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Part VI

Data Summary – Traps for the Unwary
Package: DAAGxtras

1 Multi-way Tables

Small (<2cm) Large (>=2cm) Total

open ultrasound open ultrasound open ultrasound
yes 81 234 yes 192 55 yes 273 289
no 6 36 no 71 25 no 77 61

Success rate 93% 87% 73% 69% 78% 83%

Table 1: Outcomes for two different types of surgery for kidney stones. The overall success rates (78%
for open surgery as opposed to 83% for ultrasound) favor ultrasound. Comparison of the success rates
for each size of stone separately favors, in each case, open surgery.

Exercise 1
Table 1 illustrates the potential hazards of adding a multiway table over one of its margins. Data
are from a studya that compared outcomes for two different types of surgery for kidney stones; A:
open, which used open surgery, and B: ultrasound, which used a small incision, with the stone
destroyed by ultrasound. The data can be entered into R, thus:

> stones <- array(c(81, 6, 234, 36, 192, 71, 55, 25), dim = c(2,

+ 2, 2), dimnames = list(Sucess = c("yes", "no"), Method = c("open",

+ "ultrasound"), Size = c("<2cm", ">=2cm")))

(a) Determine the success rate that is obtained from combining the data for the two different sizes
of stone. Also determine the success rates for the two different stone sizes separately.

(b) Use the following code to give a visual representation of the information in the three-way table:

mosaicplot(stones, sort=3:1)

# Re-ordering the margins gives a more interpretable plot.

Annotate the graph to show the success rates?

(c) Observe that the overall rate is, for open surgery, biased toward the open surgery outcome for
large stones, while for ultrasound it is biased toward the outcome for small stones. What are
the implications for the interpretation of these data?

[Without additional information, the results are impossible to interpret. Different surgeons will
have preferred different surgery types, and the prior condition of patients will have affected the
choice of surgery type. The consequences of unsuccessful surgery may have been less serious than
for ultrasound than for open surgery.]

aCharig, C. R., 1986. Comparison of treatment of renal calculi by operative surgery, percutaneous nephrolithotomy,
and extracorporeal shock wave lithotripsy. British Medical Journal , 292:879–882

The relative success rates for the two different types of surgery, for the two stone sizes separately,
can be calculated thus:

> stones[1, , ]/(stones[1, , ] + stones[2, , ])
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To perform the same calculation after adding over the two stone sizes (the third dimension of the
table), do

> stones2 <- stones[, , 1] + stones[, , 2]

> stones2[1, ]/(stones2[1, ] + stones2[2, ])

1.1 Which multi-way table? It can be important!

Each year the National Highway Traffic Safety Administration (NHTSA) in the USA collects, using a
random sampling method, data from all police-reported crashes in which there is a harmful event (peo-
ple or property), and from which at least one vehicle is towed. The data frame nassCDS (DAAGxtras)
is derived from NHTSA data.1

The data are a sample. The use of a complex sampling scheme has the consequence that the
sampling fraction differs between observations. Each point has to be multiplied by the relevant sam-
pling fraction, in order to get a proper estimate of its contribution to the total number of accidents.
The column weight (national = national inflation factor in the SAS dataset) gives the relevant
multiplier.

Other variables than those included in nassCDS might be investigated – those extracted into
nassCDS are enough for present purposes.

The following uses xtabs() to estimate numbers of front seat passengers alive and dead, classified
by airbag use:

library(DAAGxtras)

> abtab <- xtabs(weight ~ dead + airbag, data=nassCDS)

> abtab

airbag

dead none airbag

alive 5445245.90 6622690.98

dead 39676.02 25919.11

The function prop.table() can then be used to obtain the proportions in margin 1, i.e., the propor-
tions dead, according to airbag use:

> round(prop.table(abtab, margin=2)["dead", ], 4)

none airbag

0.0072 0.0039

## Alternatively, the following gives proportions alive & dead

## round(prop.table(abtab, margin=2), 4)

The above might suggest that the deployment of an airbag substantially reduces the risk of mor-
tality. Consider however:

> abSBtab <- xtabs(weight ~ dead + seatbelt + airbag, data=nassCDS)

> ## Take proportions, retain margins 2 & 3, i.e. airbag & seatbelt

> round(prop.table(abSBtab, margin=2:3)["dead", , ], 4)

seatbelt

airbag none belted

none 0.0176 0.0038

airbag 0.0155 0.0021

The results are now much less favorable to airbags. The clue comes from examination of:

1They hold a subset of the columns from a corrected version of the data analyzed in the Meyer (2005) paper that is
referenced on the help page for nassCDS. More complete data are available from one of the web pages
http://www.stat.uga.edu/~mmeyer/airbags.htm (SAS transport file)
or http://www.maths.anu.edu.au/~johnm/datasets/airbags/ (R image file).



