowing
the modeling of systems in which there can nonlinear components that enter additively. The technical
mathematical apparatus of linear models has a wider importance than linear models per se. It is a
fundamental component of many of the algorithms that have been developed by machine learners, by
data miners, and by statisticians.

Data that are intended for regression calculations consist of multiple observations (or instances,

or realizations) of a vector (x, x, ..., X, y) of real numbers, where the x;s are explanatory variables
and y is the dependent variable.
Given xi, x, ..., x, which take values on the real line, a first step (which in the simplest case

maps the x;s onto themselves), is the formation of basis’ functions

G1(X1, X2, .. Xk), P2(X1, X2y o Xk)s o Pp(X1, X2,y L XE)

In the simplest case p = k and ¢(x1, x2,...Xxp) = X1, $2(X1, X2, ... Xp) = X2, ..oy (X1, X2, .. Xp) = Xp.
Then any function with values on the real line such that

Sx1, x50 x) = b1 (x1, X2, . ) + baga(xy, X0, .o Xp) oo+ Dpdp(X1, X2, LX)

where the elements of b = (b, b,,...b,) are the only unknowns, specifies a linear model.
The model is linear in the values that the ¢’s take on the sample data. It is not, in general, linear
in the x;’s. Here endeth our brief excursion that has defined the term linear model.

The random part of the model: The statistical output (standard errors, p-values, t-statistics)
from the 1m() function assumes that the random term is i.i.d. (independently and identically dis-
tributed) normal. Least squares estimation is them equivalent to maximising the likelihood.

What if the i.i.d. assumption is false? Depending on the context, this may or may not matter. In
general, it is unwise to assume that it does not matter!

If the i.i.d. normal errors assumption is false in ways that are to some extent understood, then
it may be possible to make use of functions in one or other of the R packages that are designed to
facilitate the modeling of the random part of the model. Typically, these fit the model by maximising
the likelihood. Note especially the R packages nlme and Ime4, for handling multilevel and related
models, and arima and related functions in the stats package that fit time series models.
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9.4.3 Model terms, and basis functions:

In the very simple model in which depression is modeled as a linear function of weight, there the one
term (weight generates two basis functions: ¢;(x) = 1 and ¢,(x) = x which mapped values of weight
into itself. (Basis functions seem an unnecessary complication, for such a simple example.)

9.5 Multiple Regression

In multiple regression, the model matrix has one column for the constant term (if any), plus one
column for each additional explanatory variable. Thus, multiple regrssion is an easy extension of
straight line regression. Further flexibility is obtained by transforming variable values, if necessary,
before use of the variable in a multiple regression equation.

In the next example, there are multiple explanatory variables. We start with simple multiple
linear regression model, and then look to see whether there is a case to replace the linear terms by
polynomial or spline terms. Polynomial and spline terms extend the idea of “linear model”, with
the result that the dependence upon the variables in the model may be highly nonlinear! The 1m()
function will fit any model for which the fitted values are a linear combination of basis functions. Each
basis function can in principle be an arbitrary transformation of one or more explanatory variables.
“Additive models” may be better terminology.

The dataset nihills in the DAAG package has record times for Northern Ireland mountain races.
First, get a few details of the data:

> str(nihills)

'data.frame': 23 obs. of 4 variables:

$ dist : num 7.5 4.2 5.9 6.85 4.8 4.3 3 2.512 ...

$ climb: int 1740 1110 1210 3300 1200 950 1600 1500 1500 5080 ...
$ time : int 3090 1680 2531 3739 1948 1740 1982 1669 1619 7017 ...
$ timef: int 3832 2243 3193 4371 2295 2119 2526 2331 2187 8930 ...

First, get a few details of the data:
> str(nihills)

'data.frame': 23 obs. of b5 variables:

$ dist :num 7.5 4.25.96.854.84.332.512 ...

$ climb : int 1740 1110 1210 3300 1200 950 1600 1500 1500 5080 ...
$ time :num 0.858 0.467 0.703 1.039 0.541 ...

$ timef :num 1.064 0.623 0.887 1.214 0.637 ...

$ gradient: num 232 264 205 485 240 ...

A scatterplot matrix, which plots every column against every other column and shows the result
in the layout used for correlation matrices, is useful for an initial look at the data. The scatterplot
matrix is a graphical counterpart of the correlation matrix.

For identifying the axes for each panel

e look along the row to the diagonal to identify the variable on the vertical axis.

e look up or down the column to the diagonal to identify the variable on the horizontal axis.

Note that the data are positively skewed, i.e., there is a long tail to the right, for all variables. For
such data, a logarithmic transformation often gives more nearly linear relationships.

> ## Create a data frame that holds the logged data
> lognihills <- log(nihills)
> names (lognihills) <- c("ldist", "lclimb", "ltime", "ltimef")

The relationships between explanatory variables, and between the dependent variable and explana-
tory variables, are closer to linear when logarithmic scales are used. The log transformed data are
consistent with a form of parsimony that is advantageous if we hope to find a relatively simple form
of model. We will see that this also leads to more readily interpretable results. Also the distributions
for individual variables are more symmetric.
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> ## Create scatterplot matrix
> library(lattice)
> print(splom(nihills, par.settings=sizel0))
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8 o 8 ° s ° s ° gl’add@@t_ I Tl 1T 1 : ¢
o, © Q“b o ':‘o o 8 06080800 — ing data, with the correlation matrix
%0° ) ) % 1 1 1200 — : 1 ide. The f ti O
S S 5 TT7 < given alongside. e function cor
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. . . timefg — . ment, by default giving the Pearson
- ] . .
A o Ji; ° I1 T :IS F P linear correlation.
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-3 34
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9.5.1 The regression fit

92

The following fits a regression plane, with logarithmic scales for all variables:

> lognihills <- log(nihills)
> names(lognihills) <- paste("1", names(nihills), sep="")

> lognihills.1m <- Im(ltime ~ ldist + lclimb, data=lognihills)

> round(coef (lognihills.1m),3)

(Intercept) ldist lclimb
-4.961 0.681 0.466

This translates to:

6‘3'205 t().686 b0.502

time = x dis X clim

= 2476729 x dist®%% x climb***2

Thus for constant climb, the prediction is that time per mile will decrease with increasing distance.
Shorter races with the same climb will involve steeper ascents and descents; thus this seems reasonable.
A result that is easier to interpret can be obtained by regressing log(time) on log(dist) and

log(gradient), where gradient is dist/climb.

> nihills$gradient <- with(nihills, climb/dist)
lognihills <- log(nihills)

lognigrad.lm <- lm(ltime ~ ldist + lgradient, data=lognihills)

>
> names(lognihills) <- paste("1", names(nihills), sep="")
>
>

round (coef (lognigrad.lm),3)

(Intercept) ldist lgradient
-4.961 1.147 0.466

Thus, with gradient held constant, the prediction is that time will increase at the rate of dis

This makes good intuitive sense.

t1'147.

We pause to look more closely at the model that has been fitted. Does log(time) really depend
linearly on the terms ldist and log(lclimb)? The function termplot() gives a good graphical

indication (Figure 22).
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The code is

> par(mfrow=c(1,2)) # Ask for a 2 by 1 layout

> ## Plot the terms in the model

> termplot (lognigrad.lm, col.term="gray",
partial=TRUE, col.res="black",
smooth=panel . smooth)

Figure 22: In these
“term plots” the vertical
scales in both panels
show log(time), but cen-
tered to a mean of zero.
The left panel shows
partial residuals for
ldist, while the right
panel shows partial
residuals for 1gradient,
ie.,, log(climb/dist).
Smooth curves (dashes)
have been passed
through the points.
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Sugar yield data Model matrix
weight — trt (Intercept) trtA trtB  trtC
1 82.00 Control 1 0 0 0
2 97.80 Control 1 0 0 0
3  69.90 Control 1 0 0 0
4 5830 A 1 1 0 0
5 67.90 A 1 1 0 0
6 5930 A 1 1 0 0
7 68.10 B 1 0 1 0
8 70.80 B 1 0 1 0
9 6360 B 1 0 1 0
10 50.70 C 1 0 0 1
11 4710 C 1 0 0 1
12 4890 C 1 0 0 1

Table 4: The data frame sugar is shown in the left panel. The right panel has R’s default form of
model matrix that is used in explaining the yield of sugar as a function of treatment (trt)

The vertical scales show changes in 1time, about the mean of 1time. The lines show the effect
of each explanatory variable when the other variable is held at its mean value. The lines, which are
the contributions of the individual linear terms (“effects”) in this model, are shown in gray so that
they do not obtrude unduly. The dashed curves, which are smooth curves that are passed through
the residuals, are the primary feature of interest in these plots. Notice that, in the plot for 1dist,
the smooth dashed line does not quite track the fitted line; there is a small but noticeable indication
of curvature. Note also that until we have modeled effectively the clear trend that seems evident in
this plot, there is not too much point in worrying about possible outliers. The trend can be very
adequately modeled with a quadratic curve.

9.6 Modeling qualitative effects — a single factor

The sugar data frame (DAAG package) compares the amount of sugar obtained from an unmodified
wild type plant with the amounts from three different types of genetically modified plants. In Table
4, the data are shown, with a model matrix alongside that may be used in explaining the effect of
plant type (Control, or one of the three modified types A or B or C) on the yield of sugar.

In the model matrix in Table 4, Control is the baseline, and the yields for A, B and C are estimated
as differences from this baseline. Then for each of the three treatments A, B and C there is an indicator
variable that is 1 for that treatment, and otherwise zero. There are three basis functions that are
used to account for the four levels of the factor trt.

The code used to fit the model is:

> library (DAAG) # sugar is in DAAG package
> sugar.lm <- Im(weight ~ trt, data=sugar)
> summary (sugar.lm)

Call:
Im(formula = weight

trt, data = sugar)

Residuals:
Min 1Q Median 3Q Max
-13.3333 -2.7833 -0.6167 2.1750 14.5667

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) 83.233 4.473 18.609 7.17e-08
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trthA -21.400 6.3256 -3.383 0.009597
trtB -15.733 6.3256 -2.487 0.037680
trtC -34.333 6.325 -5.428 0.000625

Residual standard error: 7.747 on 8 degrees of freedom
Multiple R-squared: 0.7915, Adjusted R-squared: 0.7133
F-statistic: 10.12 on 3 and 8 DF, p-value: 0.004248

Control was taken as the baseline; the fitted value is 83.23, which is given as (Intercept). The
vales that are given for remaining treatments are differences from this baseline. Thus the fitted value
(here equal to the mean) for treatment A is 83.23-21.40, that for B is 83.23-15.73, while that for C is
83.23-34.33.

The termplot summary

Again, termplots can be an excellent way to summarize results. Here is the termplot summary for
the analysis of the cuckoo egg length data:

> termplot (sugar.lm, partial.resid=TRUE, se=TRUE)

The dotted lines show one standard deviation limits either side of the mean.

In the above model there was just one term, i.e., species, and hence just one graph. This one
graph brings together information from the values of the six basis functions that correspond to the
term species. The vertical scale is labeled to show deviations of egg lengths from the overall mean.

In this example the so-called “partial residuals” are the deviations from the overall mean. The
dashed lines show one standard error differences in each direction from the species mean. (The
standard error of the mean measures the accuracy of the mean, in the same way that the standard
deviation measures the accuracy of the of an individual egg length.)

A note on factors: The names for the different values that a factor can take are the “levels”.

> levels(bowler)
> levels(innings)

Internally, factors are stored as integer values. Each of the above factors has two levels. A lookup
table is used to associate levels with these integer values.

Other things to try: The function expand.grid() can be helpful for setting up the values of the
factors. We use xtable() to check that this gives the correct table:

> ## Use expand.grid() to set up the values of the factors
>y <- c(10, 14, 40, 50)

> Z <- expand.grid(bowler=c("A","B"), innings=c("one","two"))
> ## Check that this gives the correct table

> xtabs(y ~ bowler+innings, data=Z)

innings
bowler one two
A 10 40

B 14 50

Other parameterizations

1. Above we used the default corner” parameterization, which R calls the “treatment” parameter-
ization. There are alternatives. The most commonly used alternative parameterization is the
“anova” parameterization, which R calls the “sum” parameterization. Use it thus:
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> options(contrasts=c("contr.sum", "contr.poly"))
> model.matrix(~ trt, data=sugar)

(Intercept) trtl trt2 trt3

1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 1 0 1 0
5 1 0 1 0
6 1 0 1 0
7 1 0 0 1
8 1 0 0 1
9 1 0 0 1
10 1 -1 -1 -1
11 1 -1 -1 -1
12 1 -1 -1 -1
attr(,"assign")

[1J] o111

attr(,"contrasts")
attr(,"contrasts")$trt
[1] "contr.sum"

> lm(weight ~ trt, data=sugar)

Call:
Im(formula = weight

trt, data = sugar)

Coefficients:
(Intercept) trtl trt2 trt3
65.367 17.867 -3.533 2.133

These are called the “sum” contrasts (i.e., a particular form of parameterization) because they
are constrained to sum to zero. The sum contrasts have been favoured in texts on analysis of
variance.

2. There can be interactions between factors, or between factors and variables.

9.6.1 Grouping model matrix columns according to term

Quite generally, the basis functions ¢1,¢,...,¢, may be further categorized into groups, with one
group for each term the model, thus:

¢1’~~-9¢m1s¢m1+1"-~s¢m27~-~
— ——
Terml Term?2

In the above, the basis functions for one factor formed just one termx. More generally, thare may
be one group of basis functions for each of several factors. In the later discussion of spline terms,
several basis functions will be required to account for each spline term in the model.

9.7 *Linear models, in the style of R, can be curvilinear models

We want to model y as a curvilinear function of x, where the form of the curve is chosen automatically.
The idea is to express the response as a linear combination of curves. The curves comprise a set of basis
functions for a vector space. Two general styles of curve will be described — orthogonal polynomials,
and splines.
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9.7.1 Polynomials and orthogonal polynomials
For fitting a polynomial function
y=bo+bix+byx®+...+bx*

of degree k in x, it is enough to have a model matrix that has, in addition to the initial column of 1s,
columns that have values of x, x, ..., x*.

Orthogonal polnomials, illustrated in Figure 23 with x the column juice in the data frame
fruitohms, are however preferable. All the information needed to assess the degree of polynomial
required can be obtained by fitting the maximum degree k of polynomial that is judged reasonable.

Then:

o Coefficients of lower order basis functions do not change when higher order basis functions are
removed.

e Standard errors of coefficients all change by the same constant multiplier when higher order
basis functions are removed.

A: Basis functions B: Contribution to fitted curve
1 1 1 1 1 1 1 1 1 1 1 1
Quartic —-3.37 x Quartic
1.0 H - 4 4 L
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3
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Figure 23: Panel A shows constant, linear, quadratic, cubic and quartic orthogonal polynomial basis
functions, for a model that has the column juice in the fruitohms data frame as the explanatory
variable.

10 An introduction to logistic regression

The data that will be used for illustration are from the data frame bronchit in the SMIR package.
Figure 24 shows two plots — one of poll (pollution level) against cig (number of cigarettes per day),
and the other of poll against log(poll). In each case, points are identified as with or without
bronchitis.