2 WEIGHTING EFFECTS – EXAMPLE WITH A CONTINOUS OUTCOME 5

> margin.table(AStab, margin=2:3) # Add over margin 1

airbag

seatbelt none airbag

none 1366088.6 885635.3

belted 4118833.4 5762974.8

In the overall table, the results without airbags are mildly skewed ( 4.12:1.37) to the results for belted,
while with airbags they are highly skewed ( 57.6:8.86) to the results for belted.

Exercise 2
Do an analysis that accounts, additionally, for estimated force of impact (dvcat):

ASdvtab <- xtabs(weight ~ dead + seatbelt + airbag + dvcat,

data=nassCDS)

round(prop.table(ASdvtab, margin=2:4)["dead", , , ], 6)

## Alternative: compact, flattened version of the table

round(ftable(prop.table(ASdvtab, margin=2:4)["dead", , , ]), 6)

It will be apparent that differences between none and airbag are now below any reasonable threshold
of statistical detectability.

Exercise 3
The package DAAGxtras includes the function excessRisk(). Run it with the default arguments,
i.e. type

> excessRisk()

Compare the output with that obtained in Exercise 2 when the classification was a/c seatbelt (and
airbag), and check that the output agrees.
Now do the following calculations, in turn:

(a) Classify according to dvcat as well as seatbelt. All you need do is add dvcat to the first
argument to excessRisk(). What is now the total number of excess deaths?
[The categories are 0-9 kph, 10-24 kph, 25-39 kph, 40-54 kph, and 55+ kph]

(b) Classify according to dvcat, seatbelt and frontal, and repeat the calculations. What is
now the total number of excess deaths?

Explain the dependence of the estimates of numbers of excess deaths on the choice of factors for the
classification.

Note: ? argues that these data, tabulated as above, have too many uncertainties and potential
sources of bias to give reliable results. He presents a different analysis, based on the use of front
seat passenger mortality as a standard against which to compare driver mortality, and limited to cars
without passenger airbags. In the absence of any effect from airbags, the ratio of driver mortality to
passenger mortality should be the same, irrespective of whether or not there was a driver airbag. In
fact the ratio of driver fatalities to passenger fatalities was 11% lower in the cars with driver airbags.

2 Weighting Effects – Example with a Continous Outcome

Exercise 4
Table 2, shows data from the data frame gaba (DAAGxtras). For background, see
the Gordon (1995) paper that is referenced on the help page for gaba. [Image
files that hold the functions plotGaba() and compareGaba() are in the subdirectory
http://www.maths.anu.edu.au/~johnm/r/functions/ ]
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min mbac mpl fbac fpl
2 10 1.76 1.76 2.18 2.55
3 30 1.31 1.65 3.48 4.15
4 50 0.05 0.67 3.13 3.66
5 70 −0.57 −0.25 3.03 2.05
6 90 −1.26 −0.50 2.08 0.61
7 110 −2.15 −2.22 1.60 0.34
8 130 −1.65 −2.18 1.38 0.67
9 150 −1.68 −2.86 1.76 0.76

10 170 −1.68 −3.23 1.06 0.39

Table 2: Data (average VAS pain scores)
are from a trial that investigated the effect
of pentazocine on post-operative pain, with
(mbac and fbac) and without (mpl and fpl)
preoperatively administered baclofen. Data
are in the data frame gaba (DAAGxtras
package). Numbers of males and females
on the two treatments were:

baclofen placebo
females 15 7

males 3 16

Exercise 4, continued

(a) What do you notice about the relative numbers on the two treatments?

(b) For each treatment, obtain overall weighted averages at each time point, using the numbers
in Table 2 as weights. (These are the numbers you would get if you divided the total over all
patients on that treatment by the total number of patients.) This will give columns avbac

and avplac that can be added the data frame.