Code for panel A is
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Figure 24: Panel A plots poll (pollution level) against cig (number of cigarettes per day). In panel
B, the x-scale shows the logarithm of the number of cigarettes per day.

vV Vv Vv Vv

v

>

library(SMIR); data(bronchit); library(KernSmooth)

par(fig=c(0,.525, 0,1))

ylim <- range(bronchit$poll)+c(0,1.5)

plot(xlab="# cigarettes per day", ylab="Pollution", poll ~

cig,

col=c(2,4) [r+1], pch=(3:2)[r+1], data=bronchit, ylim=ylim)
legend (x="topright", legend=c("Non-sufferer","Sufferer"), ncol=2,

pch=c(3,2), col=c(2,4))

mtext (side=3, line=1.0, "A", adj=0)

Code for panel B is

vV Vv

vV V.V VVV\VyV

par(fig=c(.475,1, 0,1), new=TRUE)

plot(poll ~ log(cig+l), col=c(2,4)[r+1], pch=(3:2)[r+1],

xlab="log(# cigarettes per day)",

data=bronchit, ylim=ylim)

ylab= e

xyl <- with(subset (bronchit, r==0), cbind(x=log(cig+l), y=poll))
xy2 <- with(subset (bronchit, r==1), cbind(x=log(cig+l), y=poll))
estl <- bkde2D(xyl, bandwidth=c(0.7, 3))
est2 <- bkde2D(xy2, bandwidth=c(0.7, 3))
lev <- pretty(c(esti$fhat, est2$fhat),4)
contour (est1$xl, estl1$x2, esti$fhat, levels=lev, add=TRUE, col=2)

contour (est2$x1, est2$x2, est2$fhat, levels=lev, add=TRUE, col=4, lty=2)
legend (x="topright", legend=c("Non-sufferer","Sufferer"), ncol=2,

1ty=1:2, col=c(2,4))

mtext (side=3, line=1.0, "B", adj=0)

The logarithmic transformation spreads the points out in the x-direction, in a manner that is much
more helpful for prediction than the untransformed values in panel A. The contours for non-sufferer
and sufferer in panel B have a similar shape. The separation between non-sufferer and sufferer is
stronger in the x-direction than in the y-direction. As one indication of this, the contours at a density
of 0.02 overlap slightly in the x-direction, but strongly in the y-direction.
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> par(mfrow=c(1,2))
> termplot(cig2.glm, se=TRUE, ylim=c(-2,4))
> par(mfrow=c(1,1))
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Logistic regression calculations

Figure 24 made it clear that the distribution of number of cigarettes had a strong positive skew. Thus,
we might fit the model:

> cig2.glm <- glm(r ~ log(cig+l) + poll, family=binomial, data=bronchit)
> summary (cig2.glm)

Call:
glm(formula = r ~ log(cig + 1) + poll, family = binomial, data = bronchit)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.6105 -0.5856 -0.3620 -0.2387 2.6529

Coefficients:

Estimate Std. Error z value Pr(>|zl)
(Intercept) -10.78772 2.98851 -3.610 0.000307
log(cig + 1) 1.28823 0.22078 5.835 5.38e-09
poll 0.13057 0.04937 2.645 0.008169

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 221.78 on 211 degrees of freedom
Residual deviance: 168.76 on 209 degrees of freedom
AIC: 174.76

Number of Fisher Scoring iterations: 5

Termplots (Figure 25) provide a useful check that the effects of the covariates really are plausibly
linear.

10.1 Logistic regression for the US accident data

Now consider the use of a logistic regression model to fit, in addition to seatbelt, airbag and dvcat as
in Subsection 5.2, effects that are linear in yearVeh and ageOFocc. In order to get unbiased estimates,
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the column weight provides weights. Each point is however a single observation — the weights do not
reflect information content. A consequence is that the SEs that are given by the logistic regression
analysis are meaningless:

> nassnew <- subset(nassCDS, !is.na(yearVeh) & yearVeh>=1986 & weight>0)

> nassnew.glm <- glm(dead ~ seatbelt + airbag + dvcat + yearVeh + ageOFocc,
weights=weight, family = quasibinomial, data=nassnew)

> summary (nassnew.glm)

Call:
glm(formula = dead ~ seatbelt + airbag + dvcat + yearVeh + ageOFocc,
family = quasibinomial, data = nassnew, weights = weight)

Deviance Residuals:
Min 1Q Median 3Q Max
-52.3406 -1.3832 -0.6847 -0.3243 143.9870

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -57.814010 57.374257 -1.008 0.314

seatbeltl 0.621012 0.081695 7.602 3.04e-14
airbagl 0.092832 0.124688 0.745 0.457
dvcat.L 5.293175 0.950856  5.567 2.62e-08
dvcat.Q 0.158468 0.806005 0.197 0.844
dvcat.C -0.2568352 0.505234 -0.511 0.609
dvcat~4 0.380526  0.244482 1.556 0.120
yearVeh 0.025830 0.028773 0.898 0.369
agelOFocc 0.036087 0.003899 9.255 < 2e-16

(Dispersion parameter for quasibinomial family taken to be 309.1294)
Null deviance: 701450 on 23490 degrees of freedom

Residual deviance: 478605 on 23482 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 7
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A better approach may be to use the function svyglm() in the survey package to get estimates,
together with SEs that are plausible:
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> library(survey)

> des <- svydesign(ids = "0, weights = “weight, data = nassnew)

> summary (svyglm(dead ~ seatbelt + airbag + dvcat + yearVeh + ageOFocc,
family = binomial, design = des))

Call:
svyglm(dead ~ seatbelt + airbag + dvcat + yearVeh + ageOFocc,
family = binomial, design = des)

Survey design:
svydesign(ids = "0, weights = “weight, data = nassnew)

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) -57.81401 69.71333 -0.829  0.4069
seatbeltl 0.62101 0.09296 6.680 2.43e-11
airbagl 0.09283 0.12379 0.750  0.4533
dvcat.L 5.29317 0.45963 11.516 < 2e-16
dvcat.Q 0.15847 0.39378 0.402 0.6874
dvcat.C -0.25835 0.26509 -0.975 0.3298
dvcat~4 0.38053 0.19233 1.978  0.0479
yearVeh 0.02583 0.03499 0.738 0.4604
agelOFocc 0.03609 0.00423 8.531 < 2e-16

(Dispersion parameter for binomial family taken to be 0.6582727)

Number of Fisher Scoring iterations: 10

These analyses are suspect, primarily because the weightings that are given for the observations are
suspect. A more robust methodology, which uses data for drivers as well as for front seat passengers,
is described in Farmer (2005).

11 Generalized Additive Models (GAMs)

11.1 Introduction

In the account that will be given here, Generalized Additive Models (GAMs) extend linear and
generalized linear models to include smooth functions of explanatory variables with the smoothness
determined by either

a parameter that directly controls the smoothness of the curve, or
estimated predictive accuracy.

In the present discussion, the chief attention will be on smoothing terms that are spline functions of
a single explanatory variable. Such functions can themselves be constructed as linear combinations of
spline basis terms.

The account will proceed as follows:

1. An account of regression splines, which work with cubic spline basis terms of chosen degree. For
this, a linear combination of spline basis terms is chosen that gives a curve that best fits the
data.

2. The use of a basis that allows a high degree of flexibility in the chosen curve, but increasing the
residual sum of squares by a roughness penalty that is some multiple A of the integral of the
squared first derivative.
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e Smoothing splines place a knot at each data point.

e Penalized splines aim only to ensure that knots are well spread each data.
3. Use of generalized cross-validation (GCV) to determine the choice of A.

4. The extension to generalized linear models (GLMs), in particular logistic regression models (for
0/1 data) and Poisson regression models (count data).

For an account of the detailed computations, see the document
http://wwwmaths.anu.edu.au/%7Ejohnm/r-book/xtras/1lm-compute.pdf.
See Wood (2006) for a comprehensive account of GAM models as implemented in R’s mgcv package.

11.2 Splines

A spline curve is a is piecewise polynomial curve, i.e., it joins two or more polynomial curves. The
locations of the joins are known as “knots”. In addition, there are boundary knots which can be
located at or beyond the limits of the data. There are theoretical reasons for use of smoothly joining
cubic splines. Smooth joining implies that the second derivatives agree at the knots where the curves
join. Two types of splines are in common use:

Natural splines have zero second derivatives at the boundary knots. As a consequence, the
curves extrapolate as straight lines.

B-splines are unconstrained at the boundary knots,

Spline curves of any given degree can be formed as a linear combination of basis functions. The
splines package has two functions that may be used to generate basis terms — bs() which generates
B-spline basis terms, and ns() which generates natural spline basis terms. In either case there are
many different choices of basis functions.

Natural splines will be the major focus of attention. Let g(x) be an arbitrary function that is
formed from k cubic curves that join smoothly, with zero second derivatives at the boundary knots.
Then there exists a basis ¢1(x), ¢2(x), ..., dr(x), such that:

8(x) = bo + b1¢1(x) + brpa(x) + ... + brr(x)

The basis terms span a vector space that has, after allowing one degree of freedom for the constant
term, k degrees of freedom. If, instead, ¢(x),d2(x),...,dr(x) is a B-spline basis, the basis spans a
vector space that, after allowing for the constant term, has k + 2 degrees of freedom.

The following uses the abilities of the splines package, with data from the data frame fruitohms
in the DAAG package. First ohms is plotted against juice. The function ns() (splines package) is
then used to set up the basis functions for a natural spline with 3 degrees of freedom (ns(juice, 3))
and fit the curve. Figure 27 shows the plot:
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> library(DAAG)

> plot(ohms ~ juice, data=fruitohms)

> library(splines)

> fitohms <- fitted(Im(ohms ~ ns(juice, df=3), data=fruitohms))
> points(fitohms ~ juice, data=fruitohms, col='"gray")

The parameter df (degrees of freedom) controls the smoothness of the curve. A large df allows a very
flexible curve, e.g., a curve that can have multiple local maxima and minima. Clearly. the choice of
a 3 degree of freedom curve, rather than 2 or 4, was arbitrary. The later discussion of Generalized
Additive (GAM) models in Subsection 11.4 will show how this arbitrariness in choice of smoothing
parameter can be avoided, providing data values can be assumed independent.

The advantage of regression splines is that they stay within the linear model (1m()) framework,
with the same linear model theory and computational methods as any other linear model.

The termplot () function can be used to assess the result of a regression spline fit, just as for any
other linear model fit. There is an option that allows, also, one standard error limits about the curve:

> ohms.1lm <- 1m(ohms ~ ns(juice, df=3), data=fruitohms)
> termplot (ohms.1lm, partial=TRUE, se=TRUE)

The labeling on the vertical axis shows differences from the overall mean of ohms. In this example
the partial is just the difference from the overall mean.

Natural spline basis functions, and their contributions to the fit

Figure 28A shows basis functions, both for natural splines of degree 3 (dashed curves) and of degree 4
(solid curves). Here, knots are placed at points that are equally spaced through the data. Notice that,
in moving from a degree 3 natural spline curve to a degree 4 natural spline curve, the basis functions
all change.
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Figure 28: Panel A shows natural spline basis functions: (i) for a natural cubic spline of degree 3,
with knots at the 33.3% and 66.7% quantile of the data (dashed curves); and (ii) for a natural cubic
spline of degree 4, with knots at the 25%, 50% and 75% quantile of the data. Panel B shows the
contributions of the basis functions to the fitted natural spline curve, in the regression of kiloohms
on juice.
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The two sets of basis functions can be extracted thus:

> matohms3 <- model.matrix(with(fruitohms, ~ ns(juice, 3)))
> matohms4 <- model.matrix(with(fruitohms, ~ ns(juice, 4)))

Spline basis elements

It is insightful to extract and plot the elements of the B-spline basis. Suitable code is:

> par(mfrow=c(2,2))
> basismat <- model.matrix(ohms.lm)
> for (j in 2:4) plot(fruitohms$juice, basismat[,j])

The first column of the model matrix is the constant term in the model. Remaining columns are the
spline basis terms. The fitted values are determined by adding a linear combination of these four
curves to the constant term.

Splines in models with multiple terms

For present purposes, it will be enough to note that this is possible. Consider for example

> loghills2k <- log(hills2000[, 1)

> names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")

> loghill2k.1m <- 1lm(1time ~ ns(ldist,2) + lclimb, data=loghills2k)

> par(mfrow=c(1,2))

> termplot(loghill2k.lm, col.term="gray", partial=TRUE,
col.res="black", smooth=panel.smooth)

par (mfrow=c(1,1))

A\

11.3 Smooth functions of one explanatory variable

Smoothing spline smooths of a single variable place a knot at each data point. A penalty, some
multiple A of the integral of the squared second derivative of y with respect to x, is however added
to the residual sum of squares, penalizing steep slopes. Consider a small interval §x over which the
second derivative f”/(x) of the smoother f(x) is approximately constant. The contribution of that

interval to the penalty is then Af”(x)25x.
1 f £ (x)*dx

The total penalty is
where the integral is over the range of x. The effect of the the penalty is to reduce the effective degrees
of freedom. An adaptation of cross-validation — generalized cross-validation — is used to choose A.

As noted above, the contributions of several variables can be added. There is then one 4;,i = 1,... p,
for each of the p variables.

The placing of a knot at each data point has the result that the number of basis functions is one less
than the number of data points. Even with just one explanatory variable, this can computationally
expensive. A reasonable solution is to work, as in the penalized spline approach, with some smaller
number of knots that are spread evenly through the data. Alternatively, use may be made of a low
rank approximation to the space spanned by the complete set of basis terms.

A further challenge is to define and fit general smoothing functions of several explanatory variables.
Thin plate splines are one approach. A set of basis functions emerges directly from the demand to
minimize the residual sum of squares, plus a smoothness penalty that is a multiple A of the multivariate
integral over the space spanned by the explanatory variables of a suitable smoothness function.

These smoothers have as many parameters as there are unique predictor combinations, so that the
computational cost is proportional to the cube of the number of of variables. Minimization over the
full set of basis functions can be therefore computationally demanding, or may be intractable. Use of
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a low rank approximation to the space spanned by the thin plate spline basis may be essential. Wood
(2006) calls the resulting basis a thin plate regression spline basis.

The approaches that are described generalize for use with the error terms that are available for
GLM models, now working with a penalized likelihood. The function gam(), in the mgcv package,
handles the fitting in a highly automatic manner.

11.4 GAM models with normal errors

Fitting a GAM model with a single smoothing term

In Figure 29, residuals were calculated from a linear regression of log(Time) on log(Distance), with
data from the worldRecords dataset in the DAAG package. Then the function gam() was used to
pass a smooth curve through the residuals.
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Code that handles the calculations and plots the result is:

> library(mgcv)

> res <- resid(1m(log(Time) ~ log(Distance), data=worldRecords))
> wr.gam <- gam(res ~ s(log(Distance)), data=worldRecords)

> plot(wr.gam, residuals=TRUE, pch=1, las=1)

As Time is on a scale of natural logarithms, a residual of 0.1 corresponds to a deviation from the
line of exp(0.1) — 1 ~ 10.5%, i.e., just a little larger than 10%. A residual of 0.15 corresponds to a
deviation from the line of ~16.2%. The magnitude of these deviations may seem surprising, given that
the graph shows the points lying very close to the regression line of log(Time) on log(Distance).
The reason is that the times span a huge range, with the largest time more than 8300 X the smallest
time. Set against a change by a factor of 8800, a change of 15% is very small.

If the preference is to fit a smooth curve to the initial data, the following code may be used:

> wrdata.gam <- gam(log(Time) ~ s(log(Distance)), data=worldRecords)
> plot(wrdata.gam, residuals=TRUE, pch=1)

On the graph that results, the 95% pointwise confidence bounds are hard to distinguish from the line.
With models such as these, it is good practice to check whether any consistent pattern appears
with random data. As will be shown below, this can happen when the density of points varies along
the x-axis, with the result that a single smoothing parameter is inappropriate.
Among the possibilities for creating “random” data are:

e Permute the residuals.

e Take a bootstrap sample of the residuals.
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e Take random normal data from a population with mean 0 and standard deviation the same as
that of the residuals.

Figure 30 shows the plots from 6 random permutations of the residuals.
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Figure 30: Plots from GAM models, fitted to successive random permutations of the residuals from
the straight line fit of 1log(Time) to log(Distance), for the worldRecords data. Note that none of
thse plots shows more than a hint of a pattern.

Reassuringly, none of these show a pattern that stands out clearly, relative to the 95% pointwise
error limits.The code used is:

> opar <- par(mfrow=c(3,2), mar=c(0.25, 4.1, 0.25, 1.1))

> res <- resid(1m(log(Time) ~ log(Distance), data=worldRecords))

> for(i in 1:6)1
permres <- sample(res) # Random permutation
# 0 for left-handers
# 1 for right
perm.gam <- gam(permres ~ s(log(Distance)), data=worldRecords)
plot(perm.gam, las=1, rug=if(i<5)FALSE else TRUE)

}

> par (opar)

Fitting a GAM model to climate data — two smooth terms

Time series data are likely to be correlated between years, creating potential issues for the use of
smoothing methodology. In fortunate circumstances, any underlying trend will stand out above the
error, but this should not be taken for granted. Simple forms of relationship are more plausible than
complicated forms of relationship. The error term in regression relationships are used to explain
synchrony between series is less likely to be less affected by autocorrelation than errors in the separate
series. With these cautions, we proceeed to examination of a time series regression relationship.
Figure 31 fits annual rainfall, in the Murray-Darling basin of Australia, as a sum of smooth
functions of Year and SOI. Figure 31 shows the estimated contributions of the two model terms.
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Figure 31: Contributions
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Code is:

par (mfrow=c(1,2))

mdbRain.gam <- gam(mdbRain ~ s(Year) + s(SO0I), data=bomregions)
plot (mdbRain.gam, residuals=TRUE, se=2, pch=1, cex=0.5, select=1)
plot (mdbRain.gam, residuals=TRUE, se=2, pch=1, cex=0.5, select=2)
par (mfrow=c(1,1))
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11.5 Smoothing terms with time series data — issues of interpretation

Now consider the data series Erie, giving levels of Lake Erie from 1918 to 2009 will be used for
illustration.!® They are available in versions > 0.7-8 of the DAAGztras package, as the column Erie
in the multivariate time series object greatLakes. It is convenient to start by extracting the column
that will be used:

> Erie <- greatLakes/[,"Erie"]

An ideal would be to find a covariate or covariates than can largely explain the year to year changes.
For the series that we now examine, no such explanation is available.

The unsmoothed data

Figure 32 shows a plot of the series:

0 Figure 32: Level of Lake
£ E 1 Erie, in meters.
2
3w > ## Code

o > plot(Erie,

— Xlab=”",

1920 1940 1960 1980 2000 ylab="Level (m)")

In the absence of identfying a direct cause for the year to year changes, the best that can be done
is to find a correlation structure that drives much of the year to year change. A re-run of the process
(a new realization) will produce a different series, albeit one that shows the same general tendency to
move up and down.

OData  are from  http://www.lre.usace.army.mil/greatlakes/hh/greatlakeswaterlevels/historicdata/
greatlakeshydrographs/
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The plots that are show in Figure 33 are good starting points for investigation of the corrrelation
structure. Panel A shows lag plots, up to a lag of 3. Panel B shows estimates of the successive
correlations, in this context are called autocorrelations.
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Figure 33: Panel A plots
lake levels vs levels at lags
1, 2 and 3 respectively,
for Lake Erie. Panel B
shows the autocorrelations
at lags 0 (= 1), 1 (1¥
graph in panel A), 2 (2™
graph), .... A large auto-
correlation at lag 1 is fol-
lowed by smaller autocor-
relations at later lags.

> ## Panel A

> lag.plot(Erie, lags=3,
do.lines=FALSE,
layout=c(1,3))

> ## Panel B

> acf(Erie)

There is a strong correlation at lag 1, a strong but weaker correlation at lag 2, and a noticeable
correlation at lag 3. Such a correlation pattern is typical of an autoregressive process where most of
the sequential dependence can be explained as a flow-on effect from a dependence at lag 1.

In an autoregressive time series, an independent error component, or “innovation” is associated
with each time point. For an order p autoregressive time series, the error for any time point is obtained
by taking the innovation for that time point, and adding a linear combination of the innovations at the
p previous time points. (For the present time series, initial indications are that p = 1 might capture
most of the correlation structure.)

11.5.1

Smooth, with automatic choice of smoothing parameter

What do we see if we fit a GAM smoothing term to the Erie series? Recall that the smooth assumes
independently and identically distributed data, and in particular that there is no serial correlation.

Figure 34 shows the result:
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> df <- data.frame(height=as.vector(Erie), year=time(Erie))
> obj <- gam(height ~ s(year), data=df)
> plot(obj, shift=mean(df$height), residuals=T, pch=1, xlab="")

The curve may be useful as a broad summary of the pattern of change over time. The point-
wise confidence limits would be meaningful if the processes that generated the sequential correlation
structure could be identified and used to explain the curve. Without such an understanding, they are
meaningless. All that is repeatable is the process that generated the curve, not the curve itself. Time
series models, such as will now be considered, are designed to account for such processes.

Fitting and use of an autoregressive model

An autoregressive model gives insight that makes it possible to estimate the level of the lake a short
time ahead, and to put realistic confidence bounds around those estimates. For the Lake Erie data, an
autoregressive correlation structure doesw a good job of accounting for the pattern of change around
a mean that stays constant.

Once an autoregressive model has been fitted, the function forecast() in the forecast package
can be used to predict future levels, albeit with very wide confidence bounds.

Forecasts from AR(2)

Figure 35:  Predic-
tions, 15 years into
the future, of Lake
] Erie levels (m). The
shaded areas give 80%
and 95% confidence
bounds.
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173.5
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The code is:

> erie.ar <- ar(Erie)
> library(forecast)
> plot(forecast(erie.ar, h=15), ylab="Lake level (m)") # 15 time points ahead

To see the paramteters of the model that has been fitted, type:

> erie.ar

Fitting smooth curves to simulations of an autoregressive process

In order to reinforce the points just made, consider results from fitting smooth curves to repeated
simulations of an autoregressive process, here with a lag 1 correlation of 0.7:
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Code for one of these plots is:

> df <- data.frame(x=1:200, y=arima.sim(list(ar=0.7), n=200))
> df.gam <- gam(y ~ s(x), data=df)
> plot(df.gam, residuals=TRUE)

The smooth curves, fitting assuming independent errors, are different on each occasion. They serve
no useful purpose, if the aim is to generalize beyond the particular realization that generated them.

This brief excursion into a simple form of time series model is intended only to indicate the
limitations of automatic smooths. Among several recent introductions to time series that include R
code for the computations, note Hyndman et al. (2008), which is designed for use with the forecasting
bundle of packages.

11.6 Logistic regression with GAM smoothing term

Several articles in medical journals have used data on first class cricketers in the UK to suggest
that left-handers, i.e., cricketers who used their left hand for bowling, have a shorter life-span than
right-handers. Those articles did not however account for changes over time in the proportions of
left-handers. Similar studies have been done for basketballers, again ignoring systematic changes over
time in the proportions of left-handers.

For cricketers born between 1840 and 1960, the total numbers are:

> ## The cricketer dataset is in the DAAG package
> table(cricketer$left)

right left
4859 1101

The proportion of left-handers is a little under 18.5%.

A GAM model, with binomial link, will show how the proportion may have changed. Here, the
independence assumption is very plausible. There may be occasional father and son successions of
left-handers, but these are likely to make only a very small contribution to the total data.

The following does the calculations

library (mgcv)

hand <- with(cricketer, as.vector(as.vector(unclass(left)-1)))
# 0 for left-handers
# 1 for right

hand.gam <- gam(hand ~ s(year), data=cricketer, family=binomial)

vV V. Vv Vv Vv
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Figure 37 plots the result:
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The code that did the plotting is:

> plot(hand.gam, las=1, xlab="",
trans=function(x)exp(x)/(1+exp(x)),
shift=mean (predict (hand.gam)))

70

Figure 37: Plot from a
GAM model in which
the proportion of left-
handed cricketers has
been modeled as a
smooth function of
year of birth. The
dashed lines are ap-
proximate two stan-
dard error limits.

As a check, Figure 38 does several fits in which left-handers are generated by a random process,

with a constant 18.5% proportion:
The code used is:

> opar <- par(mfrow=c(5,1), mar=c(0.25, 4.1, 0.25, 1.1))
> for(i in 1:5)1
hand <- sample(c(0,1), size=nrow(cricketer), replace=TRUE,
prob=c(0.185, 0.815))
# 0 for left-handers
# 1 for right
hand.gam <- gam(hand ~ s(year),
data=cricketer)
plot (hand.gam, las=1, xlab="",
rug=if (i<5)FALSE else TRUE,
trans=function(x)exp(x)/(1+exp(x)),
shift=mean (predict (hand.gam)))
}

> par (opar)

Occasionally, one or more of these plots will show an apparent pattern.
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Figure 38: Plots from
GAM models, fitted
to successive random
draws from a popula-
tion in which the pro-
portion of lefthanded
cricketers is as con-
stant 18.5%, irrespec-
tive of date of birth.
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11.7 Poisson regression with GAM smoothing term

There may be some insight to be gained from changes in the numbers of left-handers and right-handers

separately. For this, we assume that left-handers and right-handers are generated by separate Poisson

processes, according to rates that vary smoothly over time. The numbers of left-handers and right-

handers can be summed for each year, when these annual numbers also follow a Poisson process.
The following code fits the model:

rtlef <- data.frame(with(cricketer, as(table(year, left),'"matrix")))
rtlef$year <- as.numeric(rownames (rtlef))

denright <- gam(right ~ s(year), data=rtlef, family=poisson)
denleft <- gam(left ~ s(year), data=rtlef, family=poisson)

fitright <- predict(denright, type='"response")

fitleft <- predict(denleft, type="response")

V V.V Vv Vv Vv

Code that does the plotting, as in Figure 39 is:

> opar <- par(mar=c(2.1,4.6,3.1,0.6), mgp=c(2.65, .5,0))
plot(fitright ~ year, col="blue", main="", type="n", xlab="",
ylab="Number of cricketers\nborn in given year",
ylim=c (0, max(rtlef$right)), data=rtlef)
with(rtlef, lines(fitright ~ year, col="blue", 1wd=2))
with(rtlef, lines(fitleft ~ year, col="purple", 1wd=2))
with(rtlef, lines(I(4x*fitleft) ~ year, col="purple", lty=2))
legend("topleft", legend=expression("Right-handers", "Left-handers",
"Left-handers "J*;" 4"),
col=c("blue", "purple", "purple"), pch=c(1,1), 1lty=c(1,1,2),
lwd=c(2,2, 1),bty="n", inset=0.01)
> par (opar)

A\

vV VvV Vv Vv
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of the two curves.

Both curves can be fitted at once, thus:

> num.df <- with(cricketer, as.data.frame((table(year, left))))

> num.df$year <- as.numeric(as.character (num.df$year))

> num.gam <- gam(Freq ~ left + s(year, by=left), data=num.df, family=poisson)
> par (mfrow=c(1,2))

> plot (num.gam)

> par (mfrow=c(1,1))

Observe that in Freq ~ left + s(year, by=left), the factor left has appeared twice — giving
separate offsets (constant terms) for the two curves, and separate patterns of variation about the
respective offsets.

Counts that are quasipoisson

To do!

11.8 Exercises
1. Below, we start with an underlying curve to an underlying curve mu = %‘ and add one or other
of: (i) random normal noise, or (ii) autocorrelated random data. The underlying curve is:

> x <- seq(from=-10, to =10, by=0.55) ## NB: Best avoid x=0
> mu <- sin(x)/x

Consider the model simulations A and B

> ## A: Add white noise (random normal noise) with mean 0, specify sd
> makewhite <- function(mu, sd){
mu + rnorm(n=length(mu), sd=sd)
}
> ## B: Add a series with mean 0, sd=0.2, autocorrelation 0.6
> ## NB: sd is the standard deviation of the innovations.
> makeAR1 <- function(mu, sd, ar=0.5){
mu + arima.sim(list(ar=ar), n=length(mu), sd=sd)

}

The following plots the data for three realisations of each of series A and series B, then using
the gam() function to fit a smooth curve and add the smooth to the plots:

> opar <- par(mfrow=c(2,3))
> for(i in 1:3){



12 ERRORS IN X 73

y <- makewhite(mu, sd=0.15)
white.gam <- gam(y ~ s(x))
plot (white.gam, resid=TRUE, shift=white.gam$coef[1],
pch=1, se=FALSE, xlab="")
if(i==1)mtext (side=3, line=0.4, "Add white noise")
}
> for(i in 1:3){
y1 <- makeAR1(mu, sd=0.15, ar=0.5)
arl.gam <- gam(yl ~ s(x))
plot(arl.gam, resid=TRUE, shift=arl.gam$coef[1],
pch=1, se=FALSE, xlab="")
if(i==1)mtext (side=3, line=0.4, "Add autoregressive 'noise'")
}
> par (opar)

Repeat the plots with sd=0.45 and with sd=0.75. Under what circumstances is the autocorre-
lated error least likely to distort the smooth? Under what circumstances is a spurious smooth
likely?

12 Errors in x

In the discussion so far, it has been assumed, either that the explanatory variables are measured
with negligible error or that the interest is in the regression relationship given the observed values of
explanatory variables.

This subsection is designed to draw attention to the likely effect of errors in the explanatory
variables on regression slope. Discussion will be limited to a relatively simple “classical” errors in x
model. For this model the error in x, if large, reduces the chances that the estimated slope will appear
statistically significant. Additionally, it reduces the expected magnitude of the slope, i.e., the slope is
attenuated. Even with just one explanatory variable x, it is not possible to estimate the magnitude
of the error or consequent attenuation from the information shown in a scatterplot of y versus x.
For estimating the magnitude of the error, there must be a direct comparison with values that are
measured with negligible error.

The discussion will now turn to as study on the measurement of dietary intake. The error in the
explanatory variable, as commonly measured, turned out to be larger and of greater consequence than
most researchers had been willing to contemplate.

12.1 Measurement of dietary intake

The 36-page Diet History Questionnaire is a Food Frequency Questionnaire (FFQ) that was developed
and evaluated at the U.S. National Cancer Institute, for use in large-scale trials that look for dietary
effects on cancer and on other diseases. Given the huge scale of some of these trials, some costing
US$100,000,000 or more, it has been important to have an instrument that is relatively cheap and
convenient. Unfortunately, as the study that is reported in Schatzkin et al (2003) demonstrates, the
FFQ seems too inaccurate to serve its intended purpose.

This FFQ queries frequency of intake over the previous year for 124 food items, asking details
of portion sizes for most of them. There are supplementary questions on such matters as seasonal
intake and food type. More detailed food records may be collected at specific times, which can then
be used to calibrate the FFQ results. One such instrument is a 24-hour dietary recall, questioning
participants on their dietary intake in the previous 24 hours. The accuracy of the 24-hour dietary
recall was a further concern of the Schatzkin et al (2003) study. Doubly Labeled Water, which is a
highly expensive biomarker, was used as an accurate reference instrument.

Schatzkin et al (2003) reported measurement errors where the standard deviation for estimated
energy intake was seven times the standard deviation, between different individuals, of the reference.
Additionally, Schatzkin et al (2003) found a bias in the relationship between FFQ and reference that
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further reduced the attenuation factor, to 0.04 for women and to 0.08 for men. For the relationship
between the 24 hour recalls and the reference, the attenuation factors were 0.1 for women and 0.18 for
men, though these can be improved by the use of repeated 24-hour recalls. These errors were much
larger than most researchers had been willing to contemplate.

The results reported in Schatzkin et al (2003) raise serious questions about what such studies can
achieve, using instruments such as those presently available that are sufficiently cheap and convenient
that they can be used in large studies. The measurement instrument and associated study design issues
have multi-million dollar implications. Carroll (2004) gives an accessible summary of the issues.

This is a multi-million dollar issue. The following prospective studies that use such instruments
are complete or nearly complete:

NHANES: n = 3,145 women aged 25-50
(National Health and Nutrition Examination Survey)
Nurses Health Study: n = 60,000+

Pooled Project: n = 300,000+
Norfolk (UK) study: n = 15,000+
AARP: n = 250,000+

Only 1 prospective study has found firm evidence suggesting a fat and breast cancer link, and 1
has found a negative link. The lack of consistent (even positive) findings led to the Women’s Health
Initiative Dietary Modification Study in which 60,000 women have been randomized to two groups:
healthy eating and typical eating. Objections to this study are:

e Cost ($100,000,000+)
e Can Americans can really lower % fat calories from to 20%, from the current 35%

e Even if the study is successful, difficulties in measuring diet mean that we will not know what
components led to the decrease in risk.