(c) Plot avbac and avplac against time, on the same graph. On separate graphs, repeat the
comparisons (a) for females alone and (b) for males alone. Which of these graphs make a
correct and relevant comparison between baclofen and placebo (albeit both in the presence of
pentazocine)?

3 Extraction of nassCDS
Here are details of the code used to extract these data.

nassCDS <- nass9702cor[,c("dvcat", "national", "dead", "airbag", "seatbelt",

"frontal", "male", "age.of.o", "yearacc")]

nassCDS$dead <- 2-nass_cds$dead # Ensures 0 = survive; 1 = dead

## Now make dead a factor

nassCDS$dead <- factor(c("alive", "dead")[nassCDS$dead+1])

names(nassCDS)[8] <- "ageOFocc"

names(nassCDS)[2] <- "weight"

table(nassCDS$seatbelt) # Check the values of seatbelt, & their order

## Now make seatbelt a factor. The first value, here 0, becomes "none"

## The second value, here 1, becomes "belted"

nassCDS$seatbelt <- factor(nassCDS$seatbelt, labels=c("none","belted"))

# NB labels (unlike levels) matches only the order, not the values

nassCDS$airbag <- factor(nassCDS$airbag, labels=c("none","airbag"))
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Part VII

Populations & Samples – Theoretical &
Empirical Distributions
R functions that will be used in this laboratory include:

(a) dnorm(): Obtain the density values for the theoretical normal distribution;

(b) pnorm(): Given a normal deviate or deviates, obtain the cumulative probability;

(c) qnorm(): Given the cumulative probabilty. calculate the normal deviate;

(d) sample(): take a sample from a vector of values. Values may be taken without replacement
(once taken from the vector, the value is not available for subsequent draws), or with replacement
(values may be repeated);

(e) density(): fit an empirical density curve to a set of values;

(f) rnorm(): Take a random sample from a theoretical normal distribution;

(g) runif(): similar to rnorm(), but sampling is from a uniform distribution;

(h) rt(): similar to rnorm(), but sampling is from a t-distribution (the degrees of freedom must be
given as the second parameter);

(i) rexp(): similar to rnorm(), but sampling is from an exponential distribution;

(j) qqnorm(): Compare the empirical distribution of a set of values with the empirical normal
distribution.

1 Populations and Theoretical Distributions

Exercise 1

(a) Plot the density and the cumulative probability curve for a normal distribution with a mean
of 2.5 and SD = 1.5.
Code that will plot the curve is

> curve(dnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +

+ 3 * 1.5)

> curve(pnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +

+ 3 * 1.5)

(b) From the cumulative probability curve in (a), read off the area under the density curve between
x=0.5 and x=4. Check your answer by doing the calculation

> pnorm(4, mean = 2.5, sd = 1.5) - pnorm(0.5, mean = 2.5, sd = 1.5)

[1] 0.7501335
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Exercise 1, continued

(a) The density for the distribution in items (i) and (ii), given by dnorm(x, 2.5, 1.5), gives the
relative number of observations per unit interval that can be expected at the value x. For
example dnorm(x=2, 2.5, 1.5) ' 0.2516. Hence

(i) In a sample of 100 the expected number of observations per unit interval, in the immediate
vicinity of x = 2, is 25.16

(ii) In a sample of 1000 the expected number of observations per unit interval, in the imme-
diate vicinity of x = 2, is 251.6

(iii) The expected number of values from a sample of 100, between 1.9 amd 2.1, is approxi-
mately 0.2 × 251.6 = 50.32[

The number can be calculated more exactly as
(pnorm(2.1, 2.5, 1.5) - pnorm(1.9, 2.5, 1.5)) * 1000

]
Repeat the calculation to get approximate and more exact values for the expected number

(i) between 0.9 and 1.1

(ii) between 2.9 and 3.1

(iii) between 3.9 and 4.1

By way of example, here is the code for (a):

> curve(dnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +

+ 3 * 1.5)

> curve(pnorm(x, mean = 2.5, sd = 1.5), from = 2.5 - 3 * 1.5, to = 2.5 +

+ 3 * 1.5)

Exercise 2

(a) Plot the density and the cumulative probability curve for a t-distribution with 3 degrees of
freedom. Overlay, in each case, a normal distribution with a mean of 0 and SD=1.
[Replace dnorm by dt, and specify df=10]

(b) Plot the density and the cumulative probability curve for an exponential distribution with a
rate parameter equal to 1 (the default). Repeat, with a rate parameter equal to 2. (When
used as a failure time distribution; the rate parameter is the expected number of failures per
unit time.)