12.2 A simulation of the effect of measurement error

Suppose that the underlying regression relationship that is of interest is
vi=a+Bzi+e6(@=1,...,n)

and that the measured values are
Xi =2z + 1

where
var[e] = o; var[n] = 77

Figure 40 shows the effect. If 7 is 40% of the standard deviation in the x direction, i.e., T = 0.4s,, the
effect on the slope is modest. If T = 2s,, the attenuation is severe.
The expected value of the attenuation in the slope is, to a close approximation

1
S 1+12s2

where s, = \/XL,(z; — 2)%. If 7 =0.4s,, then 2 ~ 0.86.

Whether a reduction in slope by a factor of 0.86 is of consequence will depend on the nature of
the application. Often there will be more important concerns. Very small attenuation factors (large
attenuations), e.g. less than 0.1 such as were found in the Schatzkin et al (2003) study, are likely to
have serious consequences for the use of analysis results.

Points to note are:
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e From the data used in the panels of Figure 40, it is impossible to estimate 7, or to know the
underlying z; values. This can be determined only from an investigation that compares the
x; with an accurate, i.e., for all practical purposes error-free, determination of the z;. The
Schatzkin et al (2003) study that will be discussed below made use of a highly expensive
reference instrument, too expensive for standard use, to assess and calibrate the widely used
cheaper measuring instruments.

e A test for § = 0 can be undertaken in the usual way, but with reduced power to detect an effect
that may be of interest.

e The t-statistic for testing 8 = 0 is affected in two ways; the numerator is reduced by an expected
factor of A, while the standard error that appears in the numerator increases. Thus if A = 0.1,
the sample size required to detect a non-zero slope is inflated by more than the factor of 100
that the effect on the slope alone would suggest.

In social science, the ratio 7%/s? has the name reliability. As Fuller (1987) points out, a better
name is reliability ratio.

12.3 Errors in variables — multiple regression

Again, attention will be limited to the classical errors in x model. Where one only of several variables
is measured inaccurately, its coefficient may on that account not appear statistically significant, or
be severely attenuated. For remaining variables (measured without error) possible scenarios include:
the coefficient suggests a relationship when there is none, or the coefficient is reversed in sign. Where
several variables are measured with error, there is even more room for misleading and counter-intuitive
coefficient values.

13 Further issues for the use and interpretation of regression
models

13.1 Data collection biases

Large biases can arise from the way that data have been collected. The Literary Digest poll that was
taken prior to the US 1936 Presidential election, where Roosevelt had 62% of the vote rather than the
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predicted 43%, is an infamous example. The estimate of 43% was based on a sample, highly biased
as it turned out, of 2.4 million!

The problems that arise can be exacerbated by more directly statistical problems, i.e., issues that
it is important to note even if random samples are available. Estimates of regression coefficients, or
other model parameters, cannot necessarily be taken at their face value.

13.2 Model and/or variable selection bias
13.2.1 Model selection

When the model is fitted to the data used to select the model from a set of possible models, the effect is
anti-conservative. Thus, standard errors will be smaller than indicated by the theory, and coeflicients
and f-statistics larger. Such anti-conservative estimates of standard errors and other statistics may,
unless the bias is huge, nevertheless provide the useful guidance. Use of test data that are separate
from data used to develop the model deals with this issue.

There is a further important issue, that use of separate test data does not address. Almost
inevitably, none of the models on offer will be strictly correct. Mis-specification of the fixed effects,
and to a lesser extent of the random effects, is likely to bias model estimates, at the same time inflating
the error variance or variances, i.e., it may to some extent work in the opposite direction to selection
effects.

13.2.2 Variable selection and other multiplicity effects

Variable selection has the same, or greater, potential for bias as model selection. This is an especial
issue for the analysis of microarray and other genomic data, where a small number of gene expression
measures, perhaps of the order of 5 - 20, may be selected from 10,000 or more. See Ambroise and
McLachlan (2001) for a critique of papers where the authors have fallen prey to this trap. This can
also be an issue for graphs that are based on the data that remain after selection.

Empirical accuracy assessments seem the only good way to address the major issues that can arise
here. There are traps for data analysts who have not taken adequate account of the implications
of selecting, for use in a regression or discriminant or similar analysis, a small number of variables
(“features”) from a much larger number. Maindonald (2003) gives a relatively elementary account of
this matter, which should be accessible to non-specialists. The paper Ambroise and McLachlan (2001)
is a careful examination of several examples, all concerned with the use of discriminant methods in
connection with microarray data, from the literature. The same effects can arise from model tuning.
Cross-validation is a key tool in this context. This, or the bootstrap, seems the only good way to
allow for the skewing of results that can arise from potentially huge variable selection effects. Any
model tuning and/or variable selection must be repeated at each cross-validation fold.

13.3 Does screening reduce deaths from gastric cancer?

The issue here is that of comparing groups who may differ in respects other then the respect that is
under investigation. In other words, there are likely to be hidden variables.

Patients who had surgery for gastric cancer were divided into two groups — those who had presented
with cancer at a hospital or doctor’s surgery, and those who had been diagnosed with cancer as a
result of screening. Mortality was assessed in the 5 years following surgery:

Mortality Number
Unscreened Group 41.9% 352
Screened Group 28.2% 308

Table 5: Mortality in five-year period following surgery for cancer, classified according to whether
patients presented with cancer, or cancer was detected by screening.

What are the possible explanations for the higher mortality in the unscreened group?
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Screening may be catching cancer early, thus reducing the risk of death.

Cancers detected by screening may be at an earlier stage of development, and thus less imme-
diately fatal.

Some cancers detected by screening may be of a less dangerous type, that progress slowly, or
may never progress to become fatal.

All three effects may contribute to the difference.
Question: What are likely/possible missing variables/factors, for these data?

The appropriate approach is to identify several large groups of patients, randomly assigning groups
for screening or no screening. Study participants are then followed for, e.g., the next decade. One
study'! classified 24,134 survey recipients as screened or unscreened, according as they had been
screened, or not, in the previous year. It then followed them up for 40 months:

Male Female
Unscreened Screened Unscreened Screened
(n=16,536) (n=4,934) (n=8,456) (n = 4,208)

Gastric cancer

No. of deaths 19 8 9 4

Mortality rate 86.8 53.0 31.0 40.2
All causes

No. of deaths 473 237 403 97

Mortality rate 2,199.0 1,593.1 1,370.7 829.4

Table 6: Mortality rates (deaths per 100,000 person years), from gastric cancer and from all causes.

Question: What are likely /possible missing variables/factors, for these data?

13.4 Alcohol consumptions and risk of coronary heart disease

Consider now observational studies of the effects of modest wine-drinking on heart disease (Jackson
et al., 2005). There are a large number of factors that affect heart disease — genetic, lifestyle, diet,
and so on. Any analysis of observational data that tries to account for their joint effect will inevitably
be simplistic. The assumptions made about the form of the response (usually, a straight line on a
suitably transformed scale) will be simplistic. Simplistic assumptions will be made about interaction
effects (how does alcohol intake interact with other dietary habits?), and so on.

Hysed in: Inaba et al. 1999: Evaluation of a Screening Program on Reduction of Gastric Cancer Mortality in Japan:
Preliminary Results from a Cohort Study. Preventive Medicine 29: 102-106
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No. of events (mortality/CHD)  All-cause mortality ~Coronary heart disease

Men
Never drink (16/43) 2 3 (1.2 -3.8) (1 3-2.5)
Special occasions (33/76) 4 (0.9 -2.2) (0.8 —1.4)
1-2 times/month (37/93) (1 0-22) (0 8- 1.3)
1-2 times/week (82/306) 1 (baseine) 0 (baseline)
Almost daily (52/219) 0.9 (0.7 - 1.3) 0 9 (0.8~ 1.1)
Twice a day or more (22/41) 2.5 (1.5 -4.1) 1 (0.8 -1.5)

Women
Never drink (9/43) (0 7-3.5) 8 (1.3 - 2.8)
Special occasions (40/127) 5 (0.7 - 3.5) 2 (0.9 - 1.5)
1-2 times/month (14/61) (1 0-2.9) (O 8 —1.8)
1-2 times/week (26/137) 1 (baseine) 0 (baseline)
Almost daily (18/59) 1.3 (0.7 - 2.4) o 8 (0.6 — 1.2)
Twice a day or more (5/7) 4.8 (1.8 —12.7) (0.6 — 2.8)

Table 7: Increased risk of mortality, relative to baseline, according to frequency of alcohol consump-
tion. Factors for which adjustment was made were age, smoking, employment grade, blood cholesterol,
blood pressure, body mass index, and general health as measured by a score from a questionnaire.
CHD was recorded as an outcome if there was an episode of fatal or non-fatal cornonary heart disease.

Here, there are may factors for which there should be an adjustment. After adjusting for the effects
of other factors. how does level of alcohol consumption affect risk of death? The method of analysis
used is survival analysis, which will not be covered in this course. Think of it as an extension of the
regression methodology that will be considered later in the course, with the risk of death relative to
the baseline as the outcome. (Risk is expressed as a probability density; in this context it has the
name “hazard” rate.)

Britton & Marmot (2004) report on an 11-year follow-up of a study of 10,308 London-based civil
servants aged 35-55 years at baseline (33% female). Adjustments were made for age, smoking, em-
ployement grade, blood cholesterol, blood pressure, body mass index, and general health as measured
by a score from a questionnaire. Table 7 shows the estimated ratio of risk relative to the baseline line,
i.e., to the risk from all other factors.

Thus, it looks as though modest levels of alcohol consumption may be beneficial. However the
results remain controversial. There may for example be lifestyle factors, associated with levels of
alcohol consumption, for which factors such as employment have not made adequate adjustment. If
such factors are correlated with frequency of drinking, this might in part explain the result. See
especially Jackson et al. (2005).

Note also another source of evidence, derived from so-called Mendelian randomization studies.
(Mendelian dose assignment would be a more accurate description than “Mendelian randomization”.)
Half of the Japanese population is homozygous or heterozygous for a non-functional variant of the
gene ALDH2, making them unable to metabolise alcohol properly, with unpleasant consequences. The
effect is more serious for the homozygotes than for the heterozygotes. The result is that homozygotes
heavily curtail their alcohol consumption and heterozygotes curtail it to some lesser extent. The
incidence of CHD closely reflects results predicted by Britton & Marmot (2004). At the same time,
no association was apparent between genotype and other factors implicated in CHD. See Davey Smith
& Ebrahim (2005).

13.5 Freakonomics

Several of the studies that are discussed in Leavitt and Dubner (2005), some with major public policy
relevance, relied to an extent on regression methods — usually generalized linear models rather than
linear models. References in the notes at the end of their book allow interested readers to pursue
technical details of the statistical and other methodology. The conflation of multiple sources of insight
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and evidence is invariably necessary, in such studies, if conclusions are to carry conviction. Ignore the
journalistic hype, obviously the responsibility of the second author, in the preamble to each chapter.

13.6 Further reading

See Rosenbaum (1999) and Rosenbaum (2002) for a comprehensive overview of issues that commonly
arise in the analysis of observational data, and of approaches that may be available to handle some
of the major sources of potential difficulty.
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Part V
Discrimination and Classification

The methods described here have the character of regression models where the outcome is categorical,
one of g classes. For example, the gl dataset has measurements of each on nine physical properties,
for 214 samples of glass that are classified into six different glass types.

Linear Discriminant Analysis (LDA), which will be discussed first, may be contrasted with the
strongly non-parametric random forest method that uses an ensemble of trees. See Maindonald &
Braun (2010, Section 11.7).

A good strategy for getting started is to fit a linear discriminant model with main effects only,
comparing the accuracy with that from a random forest analysis. If the random forest analysis gives
little or no improvement, the linear discriminant model may be hard to better. There is much more
that can be said, but this is often a good starting strategy.

See Ripley (1996); Venables and Ripley (2002); Maindonald & Braun (2010, Section 12.2).

14 Linear Methods for Discrimination

Notation and types of model

Observations are rows of a matrix X with p columns. The vector X is a row of X, but in column vector
form. The outcome is categorical, one of g classes.

Methods discussed here will all use as predictors continuous non-linear functions of the columns
of X. There are several mechanisms for such modeling that involve the use of spline basis terms.

As before, observations are rows of a matrix X with p columns. The vector X, is a row of X, but
in column vector form.

The outcome is categorical, one of g classes, where now g may be greater than 2. The matrix W
estimates the within class variance-covariance matrix, while B estimates the between class variance-
covariance matrix. Details of the estimators used are not immediately important. Note however that
they may differ somewhat between computer programs.

14.1 1da() and qdaQ)

The functions that will be used are 1da() and qda(), from the MASS package. The function 1da()
implements linear discriminant analysis, while qda() implements quadratic discriminant analysis.
Quadratic discriminant analysis is an adaptation of linear discriminant analysis to handle data where
the variance-covariance matrices of the different classes are markedly different. For g = 2 the logistic
regression model, fitted using R’s glm() function, is closely analagous to the linear discriminant model
that is fitted using 1da(). The difference can however be important.

An attractive feature of 1da() is that the search for a discriminant rule leads to a representation
of a subspace of the column space of X in r-dimensional space. Providing that the rank of X is at
least g— 1, r = g—1. Use of a spectral decomposition leads to r sets of scores, where each set of scores
explains a successively smaller (or at least, not larger) proportion of the sum of squares of differences
of group means from the overall mean. The r sets of scores can be examined using a pairs plot.

With three groups, two dimensions will account for all the variation. A scatterplot is then a
geometrically complete representation of what the analysis has achieved. With larger numbers of
groups, it will often happen that a two or at most three dimensions will account for most of the
variation.

The plots that it yields are a major part of the appeal of 1da(). Where 1da() does not work
well, they may hint at what type of alternative method might be preferred. They can be useful for
identifying subgroups of the orginal g groups, and for identifying points that may be misclassified



14 LINEAR METHODS FOR DISCRIMINATION 81

14.1.1 1da() and gda() — theory

The functions 1da() and qda() in the MASS package implement a Bayesian decision theory approach.
Points to note are:

e The methodology is implemented within a Bayesian framework. By default, the prior probabil-
ities for the various categories are taken to be the relative frequencies for those categories. The
classification rule changes if the frequencies are changed from the default.

e For any given classification rule, the overall accuracy (proportion correctly classified) changes if
the prior probabilities are changed.

e For estimating the accuracy for a given target population, the prior probabilities should be the
proportions in that population, not the proportions in the sample.

More specifically:
e A prior probability m. is assigned to the cth class (¢ = 1,...g).

e The density p(x|c) of x, conditional on the class ¢, is assumed multivariate normal, i.e., rows of
X are sampled independently from a multivariate normal distribution.

e For linear discrimination, classes are assumed to have a common covariance matrix X, or more
generally a common p(x|c). For quadratic discrimination, different p(x|c) are allowed for different
classes.

e Use Bayes’ formula to derive p(c[x). The allocation rule that gives the largest expected accuracy
chooses the class with maximal p(c|x); this is the Bayes’ rule.

o More generally, assign cost L;; to allocating a case of class i to class j, and choose ¢ to minimize
2i Liep(ilx).

Note that 1da() and qda() use the prior weights, if specified, as weights in combining the within
class variance-covariance matrices.
Using Bayes’ formula

nep(x|c)
p(x)
o mp(x|c)

p(clx)

The Bayes’ rule maximizes p(c|x). For this it is sufficient, for any given x, to maximize

nep(x|c)

or, equivalently, to maximize
log(.) + log(p(xlc))

Now assume p(x|c) is multivariate normal, i.e.,

)4 1 1
pXlc) = 2n)Z | Z, |)_§e_xp(_§Qc)
where
Qe = (x = pe) "2 (X — o)
Then 1 1
log(r.) + log(p(x|c)) = log(r.) — EQC + glog(zn) _ 5 log(| Z. 1)

Leaving off the log(27) and multiplying by -2, this is equivalent to minimization of

Q. +log(| Zc |) = 2log(re) = (x = pe) T (x = i) + log(| . |) - 2 log(x,)
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The observation x is assigned to the group for which

(x — ) 2N (x = o) + log(| = |) — 2 log(n.)

is smallest. _

Set u. = X., and replace | . | by an estimate X..
[Note that the usual estimate of the variance-covariance matrix (or matrices) is positive definite,
providing that the same observations are used in calculating all elements in the variance-covariance
matrix and X has no redundant columns.]

Then x is assigned to the group to which, after adjustments for possible differences in 7, and | Z, |,
the Mahalanobis distance .

x-%)'Z (x-%)

of x from X, is smallest.
If a common variance-covariance matrix X. = X can be assumed, a linear transformation is available
to a space in which the Mahalanobis distance becomes a Fucliean distance. Replace x by
z=U T)_lx
and X, by Z. = (UT)"'%. where U is an upper triangular matrix such that UTU = 3. Then

x—p) W x—p)=(2-2.)" 2 -7)

which in the new space is the squared Euclidean distance to from z to Z.

A result of the 1da calculations is thus to determine, for each observation, a distance from each
of the g group means. In general, these means define a hyperplane in g — 1 dimensional space. Three
group means define a plane, four group means define a 3-dimensional hyperplane, and so on.

Note: For estimation of the posterior probabilities, the simplest approach is that described above.
Thus, replace p(clx; 8) by p(c|x; §) for calculation of posterior probabilities (the ‘plug-in’ rule). Here, 0 is
the vector of parameters that must be estimated. The functions predict.lda() and predict.qda()
offer the alternative estimate method="predictive", which takes account of uncertainty in p(c|x; ).
Note also method="debiased", which may be a reasonable compromise between method="plugin"
and method="predictive"

14.1.2 Canonical discriminant analysis
Here we assume a common variance-covariance matrix. As described above, replace x by
T-1
z=U" x
where U is an upper triangular matrix such that UTU = X. The estimated variance-covariance matrix

of z is then the identity matrix. Observe that

—

varz] = E[U'(x-mx-m U]
= U 'Elx - p(x - )" U
= U 'su!
= 1

»»  where I, is the p X p identity matrix.

The between classes variance-covariance matrix becomes
~ I —
B=UT BU!

The ratio of between to within class variance of the linear combination @’z is then
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aTBa
ala
a’Ba, subject to the constraint || a ||= 1.

Ele"(z-p@z-p'a

The matrix B admits the principal components decomposition
B= /lluluf + /lzuzug +...+ /l,ururT

The choice @ = u; maximizes the ratio of the between to the within group variance, a fraction 4; of
the total. The choice @ = u accounts for the next largest proportion A,, and so on.

The vectors uy, ...u, are known as “linear discriminants” or “canonical variates”. Scores, which
are conveniently centered about the mean over the data as a whole, are available on each observation
for each discriminant. These locate the observations in r-dimensional space, where r is at most
min(g — 1, p). A simple rule is to assign observations to the group to which they are nearest, i..e., the
distance d. is smallest in a Euclidean distance sense.

For plotting in two dimensions, one takes the first two sets of discriminant scores. A point z; that
is represented as

Zinug + pup + .+ G,

is plotted in two dimensions as ({1, ), or in three dinsensions as ({1, {n, {3).- The amounts by which
the original columns of x; need to be multiplied to give ¢; are given by the first column of the list
element scaling in the 1da object. For {j, the elements are those in the second column, and so on.
See the example below.

As variables have been scaled so that within group variance-covariance matrix is the identity, the
variance in the transformed space is the same in every direction. An equal scaled plot should therefore
be used to plot the scores.

14.1.3 Linear Discriminant Analysis — Fisherian and other

Fisher’s linear disciminant analysis was a version of canonical discriminant analysis that used a single
discriminant axis. The more general case, where there can be as many as r = min(g—1, p) discriminant
functions, is described here.

The theory underlying 1da () assigns X to the class that maximizes the likelihood. This is equivalent
to choosing the class ¢ that minimizes d, + log(w.), where if the same estimates are used for W and
B, d. is the distance as defined for Fisherian linear discriminant analysis. Recall that z. is the prior
probability of class c.

The output from 1da() includes the list element scaling, which is a matrix with one row for
each column of X and one column for each discriminant function that is calculated. This gives the
discriminant(s) as functions of the values in the matrix X.

There are two ways that one can run 1da() and/or qda():

e With the argument CV=TRUE, leave-one-out cross-validation is used to return a list with compo-
nents class (the class assigned by the cross-validation) and posterior (the posterior probabil-
ities).

e For purposes other than leave-one-out cross-validation, use the argument CV=FALSE, which is
the default.

In the sequel, we will need the MASS package, which has functions for linear and quadratic
discriminant analysis. It also has the fgl dataset.

> library (MASS)
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14.2 Example — analysis of the forensic glass data

The data frame fgl in the MASS gives 10 measured physical characteristics for each of 214 glass
fragments that are classified into 6 different types. As noted above, the data frame fgl has 10
measured physical characteristics for each of 214 glass fragments that are classified into 6 different
types.

First, fit a linear discriminant analysis, and use leave-one-out cross-validation to check the accuracy,
thus:

> fglCV.1lda <- lda(type ~ ., data=fgl, CV=TRUE)
> tab <- table(fgl$type, fglCV.lda$class)
> ## Confusion matrix

> print (round(apply(tab, 1, function(x)x/sum(x)), digits=3))

WinF WinNF Veh Con Tabl Head

WinF 0.729 0.237 0.647 0.000 0.111 0.034
WinNF 0.229 0.684 0.353 0.462 0.222 0.069
Veh  0.043 0.000 0.000 0.000 0.000 0.000
Con 0.000 0.039 0.000 0.462 0.000 0.034
Tabl 0.000 0.026 0.000 0.000 0.556 0.000
Head 0.000 0.013 0.000 0.077 0.111 0.862

Now run the function with CV=FALSE, and examine the output:

> opt <- options(digits=2)
> fgl.lda <- lda(type ~ ., data=fgl)
> fgl.lda

Call:
lda(type ~ ., data = fgl)

Prior probabilities of groups:
WinF WinNF  Veh Con Tabl Head
0.327 0.355 0.079 0.061 0.042 0.136

Group means:
RI Na Mg Al Si K Ca Ba Fe

WinF  0.718 13 3.55 1.2 73 0.45 8.8 0.0127 0.057
WinNF 0.619 13 3.00 1.4 73 0.52 9.1 0.0503 0.080
Veh -0.036 13 3.54 1.2 72 0.41 8.8 0.0088 0.057
Con 0.928 13 0.77 2.0 72 1.47 10.1 0.1877 0.061
Tabl -0.544 15 1.31 1.4 73 0.00 9.4 0.0000 0.000
Head -0.884 14 0.54 2.1 73 0.33 8.5 1.0400 0.013

Coefficients of linear discriminants:
LD1 LD2 LD3 LD4 LD5

RI 0.31 0.029 0.36 0.247 -0.80
Na 2.38 3.165 0.46 6.924 2.40
Mg 0.74 2.986 1.57 6.850 2.80
Al 3.34 1.725 2.20 6.419 0.94
Si 2.45 3.006 1.70 7.542 0.96
K 1.67 1.862 1.29 8.076 2.82
Ca 1.01 2.373 0.65 6.697 3.71
Ba 2.31 3.443 2.60 6.438 4.41
Fe -0.51 0.217 1.20 -0.045 -1.30
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Proportion of trace:
ILD1 LD2 LD3 LD4 LD5
0.815 0.117 0.041 0.016 0.011

> options (opt)

Observe that 93% of the information, as measured by the trace, is in the first two discriminants. We
can plot scores on these discriminants, one against the other, as in Figure 41:

WinF Veh © Tabl

WinNF Con Head

4 4

2 Figure 41: Visual representation of scores
N derived from linear discriminant analy-
S sis, for the forensic glass data. A six-
c Q o! . . .
£ 21, ® L dimensional pattern of separation between
5 the categories has been collapsed down to
'g —4 1 two dimensions. Some categories may there-

6 | fore be better distinguished than is evident

from this figure.
_8 4

-4 -2 0 2 4 6
Discriminant 1

The code for Figure 41 is:

> library(lattice)
> scores <- predict(fgl.lda)$x
> gph <- xyplot(scores[,2] ~ scores[,1], groups=fgl$type,
xlab="Discriminant 1", ylab="Discriminant 2",
aspect=1, scales=list(tck=0.4), auto.key=list(columns=3),
par.settings=simpleTheme (alpha=0.6),
title="Plot shows first two linear discriminant scores")
> print(gph)

The discriminant functions

The following demonstrates the use of the information, giving details of the linear discriminant func-
tions, in the component scaling of the model object fgl.1da:

library (MASS)

fgl.lda <- lda(type ~ ., data=fgl)

scores <- predict(fgl.lda, dimen=5)$x # Default is dimen=2

## Now calculate scores from other output information

checkscores <- model.matrix(fgl.lda)[, -1] %x*% fgl.lda$scaling
## Center columns about mean

checkscores <- scale(checkscores, center=TRUE, scale=FALSE)
plot(scores[,1], checkscores[,1]) # Repeat for remaining columns

93% of the information, as measured by the trace, is in the first two discriminants.
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14.2.1 Two groups — comparison with logistic regression

Logistic regression, which can be handled using R’s function glm(), is a special case of a Generalized
Linear Model (GLM). The approach is to model p(c|x; 0) using a parametric model that may be the
same logistic model as for linear and quadratic discriminant analysis.

In this context it is convenient to change notation slightly, and give X an initial column of ones.
In the linear model and generalized linear model contexts, X has the name “model matrix”.

The vector x is a row of X, but in column vector form. Then if 7 is the probability of member-
shipAéin the second group, the model assumes that

log(n/(1 —n) = B'x

where § is a constant.
Compare logistic regression with linear discriminant analysis:

e Inference is conditional on the observed x. A model for p(x|c) is not required. Results are
therefore more robust against the distribution p(x|c).

e Parametric models with “links” other than the logit f(n) = log(n/(1 — ) are available. Where
there are sufficient data to check whether one of these other links may be more appropriate, this
should be done. Or there may be previous experience with comparable data that suggests use
of a link other than the logit.

e Observations can be given prior weights.

e There is no provision to adjust predictions to take account of prior probabilities, though this
can be done as an add-on to the analysis.

e The fitting procedure minimizes the deviance, which is twice the difference between the log-
likelihood for the model that is fitted and the loglikelihood for a ‘saturated’ model in which
predicted values from the model equal observed values. This does not necessarily maximize
predictive accuracy.

e Standard errors and Wald statistics (roughly comparable to t-statistics) are provided for param-
eter estimates. These are based on approximations that may fail if predicted proportions are
close to 0 or 1 and/or the sample size is small.

14.2.2 How important are the linearity assumptions?

The linearity assumptions are restrictive, even allowing for the use of regression spline terms to model
non-linear effects. It is not obvious how to choose the appropriate degree for each of a number of
terms. The attempt to investigate and allow for interaction effects adds further complications. In
order to make progress with the analysis, it may be expedient to rule out any but the most obvious
interaction effects. These issues affect regression methods (including GLMs) as well as discriminant
methods.

14.2.3 Low-dimensional Graphical Representation

In linear discriminant analysis, discriminant scores in as many dimensions as seem necessary are used
to classify the points. These scores can be plotted. Each pair of dimensions gives a two-dimensional
projection of the data. If there are three groups and at least two explanatory variables, the two-
dimensional plot is a complete summary of the analysis. Even where higher numbers of dimensions
are required, two dimensions may capture most of the information. This can be checked.

With most other methods, a low-dimensional representation does not arise so directly from the
analysis. An approach that will be demonstrated with random forests, can be adapted for use with
other methods.
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14.3 A further example — cuckoo egg lengths

To illustrate linear and quadratic discriminant analysis, we will use the data set cuckoos (DAAG
package), in the first instance limiting attention to hedge sparrow and wren nests. This dataset
provides measurements on the length and breadth of eggs of each of six host species. Because there
are just two measurements, a two-dimensional representation provides a complete description of the
results of the analysis. Any plot of scores will be a rotated version of the plot of length versus
breadth.

> library(DAAG); library(MASS); library(latticeExtra)
> cuckoos.lda <- lda(species ~ length + breadth, data=cuckoos)
> cuckoos.lda

Call:
lda(species ~ length + breadth, data = cuckoos)

Prior probabilities of groups:

hedge.sparrow meadow.pipit pied.wagtail robin tree.pipit

0.1166667 0.3750000 0.1250000 0.1333333 0.1250000
wren
0.1250000

Group means:

length breadth
hedge.sparrow 23.11429 16.76429
meadow.pipit 22.29333 16.74000
pied.wagtail 22.88667 16.50000

robin 22.55625 16.45000
tree.pipit 23.08000 16.66667
wren 21.12000 15.83333

Coefficients of linear discriminants:
LD1 LD2

length -0.634933 1.018737

breadth -1.428932 -2.037959

Proportion of trace:
LD1 LD2
0.7442 0.2558

> print (cuckoos.lda$means)

length breadth
hedge.sparrow 23.11429 16.76429
meadow.pipit 22.29333 16.74000
pied.wagtail 22.88667 16.50000

robin 22.55625 16.45000
tree.pipit 23.08000 16.66667
wren 21.12000 15.83333

> print (cuckoos.lda$scaling)

LD1 LD2
length -0.634933 1.018737
breadth -1.428932 -2.037959
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Examining cuckoos.lda$scaling, the entries in the column headed LD1 are the coefficients of length
and breadth that give the first set of discriminant scores. Those in the column headed LD2 give
the second set of discriminant scores. These scores can be obtained directly from the calculation
predict (cuckoos.1lda)$x

The following uses leave-one-out cross-validation to give an assessments of the accuracy for 1da()

\

## Leave-one-out cross-validation
## Accuracies for linear discriminant analysis
> cuckooCV.lda <- lda(species ~ length + breadth,
data=cuckoos, CV=TRUE)
confusion (cuckoos$species, cuckooCV.lda$class,
gpnames=abbreviate (levels (cuckoos$species), 10))

A\

v

Overall accuracy = 0.433

This assumes the following prior frequencies:

hedg.sprrw meadow.ppt pied.wagtl robin tree.pipit wren
0.117 0.375 0.125 0.133 0.125 0.125

Confusion matrix
Predicted (cv)

Actual hedg.sprrw meadow.ppt pied.wagtl robin tree.pipit wren
hedg.sprrw 0.000 0.571 0.143 0.071 0.143 0.071
meadow.ppt 0.000 0.867 0.067 0.000 0.022 0.044
pied.wagtl 0.067 0.467 0.200 0.067 0.067 0.133
robin 0.000 0.625 0.188 0.000 0.062 0.125
tree.pipit 0.067 0.667 0.200 0.067 0.000 0.000
wren 0.000 0.267 0.000 0.067 0.000 0.667

The following uses leave-one-out cross-validation to give assessments of the accuracy for qda():

> ## Accuracies for quadratic discriminant analysis
> cuckooCV.qda <- gda(species ~ length + breadth,
data=cuckoos, CV=TRUE)

> acctab <—confusion(cuckoos$species, cuckooCV.qda$class,
gpnames=abbreviate (levels(cuckoos$species), 10),
printit=FALSE)

> tab <- table(cuckoos$species)

> ##

> ## Overall accuracy

> sum(diag(acctab)*tab)/sum(tab)

[1] 0.425

> ## Confusion matrix
> round(acctab, 3)

Predicted (cv)

Actual hedg.sprrw meadow.ppt pied.wagtl robin tree.pipit wren
hedg.sprrw 0.214 0.429 0.143 0.071 0.000 0.143
meadow.ppt 0.000 0.822 0.044 0.000 0.044 0.089
pied.wagtl 0.067 0.533 0.067 0.067 0.133 0.133
robin 0.000 0.688 0.188 0.000 0.000 0.125
tree.pipit 0.200 0.600 0.133 0.067 0.000 0.000
wren 0.067 0.133 0.000 0.133 0.000 0.667

The calculations that follow will require 1da() and qda() fits with CV=FALSE, which is the default:
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> cuckoos.lda <- lda(species ~ length + breadth, data=cuckoos)
> cuckoos.qda <- qda(species ~ length + breadth, data=cuckoos)

Figure 16A plots length versus breadth, with the axes for the discriminant scores added.

Figure ?? shows contours for distinguishing wren from not-wren, both for the 1da() analysis (
solid line) and for the qda() analysis (gray line). The contours are very different. These different
contours lead in each case to a cross-validated accuracy of 66.7% for correctly predicting wren eggs
as wren — a close agreement that may seem surprising.

hedge.sparrow robin .
meadow.pipit  * tree.pipit
pied.wagtail wren

length

150 155 160 165 170 175
breadth

Figure 42: Length versus breadth, compared be-
tween cuckoo eggs laid in hedge sparrow and
those laid in wren nests. Axes for the scores
are overlaid.

hedge.sparrow robin
meadow.pipit  * tree.pipit
pied.wagtail wren

length

150 155 160 165 170 175
breadth

Figure 43: Length versus breadth, compared be-
tween cuckoo eggs laid in hedge sparrow and
those laid in wren nests. The boundary lines for
distinguishing wren from not-wren are shown,
both for the 1da() analysis and for the qda()
analysis.

The following creates a graphics object that plots the points:

> gph <- xyplot(length ~ breadth, groups=species, data=cuckoos,
type=c("p"), auto.key=list(columns=2), aspect=1,
scales=1ist (tck=0.5), par.settings=simpleTheme (pch=16))

The code for Figure 42 is then:

> library(latticeExtra) # This package has the function layer()
> LDmat <- cuckoos.lda$scaling

> 1d1 <- LDmat[,1]

> 1d2 <- LDmat[,2]
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library(DAAGxtras)

gm <- sapply(cuckoos[, c("length", "breadth")], mean)

avl <- gm[1] + 1d1[2]/1d1[1]*gm[2]

av2 <- gm[1] + 1d2[2]/1d2[1]*gm[2]

gphA <- gph + layer(panel.abline(avl, -1d1[2]/1d1[1], 1lty=1),
panel.abline(av2, -1d2[2]/1d2[1], 1lty=2))

vV V. Vv Vv Vv

The code for Figure 77 is:

x <- pretty(cuckoos$breadth, 20)

y <- pretty(cuckoos$length, 20)

Xcon <- expand.grid(breadth=x, length=y)

cucklda.pr <- predict(cuckoos.lda, Xcon)$posterior

cuckqda.pr <- predict(cuckoos.qda, Xcon)$posterior

m <- match("wren", colnames(cucklda.pr))

ldadiff <- apply(cucklda.pr, 1, function(x)x[m]-max(x[-m]))

qdadiff <- apply(cuckqda.pr, 1, function(x)x[m]-max(x[-m]))

gphB <- gph + as.layer (contourplot(ldadiff ~ breadth*length,
at=c(-1,0,1), labels=c("", "lda",""),
label.style="flat",
data=Xcon), axes=FALSE) +

as.layer (contourplot(qdadiff ~ breadth*length,

at=c(-1,0,1), labels=c("", "gda",""),
label.style="flat",
data=Xcon), axes=FALSE)

V VVVVVYVVYV

> gphB

For quadratic discriminant analysis, use qda() in place of 1da().

15 Accuracy comparisons

The function compareModels() (DAAGuztras) can be used to compare the accuracies of alternative
model fits, checking for consistency over the data as a whole. Three model fits will be compared — the
1da() fit above, the gda() fit above, and a variation on the 1da() fit that includes terms in length2,
breadth? and length*breadth

> cucklda.pr <- cuckooCV.lda$posterior
> cuckqda.pr <- cuckooCV.qda$posterior
> cucklda.pr2 <- lda(species ~ length + breadth + I(length~2)
+ I(breadth~2) + I(length*breadth), CV=TRUE,
data=cuckoos) $posterior
> compareModels (groups=cuckoos$species,
estprobs=1ist (lda=cucklda.pr, gda=cuckqda.pr,
"lda plus"=cucklda.pr2))

[1] "Average accuracies for groups:"
WinF WinNF Veh Con Tabl Head
0.1703 0.5113 0.1467 0.1497 0.1574 0.5780

Approx sed
0.0271
[1] "Average accuracies for methods:"
lda qda lda plus
0.3342 0.3402 0.3510
Approx sed

0.0049
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glucAreg>=420.5
I

fpg>F117 Figure 44: Can the clinical diagnosis be derived
normal directly from the five available clinical measures?
The graph shows the classification rule that is

given by a tree-based classification.

overt chemical

16 Tree-based methods and random forests

On a scale in which highly parametric methods lie at one end and highly non-parametric methods at
the other, linear discriminant methods lie at the parametric end, and tree-based methods and random
forests at the non-parametric extreme. An attraction of tree-based methods and random forests is
that model choice can be pretty much automated.

Figure 44 is a visual summary of results from the use of tree-based classification. The three classes
are from a clinical classification of Diabetes — overt (overt diabetic), chemical (chemical diabetic),
and normal (normal).

The clinical measures (explanatory variables) are relwt (relative weight), fpg (fasting plasma
glucose), glucArea (glucose area), Insulin (insulin area), and SSPG (steady state plasma glucose).

Tree-based classification proceeds by constructing a sequence of decision steps. At each node, the
split is used that best separates the data into two groups. Here (Figure 44) tree-based regression does
unusually well (CV accuracy = 97.2%), perhaps because it is well designed to reproduce a simple form
of sequential decision rule that has been used by the clinicians.

How is ‘best’ defined? Splits are chosen so that the Gini index of “impurity” is minimized. Other
criteria are possible, but this is how randomForest () constructs its trees.

16.0.1 Random forests

The random forest methodology will usually improve (but not here), sometimes quite dramatically,
on tree-based classification. Figure 45 shows trees that have been fitted to different bootstrap samples
of the diabetes data. Typically 500 or more trees are fitted, without a stopping rule. Individual trees
are likely to overfit. As each tree is for a different random sample of the data, there is no overfitting
overall.

Figure 46 is a visual summary of the random forest classification result. The proportion of trees in
which any pair of points appear together at the same node may be used as a measure of the “proximity”
between that pair of points. Then, subtracting proximity from one to obtain a measure of distance,
an ordination method is used to find a representation of those points in a low-dimensional space.
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Each tree has one vote; the majority wins

Figure 45: The left panel is a classification tree that was derived from tree-based classification. Each
tree in the right panel is for a different bootstrap sample of the diabetes data. Additionally, a different
random sample of variables is used for each different tree. The final classification is determined by a
random vote over all trees.
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16.1 The randomForests() Function

A good first check on the adequacy of “linear” methods in the style of 1da() and gqda() adequate
is comparison with the highly nonparametric analysis of the function randomForest () ( randomFor-
est package). Random Forests may do well when complex interactions are required to explain the
dependence.

The randomForest () function can be used in a manner that is highly automatic. There is relatively
limited scope for tuning. Such tuning as is possible will often make a very limited improvement.

The random forests methodology takes many (the randomForest () default is 500) different boot-
strap random samples from the data, each with the same number of observations as the original data.
For each such random sample, it takes a random sample of variables, and builds a tree. Splitting
of trees usually to the fullest possible extent. The class to which an observation will be assigned is
determined by taking a vote between trees.

For each bootstrap sample, predictions can be made for the observations that were not included
— i.e., for the out-of-bag data. This is done for each bootsrap sample. Comparison with the actual
group assignments then provides an unbiased estimate of accuracy.

16.2 Prior probabilities

In the randomForest() implementation, there is no direct provision for varying prior probabilities from
the relative group frequencies. It is unclear what the argument classwt does in the R implementation,
but the effect is not equivalent to the specifying of prior probabilities.

The effect of specifying prior probabilities can however be achieved by varying the sample size
(sampsize between groups. As an example, consider the dataset Pima.tr. The 200 sample points
divide up as follows:

> table(Pima.tr$type)

No Yes
132 68

The default is to take a bootstrap sample of size 200 from the total data. On average each boostrap
sample will have 34% of type Yes, i.e., these are diabetics, but this proportion will vary from sample
to sample. Here are error rates for the default settings:

> set.seed(41) # This seed should reproduce the result given here
> (Pima.rf <- randomForest(type ~ ., data=Pima.tr))

Call:

randomForest (formula = type ~ ., data = Pima.tr)

Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2

00B estimate of error rate: 29.5%
Confusion matrix:
No Yes class.error
No 108 24 0.1818182
Yes 35 33 0.5147059

The overall error rate is:

> 0.66%0.1818182+0.34%0.5147059

[1] 0.295
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This varies quite a bit from run to run. Thus, in one set of five different runs, the variation was
between 27% and 30%. Note the much greater accuracy for classifying the larger number in the No
group, as opposed to the Yes group.

The following alternative insists on choosing bootstrap samples separately for the two groups, so
that each bootstrap sample has exactly 132 that are No and 68 that are Yes.

> Pima.rf<- randomForest (type ., data=Pima.tr, sampsize=c(132,68))

One source of variation, i.e., in the relative numbers of Yes and No in the bootstrap samples, has been
removed. Thus, one might expect less variability in the error rates, with the average rate the same as
before. Detecting the difference in variability would require quite a large number of runs with each
of the two settings of sampsize.

Smaller samples are possible, e.g.

> Pima.rf <- randomForest (type
> Pima.rf

., data=Pima.tr, sampsize=c(66,34))

Call:
randomForest (formula = type ~ ., data = Pima.tr, sampsize = c(66, 34))
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2

00B estimate of error rate: 26.5%
Confusion matrix:
No Yes class.error
No 111 21 0.1590909
Yes 32 36 0.4705882

Sample sizes however not allowed to be larger than the numbers in the respective groups, i.e., 132
for No and 68 for Yes. Taking smaller samples can actually increase accuracy, ore may not reduce it
very much. Reduced accuracy for individual trees is traded off against reduced correlation between
trees.

Finally, note that we can vary the sample sizes so that they give the effect of some desired prior
relative probability, For equal sample sizes, we can reduce the first sample size to be the same size as
the smaller of the two groups, i.e., sampsize=c(68,68):

> Pima.rf <- randomForest(type ~ ., data=Pima.tr, sampsize=c(68,68))

16.2.1 Varying prior probabilities — an example

The error rate for a target population should be lowest when the proportions in the target population
are the same as those used in building thye model. More generally, costs can be applied, for example
an error in classifying Yes in the Pima data might be treated as twice as serious (costly) as an error
in classifying a No.

For this purpose, consider the statlog dataset from the website http://archive.ics.uci.edu/
ml/datasets/Statlog+28Germant+Credit+Data%29. The variable in column 18, here identified as
V18, identifies a customer as good (=1) or bad (=2). Variables that are categorical had values that
were prefixed with an A, so that on reading them into R they became factors.

It will be useful to have a function that, once a model has been fitted, makes it straightforward to
check how the error rate varies between populations with different relative numbers that are Yes and
No:

> compareTargets <-
function(rfobj, priorl, prior2){
naml <- deparse(substitute(priorl))
nam2 <- deparse(substitute(prior2))
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print (c(naml,nam2))

err <- rfobj$confusion[,3]

errl <- sum(err*priorl)/sum(priorl)

err2 <- sum(err*prior2)/sum(prior2)

errvec <- c(err, errl,err2)

names (errvec) <- c("error-good", "error-bad", naml, nam2)
errvec

}

The numbers of 'good’ and ’bad’ customers are:

> statlog$V18 <- factor(statlog$V18, labels=c("good", "bad"))
> table(statlog$V18)

good Dbad
845 155

First fit a model in which the prior probabilities are the relative proportions in the two samples,
then comparing how they perform on populations with good:bad proportions of (1) 855:134 (as in
the data), and (2) 134:134

> set.seed(41) # Use this seed to get the result shown
> germ.rf <- randomForest (V18 ~ ., data=statlog, sampsize=c(845,155))
> round(compareTargets(germ.rf, priorl = c(845,155), prior2 = c(155,155)), 4)

[1] "c(845, 155)" "c(155, 155)"
error-good error-bad c(845, 155) c(155, 155)
0.0083 0.8581 0.1400 0.4332

As always with such calculations, repeating the calculation several times will give a better basis fro
assessment than can be obtained from a sigle run.
Next repeat the calculations, now with equal prior probabilities for non-spam and spam:

> set.seed(41) # Use this seed to get the result shown
> germ.rf <- randomForest (V18 ~ ., data=statlog, sampsize=c(155,155))
> round(compareTargets(germ.rf, priorl = c(845,155), prior2 = c(155,155)), 4)

[1] "c(845, 155)" "c(155, 155)"
error-good error-bad c(845, 155) c(155, 155)
0.1964 0.3871 0.2260 0.2918

The error is indeed smaller for the 845,155 target when the prior also has a 845:155 ratio. It is
smaller for the 155:155 target when the prior is also 155:155.
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Part VI
Ordination

Ordination is a generic name for methods for providing a low-dimensional view of points in multi-
dimensional space, such that “similar” objects are near each other and dissimilar objects are separated.
The plot(s) from an ordination in 2 or 3 dimensions may provide useful visual clues on clusters in
the data and on outliers. The methods described help all use some form of multi-dimensional scaling
(MDS)

Distances may be already given, or it may be necessary to start by calculating distances between
points. In either case, the distances are the starting point for an ordination. Similarities will be
transformed into distances before starting the ordination calculations.

Examples are:

1. From Australian road travel distances between cities and larger towns, can we derive a plausible
“map” showing the relative geographic locations?

2. Starting with genomic data, various methods are available for calculating genomic “distances ”
between, e.g., different insect species. The distance measures are based on evolutionary models
that aim to give distances between pairs of species that are a monotone function of the time
since the two species separated.

3. Given a matrix X of n observations by p variables, a low-dimensional representation is required,
i.e., the hope is that a major part of the information content in the data can be summarized
in a small number of constructed variables. There is typically no good model, equivalent to
the evolutionary models used by molecular biologists, that can be used to motivate distance
calculations. There is then a large element of arbritariness in the distance measure used.

If data can be separated into known classes that should be reflected in any ordination, then the
scores from classification using 1da() may be a good basis for an ordination. Plots in 2 or perhaps 3
dimensions may then reveal additional classes and/or identify points that may be misclassified and/or
are in some sense outliers. It may indicate whether the classes that formed the basis for the ordination
seem real and/or the effectiveness of the discrimination method in choosing the boundaries between
classes.

The function randomForest () is able to return “proximities” that are measures of the closeness of
any pair of points. These can be turned into rough distance measures that can then form the basis
for an ordination. With Support Vector Machines, decision values are available from which distance
measures can be derived and used as a basis for ordination.

16.3 Distance measures
16.3.1 Euclidean distances

Treating the rows of X (n by p) as points in a p-dimensional space, the squared Euclidean distance
dizj between points i and j is

p
d; = Z(xik - xp)’
k=1
The distances satistfy the triangle inequality
d,‘j <dy+ dkj

The columns of X can be arbitrarily transformed before calculating the d;;. Where all elements
of a column are positive, use of the logarithmic transformation is common. A logarithmic scale
makes sense for biological morphometric data, and for other data that has similar characteristics. For
morphometric data, the effect is to focus attention on relative changes in the various body proportions,
ignoring the overall magnitude.
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The columns may be standardized before calculating distances, i.e., scaled so that the standard
deviation is one. The columns may be weighted differently. Use of an unweighted measure with all
columns scaled to a standard deviation of one is equivalent to working with the unscaled columns and
calculating dl.2j as

p

2 2

d; = E wij(Xik — Xji)
=l

where w;; = (SiSj)71 is the inverse of the product of the standard deviations for columns i and j.
Results may depend strongly on the distance measure.

16.3.2 Non-Euclidean distance measures

Euclidean distance is one of many possible choices of distance measures, still satisfying the triangle
inequality. As an example of a non-Euclidean measure, consider the Manhattan distance. This has

P
dij:Z|xik_xjk|
pa

The Manhattan distance is the shorest distance for a journey that always proceeds along one of the
co-ordinate axes. In Manhattan in New York, streets are laid out in a rectangular grid. This is then
(with k = 2) the walking distance along one or other street. For other choices, see the help page for
the function dist ().

The function daisy() in the cluster package offers a still wider range of possibilities, including
distance measures that can be used when columns that are factor or ordinal. It has an argument
stand that can be used to ensure standardization when distances are calculated. Unless measurements
are comparable (e.g., relative growth, as measured perhaps on a logarithmic scale, for different body
measurements), then it is usually desirable to standardize before using ordination methods to examine
the data.

Irrespective of the method used for the calculation of the distance measure, ordination methods
yield a representation in Euclidean space. Depending on the distance measure and the particular set
of distances, an exact representation may or may not be possible.

See Gower & Legendre (1986) for a detailed discussion of the netric and Euclidean propoerties of
a wide variety of similarity coeflicients.

16.4 From distances to a configuration in Euclidean space

Given a set of “distances” d;; that satisfy the triangle inequality, there is in general no guarantee that
it will be possible to derive a configuration X in Euclidean that exactly reproduces those distances.
Where Euclidean distances are calculated between the rows of a matrix X, clearly the matrix X is
itself one possible configuration in Euclidean space. So also is XP, where P is an orthogonal matrix.

Suppose however that non-metric distances are derived from a matrix X. For example, they may
be Manhattan distances. For some distance measures, it is always possible to find a configuration
X in Euclidean space (an embedding) that exactly reproduces those distances. For other choices of
distance this is not always possible.

It is however always possible to find a configuration X in Euclidean space in which the distances are
approximated, perhaps rather poorly. This is true whether ot not the triangle inequality is satisfied. It
will become apparent in the course of seeking the configuration whether an exact embedding (matrix
X) is possible, and how accurate this embedding is.

Given such a matrix X if it exists, we can write

)4
2
Z(Xz‘k - Xjk)
=)

2
&
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Thus
di; = qii + qj; — 24
where g; = Zﬁzl xl.zk; qij = 22’:1 xixjk. Observe that g;; is the (i, j)th element of the matrix Q = XXT.
Thus, the matrix Q has all the information needed to derive the distances. Because Q = XX, it is
positive semidefinite.

The mapping from the g;; to the d;; is one to one. Given distances, it is possible to find such a
matrix Q, if it exists. The detailed derivation is in Section 23. This shows that it is always possible
to derive a symmetric matrix Q. If and only if Q is positive definite, there is an exact embedding X
in Euclidean space.

Having thus recovered a symmetric matrix Q, the spectral decomposition yields

Q = UAU?
where A is a diagonal matrix. The diagonal elements A; are ordered so that
A >A...>24,

Providing 4; > 0, choose
X = UA?
As the rows and columns of Q sum to zero, Q is singular. Hence if Q is positive definite, as required

for exact embedding in Euclidean space, A; > 0 for all i and A, = 0.
Important points are:

e Often, most of the information will be in the first few dimensions. We may for example be able
to approximate Q by replacing A in Q = UAU” by a version of A in which diagonal elements
after the kth have been set to zero. If cmdscale() is called with eig=TRUE, it returns both the
eigenvalue information (the 4;) and a goodness of fit statistic, by default (assuming at least two
non-zero 4;) for the configuration with k = 2.

e If Q is not positive semidefinite, the ordination can still proceed. However one or more eigen-
values A; will now be negative. If relatively small, it may be safe to ignore dimensions that
correspond to negative eigenvalues. It is then more than otherwise desirable to check that the
ordination reproduces the distances with acceptable accuracy.

16.4.1 The connection with principal components

Let X be a matrix that is the basis for the calculation of Euclidean distances, after any transformations
and/or weighting. Then metric p-dimensional ordination, applied to Euclidean distances between the
rows of X, yields an orthogonal transformation of the space spanned by the columns of X. If the
successive dimensions are chosen to “explain” successively larger proportions of the trace of XX, it
is equivalent to the principal components transformation. Thus cmdscale() yields, by a different set
of matrix manipulations, a principal components decomposition.

16.5 Non-metric scaling

These methods all start from “distances”, but allow greater flexibility in their use to create an ordi-
nation. The aim is to represent the “distances” in some specified number of dimensions, typically two
dimensions. As described here, a first step is to treat the distances as Euclidean, and determine a
configuration in Euclidean space. These Euclidean distances are then used as a starting point for a
representation in which the requirement that these are Euclidean distances, all determined with equal
accuracy, is relaxed. The methods that will be noted here are:

Sammon scaling: A configuration with distances d is chosen to minimize a weighted squared
"stress” -
1 (dij — dij)
Qizj dij dij

i#j
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Kruskal’s non-metric multidimensional scaling: This aims to minimize

S (0dij) — dij)?
Yirjd};

with respect to the configuration of points and an increasing function 6 of the distance d;.

Often, it makes sense to give greater weight to small distances than to large distances. The distance
scale should perhaps not be regarded as rigid. Larger distances may not be measured on the same
Euclidean scale as shorter distances. The ordination should perhaps preserve relative rather than
absolute distances.

16.6 Examples
16.6.1 Australian road distances

The distance matrix that will be used is in the matrix audists, in the image file audists.Rdata. Con-
sider first the use of classical multi-dimensional scaling, as implemented in the function cmdscale():

> library(DAAGxtras)

> aupoints <- cmdscale(audists)

> plot(aupoints)

> text(aupoints, labels=paste(rownames (aupoints)))

An alternative to text(aupoints, labels=paste(rownames(aupoints))), allowing better place-
ment of the labels, is identify(aupoints, labels=rownames(aupoints)). We can compare the
distances in the 2-dimensional representation with the original road distances:

A\

audistfits <- as.matrix(dist(aupoints))
misfit <- as.matrix(dist(aupoints)) - as.matrix(audists)
for (j in 1:9)for (i in (j+1):10){
lines(aupoints[c(i,j), 1], aupoints[c(i,j), 2], col="gray")
midx <- mean(aupoints[c(i,j), 11)
midy <- mean(aupoints([c(i,j), 21)
text (midx, midy, paste(round(misfitl[i,j])))

vV Vv

}

> colnames(misfit) <- abbreviate(colnames(misfit),6)
> print(round (misfit))

Adelad Alice Brisbn Broome Cairns Canbrr Darwin Melbrn Perth Sydney
Adelaide 0 140 -792 -156 366 20 11 82 482 -273
Alice 140 0 -1085 -175 -41 76 -118 106 -26 -314
Brisbane -792 -1085 0 198 319 -26  -233 471 153 -56
Broome -156 -175 198 0 527 -7 6 -65 990 70
Cairns 366 -41 319 527 0 277 -31 178 8 251
Canberra 20 76 -25 =7 277 0 -1 -241 372 -8
Darwin 11 -118 -233 6 -31 -1 0 -12 92 -58
Melbourne 82 106 -471 -65 178  -241 -12 0 301 -411
Perth 482  -26 153 990 8 372 92 301 0 271
Sydney -273 -314 -56 70 251 -8 -58 -411 271 0

The graph is a tad crowded, and for detailed information it is necessary to examine the table.
It is interesting to overlay this “map” on a physical map of Australia.

> library(oz)
> o0z()
> points(aulatlong, col="red", pch=16, cex=1.5)
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> comparePhysical <- function(lat=aulatlong$latitude, long=aulatlong$longitude,
x1=aupoints[,1], x2 = aupoints[,2]){
## Get best fit in space of (latitude, longitude)
fitlat <- predict(Im(lat ~ x1+x2))
fitlong <- predict(lm(long ~ x1+x2))
x <- as.vector(rbind(lat, fitlat, rep(NA,10)))
y <- as.vector(rbind(long, fitlong, rep(NA,10)))
lines(x, y, col=3, lwd=2)
}

> comparePhysical ()

An objection to cmdscale() is that it gives long distances the same weight as short distances. It is
just as prepared to shift Canberra around relative to Melbourne and Sydney, as to move Perth. It
makes more sense to give reduced weight to long distances, as is done by sammon() (MASS).

> aupoints.sam <- sammon(audists)

Initial stress : 0.01573
stress after 10 iters: 0.00525, magic = 0.500
stress after 20 iters: 0.00525, magic

]
o
[l
o
o

> 0z()
> points(aulatlong, col="red", pch=16, cex=1.5)
> comparePhysical (x1=aupoints.sam$points[,1], x2 = aupoints.sam$points[,2])

Notice how Brisbane, Sydney, Canberra and Melbourne now maintain their relative positions much
better.

Now try full non-metric multi-dimensional scaling (MDS). This preserves only, as far as possible,
the relative distances. A starting configuration of points is required. This might come from the
configuration used by cmdscale (). Here, however, we use the physical distances.

> oz()
> points(aulatlong, col="red", pch=16, cex=1.5)
> aupoints.mds <- isoMDS(audists, as.matrix(aulatlong))

initial value 11.875074
iter 5 value 5.677228
iter 10 value 4.010654
final value 3.902515
converged

> comparePhysical (x1=aupoints.mds$points[,1], x2 = aupoints.mds$points[,2])

Notice how the distance between Sydney and Canberra has been shrunk quite severely.

16.6.2 Genetic Distances — Hasegawa’s selected primate sequences

Here, matching genetic DNA or RNA or protein or other sequences are available from each of the
different species. Distances are based on probabilistic genetic models that describe how gene sequences
change over time. The package ape implements a number of alternative measures. For details see
help(dist.dna).

Hasegawa’s sequences were selected to have as little variation in rate, along the sequence, as
possible. The sequences are available either from the DAAGzxtras package or from the wepage
http://evolution.genetics.washington.edu/book. They can be read into R as:
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## Obtain data from the web page on the next line, calculate distances
url <- "http://evolution.genetics.washington.edu/book/primates.dna"
library(ape)

primates.dna <- read.dna(url)

## Alternative - download and then read in data

# download.file(webpage, destfile="primates.txt")

# primates.dna <- read.dna("primates.txt")

## Now calculate distances, using Kimura's K80 model
primates.dist <- dist.dna(primates.dna, model="K80")

# Alternative

V VVVVVVYVYV

The DAAGztras package has the dataset primateDNA. These are the same data, but stored in
character format. For use with dist.dna() use the function dist.dna() to convert the data to a
binary format. The following is an alternative to the code given above:

> ## Use dataset primateDNA from the DAAGbio package

> library(DAAGbio)

> library(ape)

> ## Calculate distances, using Kimura's K80 model

> primates.dist <- dist.dna(as.DNAbin(primateDNA), model="K80")

We now try for a two-dimensional representation, using cmdscale() from the MASS package:

primates.cmd <- cmdscale(primates.dist)

eqscplot (primates.cmd, xlab="Axis 1", ylab="Axis 2")

lefrt <- 2+2*(primates.cmd[,1] < mean(par()$usr[1:2]))

text (primates.cmd[,1], primates.cmd[,2], row.names(primates.cmd), pos=lefrt)

vV VvV Vv Vv

value 19.892084
iter 5 value 13.849956
iter 10 value 13.553589
final value 13.527427
converged

initial
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Figure 47: The plot on the left has used classical metric scaling, i.e., calculations seek a Euclidean
space representation of the distances. The plot on the right has used the isoMDS() function to show
results from Kruskal’s non-metric multidimensional scaling, i.e., the “distances” provide an ordering
in Euclidean space.
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Now see how well Figure 47A reproduces the distances:

> d <- dist(primates.cmd)
> sum((d-primates.dist) "2)/sum(primates.dist~2)

[1] 0.101

With only around 5% of the sum of squared distances unaccounted for, it is hardly worth examining
a 3-dimensional representation. Here, however, is the code:

> library(lattice)

> primates.cmd <- cmdscale(primates.dist, k=3)

> cloud(primates.cmd[,3] ~ primates.cmd[,1]*primates.cmd[,2])
> d <- dist(primates.cmd)

> sum((d-primates.dist) "2)/sum(primates.dist~2)

Now repeat the above with sammon () and mds ().

primates.sam <- sammon(primates.dist, primates.cmd, k=2)
eqscplot (primates.sam$points)

> text(primates.sam$points[,1], primates.sam$points[,2],
row.names (primates.sam$points), pos=lefrt)

vV Vv

There is no harm in asking for three dimensions, even if only two of them will be plotted.
The following code is used to for the multidimensional scaling representation in Figure 47B:

> primates.mds <- isoMDS(primates.dist, primates.cmd, k=2)

> eqscplot (primates.mds$points, xlab="Axis 1", ylab="Axis 2")

> text(primates.mds$points[,1], primates.mds$points[,2],
row.names (primates.mds$points), pos=lefrt)

16.6.3 Pacific rock art

Here, the the 614 features were all binary — the presence or absence of specific motifs in each of
98 Pacific sites. (Actually, there were 103 sites, but 5 were omitted because they had no motifs in
common with any of the other sites.) Data are from Meredith Wilson’s PhD thesis at Australian
National University.

The binary measure of distance was used — the number of locations in which only one of the sites
had the marking, as a proportion of the sites where one or both had the marking. Here then is the
calculation of distances:

> pacific.dist <- dist(x = as.matrix(rockArt[-c(47,54,60,63,92), 28:641]),
method = "binary")
> sum(pacific.dist==1)/length(pacific.dist)

[1] 0.631

> plot(density(pacific.dist, to = 1))

> ## Now check that all columns have some distances that are less than 1
> symmat <- as.matrix(pacific.dist)

> table(apply(symmat, 2, function(x) sum(x==1)))

13 21 27 28 29 32 33 35 36 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56
i 111 21 21 2 212 431312112 2 3 2 2 2
57 58 61 62 64 65 66 67 68 69 70 71 73 75 76 77 79 81 83 84 85 90 91 92 93 94
1 3312111331141 2111211311 31
95 96 97
1 3 4
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It turns out that 63% of the distances were 1. This has interesting consequences, for the plots we now
do.

> pacific.cmd <- cmdscale(pacific.dist)
> plot(pacific.cmd)
> pacific.mds <- isoMDS(pacific.dist, pacific.cmd)

initial value 54.388728
iter 5 value 40.556391
iter 10 value 37.297430
iter 15 value 36.120966
iter 20 value 35.291828
iter 25 value 34.785333
iter 30 value 34.259107
iter 35 value 33.771381
iter 35 value 33.739070
iter 35 value 33.723549
final wvalue 33.723549
converged

> plot(pacific.mds$points)
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Part VII
*Some Further Types of Model

17 *Multilevel Models — Introductory Notions

Basic ideas of multilevel modeling will be illustrated using data on yields from packages on eight sites
on the Caribbean island of Antigua. They are a summarized version of a subset of data given in
Andrews and Herzberg 1985, pp.339-353.

Multilevel models break away from the assumption of independently and identically distributed
observations. The dependence is however of a very specific form. Models for time series move away
from those assumptions in a different way, typically allowing some form of sequential correlation.

Depending on the use that will be made of the results, it may be essential to correctly model the
structure of the random part of the model. The analysis will use the abilities of the 1lme () function
in the nlme package, though the example is one where it is easy, using modest cunning, to get the
needed sums of squares from a linear model calculation. For these data, there is more than one type (or
“level”) of prediction or generalization, with very different accuracies for the different generalizations.
The data give results for each of several packages at a number of different locations (sites). In such
cases, a prediction for a new package at one of the existing locations is likely to be more accurate than
a prediction for a totally new location. Multi-level models are able to account for such differences in
predictive accuracy.

The multiple levels that are in view are multiple levels in the noise or error term, and are superim-
posed on any effects that are predictable. For example, differences in historical average annual rainfall
may partly explain location to location differences in crop yield. The error term in the prediction
for a new location will account for variation that remains after taking account of differences in the
rainfall.

Examples abound where the intended use of the data makes a multi-level model appropriate.
Examples of two levels of variability, at least as a first approximation, include: variation between
houses in the same suburb, as against variation between suburbs; variation between different clinical
assessments of the same patients, as against variation between patients; variation within different
branches of the same business, as against variation between different branches; variations in the
bacterial count between different samples from the same lake, as opposed to variation between different
subsamples of the same sample; variation between the drug prescribing practices of clinicians in a
particular specialty in the same hospital, as against variation between different clinicians in different
hospitals; and so on. In all these cases, the accuracy with which predictions are possible will depend
on the mix of the two levels of variability that are involved. These examples can all be extended in
fairly obvious ways to include more than two levels of variability.

In all the examples just mentioned, one source of variability is nested within the other — thus
packages of land are nested within locations. Variation can also be crossed. For example different
years may be crossed with different locations. Years are not nested in locations, nor are locations
nested in years. Examples of crossed error structures are beyond the scope of the present discussion.

17.1 The Antiguan Corn Yield Data

For the version of the Antiguan corn data presented here, the hierarchy has two levels of random
effects. Variation between packages in the same site is at the lower of the two levels, and is called level
0 in the later discussion. Variation between sites is the higher of the two levels, and is called level
1 in the later discussion. A farmer who lived close to one of the experimental sites might take data
from that site as indicative of what to expect. Other farmers may think it more appropriate to regard
their farms as new sites, distinct from the experimental sites, so that the issue is one of generalizing
to new sites.

The analysis will use the 1lme () function in the nime package, though the example is one where it
is easy, using modest cunning, to get the needed sums of squares from a linear model calculation.
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The data that will be analyzed are in the second column of Table 8, which has means of packages
of land for the Antiguan data. In comparing yields from different packages, there are two sorts of
comparison. Packages on the same site should be relatively similar, while packages in different sites
should be relatively more different. The figure that was given earlier suggested that this is indeed the
case.

Site Site means Site effect Residuals from
site mean
DBAN 5.16, 4.8, 5.07, 4.51 +0.59 0.28, —-0.08, 0.18, —0.38
LFAN  2.93,4.77,4.33, 4.8 —-0.08 —-1.28, 0.56, 0.12, 0.59
NSAN 1.73,3.17, 1.49, 1.97 -2.2 -0.36, 1.08, -0.6, —0.12
ORAN 6.79, 7.37, 6.44, 7.07 (4.29) +2.62 -0.13, 0.45, —0.48, 0.15
OVAN  3.25, 4.28, 5.56, 6.24 +0.54 -1.58, —0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 -1.26 -0.39, 0.15, —0.25, 0.48
WEAN  5.04, 4.6, 6.34, 6.12 +1.23 -0.49, —0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 -1.45 -0.82, —0.18, 0.32, 0.68
square, add, square, add, divide by
multiply by 4, d.f.=24, to give ms
divide by d.f.=7,
v to give ms

Table 8: The leftmost column has harvest weights (harvwt), for the packages in each site, for the
Antiguan corn data. Each of these harvest weights can be expressed as the sum of the overall mean
(= 4.29), site effect (third column), and residual from the site effect (final column). This information
that can be used to create the analysis of variance table. (Details of the analysis of variance approach
to analysis of these data, although straightforward, get only passing mention in these notes.)

Note: In an analysis of variance formalization, the two-level structure of variation is handled by splitting
variation, as measured by the total sum of squares about the grand mean, into two parts — variation within
sites, and variation between site means. The final two columns in Table 8 indicate how to calculate the relevant
sums of squares and (by dividing by degrees of freedom) mean squares. The division of the sum of squares
into two parts mirrors two different types of predictions that can be based on these data. First, suppose that
we are interested in another package on one of these same sites. Within what range of variation would we
expect its yield to lie? Second, suppose that a trial were to be carried out on some different site, not one of
the original eight. What is the likely range of variation of the mean yield, i.e., how accurate is the accuracy
of prediction of the yield for that new site?

The model
The model that is used is:

site effect + package effect

yield = overall mean + (random) (random)

In formal mathematical language:

- @; Bij - Cio
Yij =K (site, random) 1 (package, jrandom) (=1...8j=1...4

with var[g;] = o-i, var(B;] = o-zB.

The quantities o-% and 0'% are known, technically, as variance components. (Those who are familiar
with the analysis of variance breakdown may wish to note that the variance components analysis allows
inferences that are not immediately available from the breakdown of the sums of squares in the analysis
of variance table.) Importantly, the variance components provide information that can help design
another experiment.
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17.2 The variance components

Here is how the variance components should be interpreted, for the Antiguan data:

e Variation between packages at a site is due to one source of variation only. Denote this variance
by 0'%. The variance of the difference between two such packages is 20'%
[Both packages have the same site effect @;, so that var(a;) does not contribute to the variance
of the difference.]

e Variation between sites in different plots is partly a result of variation between packages, and
partly a result of additional variation between sites. In fact, if o7 is the (additional) component
of the variation that is due to variation between sites, the variance of the difference between two
packages that are in different site is

202 +03)

e For s single package, the variance is 0'% + o-%. The variance of the estimate of the site mean is a
mean over the four packages at the one site, and is

2
2 L
O'B+T

[Notice that while o7 is divided by four, 0% is not. This is because the site effect is the same
for all four packages.]

18 *Survival models

Survival (or failure) analysis introduces features different from any of those encountered in the re-
gression methods discussed in earlier chapters. It has been widely used for comparing the times of
survival of patients suffering a potentially fatal disease who have been subject to different treatments.
Computations can be handled in R using the survival package, written for S-PLUS by Terry Therneau,
and ported to R by Thomas Lumley.

Section 5.4.1 discusses an example that is onveniently handled using survival models.

Other names, mostly used in non-medical contexts, are Failure Time Analysis and Reliability. Yet
another term is Event History Analysis. The focus is on time to any event of interest, not necessarily
failure. It is an elegant methodology that is too little known outside of medicine and industrial
reliability testing.

Applications include:

e the failure time distributions of industrial machine components, electronic equipment, auto-
mobile components, kitchen toasters, light bulbs, businesses, etc. (failure time analysis, or
reliability),

e the waiting time to germination of seeds, to marriage, to pregnancy, or to getting a first job,
e the waiting time to recurrence of an illness or other medical condition.

The outcomes are survival times, but with a twist. The methodology is able to handle data where
failure (or another event of interest) has, for a proportion of the subjects, not occurred at the time
of termination of the study. It is not necessary to wait till all subjects have died, or all items have
failed, before undertaking the analysis! Censoring implies that information about the outcome is
incomplete in some respect, but not completely missing. For example, while the exact point of failure
of a component may not be known, it may be known that it did not survive more than 720 hours (=
30 days). In a clinical trial, there may for some subjects be a final time up to which they survived,
but no subsequent information. Such observations are said to be right censored.
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Thus, for each observation there are two items of information: a time, and censoring information.
Commonly the censoring information indicates either right censoring denoted by 0, or failure denoted
by 1.

Many of the same issues arise as in more classical forms of regression analysis. One important set
of issues has to do with the diagnostics used to check on assumptions. Here there have been large
advances in recent years. A related set of issues has to do with model choice and variable selection.
There are close connections with variable selection in classical regression. Yet another set of issues
has to do with the incomplete information that is available when there is censoring.

Yang & Letourneau (2005) is an interesting example of a data mining paper where survival
methods could and should have been used. The methodology may be regarded as an unsatisfactory
attempt to reinvent survival methods! Their methodology is tortuous and does not make the most
effective use of the data.
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Part VIII
Technical Mathematical Results

19 Linear models — matrix derivations & extensions

e y (nby 1) is a vector of observed values, X (n by p) is model matrix, and 8 (p by 1) is a vector
of coefficients.

e The model is y =XB+¢€, 1ie y; = X;B+ ¢ where the vector € of residuals is n by 1 The
classical theory assumes that E[y] = u=XB, 1ie. E[e] =0.

e Least squares normal equations are
X'XB =Xy

(assuming € are iid normal, these are the maximum likelihood estimates)

e If variances are unequal, modify normal equations to
X'WXB =X'Wy (2)

where W is a diagonal matrix with elements equal to the inverses of the variances (justification
is from maximum likelihood, or argue that leverage should be independent of variance)

e More generally, if € is multivariate normal with known variance-covariance matrix X, then ML
theory gives the equation as above with W = X!,

19.0.1 Linear Models — correlated observations

Two observations with a high positive correlation contain, jointly, less information than two inde-
pendent values. In the extreme case where the correlation is 1, the two carry the same information.
Suppose for example that fruit trees are randomized to receive one of two different fertilizer treat-
ments. Then repeat assessments of fruit load on the one tree, made perhaps by different technical
staff, are likely to be highly correlated.

Use of a general variance-covariance matrix can in principle account for correlated data. Except
in computer simulations, the variance-covariance matrix X is unlikely to be exactly known and must
be estimated. Setting W = £! in equation 2 no longer gives, in general, estimates that are optimal.
Hence the many different special methods that are available for specific types of correlation structure
that have in practice proved useful. For example, time series models typically try to account for
correlations that are highest between points that are close together in time. Spatial analysis models
typically allow for correlations that are a function of separation in space. Hierarchical multi-level
models allow for different variance-covariance structures at each of several levels of hierarchy.

19.0.2 Least squares computational methods

A separate set of notes describes the approach, based on the QR matrix decomposition, that is used
in R and in most of the R packages. Where methods that are directly based on QR are too slow, there
may be a specialized method that takes advantage of structure in X to greatly speed up computation.
Sparse least squares is an important special case. See Bates (2006); Koenker and & Ng (2003).

20 Generalized Linear Models — theory & computation
Here, it is convenient to recast the equations in matrix form.

e As before, we have p = E[y] (n by 1), X (n by p), and B (p by 1).
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e The model is now
f() =XpB, where E[y] =pu
Here, f(), which must be monotonic, has the name link function. For example,
Hi
Ni — i

J (i) = log( )

e The distribution of y; is a function of the predicted value y;, independently for different ob-
servations. The different y; are from the same exponential family, but the distributions are
not identical. Commonly used exponential family distributions are the normal, binomial and
Poisson.

e An extension is to the quasi-exponential family, where the variance is a constant multiple of
an exponential family variance. The multiplying constant is estimated as part of the analysis.
Applications for models with quasibinomial or quasipoisson errors may if anything be more
extensive than for their exponential family counterparts.

e Just as for linear models, spline or other terms that model nonlinear responses can be fitted.

20.1 Maximum likelihood parameter estimates

e Recall that the equation is

f) = E(y) =XB
where g = E[y]

e Assuming a distribution from the exponential family, the maximum likelihood estimates of the

parameters are given by
X'Wu =X'Wy
where f(u;) = X;8

e Note that the (diagonal) element W;; of W are functions both of var[y;] and of f(u;)

e The ML equations must in general be solved by iteration (B appears on both sides of the
equation.) Iteratively reweighted least squares is used, i.e. Newton-Raphson. Each iteration
uses a weighted least squares calculation. As the weights are inversely proportional to the
variances, they depend on the fitted values. Starting values are required to initiate calculations.

The weighted least squares calculation is repeated, with new weights at each new iteration, until
the fitted values converge.

21 Least Squares Estimates

21.1 The mean is a least squares estimator

The 1Im() function uses the method of least square to find estimates. The following is the simplest
possible example. Given sample values

y1,y2’~--,yn

what choice of g will minimize Y\, (x; — 1)*? Observe that

i(xi -’
im1

Dl - ) + (& - P
i=1

Dl = 9 + 205 = H(E — o) + (- )’
i=1

D= B 2% - ) ) (= B+ n(E - )’

i=1 i=1

n
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As
n n
Z(x,-—)?szi—n)‘c:O
i=1 i=1

this equals
D=9+ n(E - p)?
i=1

Then n(x — p)> >= 0, with equality for u = ji = %.

Because X is the least squares estimator of u, it is possible to use a linear model to calculate the
mean. For this, a model is specified in which the only term is the constant term. Thus, for the female
Adelaide statistics students:

library (MASS)
y <- na.omit(survey[survey$Sex=="Female", "Height"])
Im(y = 1)

21.2 Least squares computations for linear models

Given the model
y=XB+e€
the least squares estimate b of 8 is obtained by solving the normal equations
X'XB=X'y
In practice it is usually best not to solve this equation directly, but to work from the QR orthogonal
decomposition of X. For details, see the references that appear on the help page for R’s function qr().

21.3 Beyond Least Squares — Maximum Likelihood

Least squares may not work very well for non-normal data. Typically, statisticians then appeal to the
maximum likelihood principle. For normal data, with independent and identically distributed errors,
maximum likelihood gives the same parameter estimates as least squares. Attention will at various
points be drawn to types of model where it really is necessary to work with maximum likelihood
estimates. Thus, note the logistic regression models that are discussed in Section 10.

22 Variances of Sums and Differences

The needed results are most easily derived using expectation algebra. For present purposes, it will be
adequate to define

E[g(X)] = f gf(x)dx
if X is a continuous random variable with density f(x) at the point x, and
E[g(X)] = ) g(Pr(X = )

where the integral or sum is taken over the support of X. The key result from expectation algebra
is that, for any two random variables X and Y, E[¢1X + ¢;X] = ¢|E[X] + ¢zE[Y]. The proof, for two
special cases noted above, is left as an exercise.

The variance of a random variable X with mean u = E[X] is E(y — ). Then

var[ X + X, ] = var[X;] + var[X,] + 2cov[ Xy, X;5]
which equals var[X;] + var[X;] if and only if
cov[Xy, Xa] = E[(X; — E[X; (X2 - E[X2D] =0

A very similar argument shows that var[X; — X;] = var[X;] + var[X,] if and only if cov[X;, X;] = 0.
A sufficient condition for cov[X;,X,] = 0 is that X; and X, are independent.
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23 From Distances to a Representation in Euclidean Space

Given an embedding X in Euclidean space, if it exists, the squared Euclidean distance between points
i and j can be written

P
2 2
dij = § (Xik _Xjk)
k=1

Thus
i = qii + qj; — 24 (3)

Where qii = Zf:l Xi2k; qij = Z][::] Xikxjk~

Observe that g;; is the (i, j)th element of the matrix Q = XX'. Thus, the matrix XX’ has all the
information needed to construct distances.

Now require that columns of X are centered, i.e.

n

ink:O,i:I,...p

i=1
This implies that

n

Z(Zp: XikX jk)
=l

i=1

zp:(zn: XikX jk)

k=1 i=1

n
Z qij
i=1

n

= Zp:(xjk Z Xik)
=1
0

i=1

i.e., that the rows and columns of Q sum to zero.

23.1 An exact representation?

It will now be shown that given distances d;;, then equation 3 uniquely determines a matrix Q whose
rows and columns sum to zero. The demand that the d;; satisfy the triangle inequality is unfortunately
not enough to guarantee that this matrix will be positive definite, as is required to yield a configuration
that can be exactly embedded in Euclidean space.

Set A = 3" ¢ii. Summing d;; = q;; + q; — 2q;; over i, it follows that

i=1
Z dlzj =A+ ng;i (5)
=

n n

From equation 6
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From equation 3, substituting for ¢; and g;; from equations 4 and 5 above, and then for A from
equation 7 above

_ 1 2 1 C 2 N 2
qij = —Edij + E(; dij + FZI dij — 2A)

= —%dfj+ %(;dfﬁ;dfj— ’—llzzd}j)

i=1 j=1
Having thus recovered a symmetric matrix Q, the spectral decomposition yields
Q =UAU"
where A is a diagonal matrix. The diagonal elements A; are ordered so that

L2 >

An exact embedding is possible if and only if A; > 0 for all i. For this, set

X = UA:?
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