2 Samples and Estimated Density Curves

Exercise 3
Use the function rnorm() to draw a random sample of 25 values from a normal distribution with
a mean of 0 and a standard deviation equal to 1.0. Use a histogram, with probability=TRUE to
display the values. Overlay the histogram with: (a) an estimated density curve; (b) the theoretical
density curve for a normal distribution with mean 0 and standard deviation equal to 1.0. Repeat
with samples of 100 and 500 values, showing the different displays in different panels on the same
graphics page.

> par(mfrow = c(1, 3), pty = "s")

> x <- rnorm(50)

> hist(x, probability = TRUE)
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> lines(density(x))

> xval <- pretty(c(-3, 3), 50)

> lines(xval, dnorm(xval), col = "red")

Exercise 4
Data whose distribution is close to lognormal are common. Size measurements of biological organ-
isms often have this character. As an example, consider the measurements of body weight (body),
in the data frame Animals (MASS ). Begin by drawing a histogram of the untransformed values,
and overlaying a density curve. Then

(a) Draw an estimated density curve for the logarithms of the values. Code is given immediately
below.

(b) Determine the mean and standard deviation of log(Animals$body). Overlay the estimated
density with the theoretical density for a normal distribution with the mean and standard
deviation just obtained.

Does the distribution seem normal, after transformation to a logarithmic scale?

> library(MASS)

> plot(density(Animals$body))

> logbody <- log(Animals$body)

> plot(density(logbody))

> av <- mean(logbody)

> sdev <- sd(logbody)

> xval <- pretty(c(av - 3 * sdev, av + 3 * sdev), 50)

> lines(xval, dnorm(xval, mean = av, sd = sdev))

Exercise 5
The following plots an estimated density curve for a random sample of 50 values from a normal
distribution:

> plot(density(rnorm(50)), type = "l")

(a) Plot estimated density curves, for random samples of 50 values, from (a) the normal dis-
tribution; (b) the uniform distribution (runif(50)); (c) the t-distribution with 3 degrees of
freedom. Overlay the three plots (use lines() in place of plot() for densities after the first).

(b) Repeat the previous exercise, but taking random samples of 500 values.

Exercise 6
There are two ways to make an estimated density smoother:

(a) One is to increase the number of samples, For example:

> plot(density(rnorm(500)), type = "l")
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Exercise 6, continued

(b) The other is to increase the bandwidth. For example

> plot(density(rnorm(50), bw = 0.2), type = "l")

> plot(density(rnorm(50), bw = 0.6), type = "l")

Repeat each of these with bandwidths (bw) of 0.15, with the default choice of bandwidth, and with
the bandwidth set to 0.75.

Exercise 7
Here we experiment with the use of sample() to take a sample from an empirical distribution, i.e.,
from a vector of values that is given as argument. Here, the sample size will be the number of values
in the argument. Any size of sample is however permissible.

> sample(1:5, replace = TRUE)

> for (i in 1:10) print(sample(1:5, replace = TRUE))

> plot(density(log10(Animals$body)))

> lines(density(sample(log10(Animals$body), replace = TRUE)), col = "red")

Repeat the final density plot several times, perhaps using different colours for the curve on each
occasion. This gives an indication of the stability of the estimated density curve with respect to
sample variation.

3 *Normal Probability Plots

Exercise 8
Partly because of the issues with bandwidth and choice of kernel, and partly because it is hard to
density estimates are not a very effective means for judging normality. A much better tool is the
normal probability plot, which works with cumulative probability distributions. Try

> qqnorm(rnorm(10))

> qqnorm(rnorm(50))

> qqnorm(rnorm(200))

For samples of modest to large sizes, the points lie close to a line.
The function qreference() (DAAG) takes one sample as a reference (by default it uses a random
sample) and by default provides 5 other random normal samples for comparison. For example:

> library(DAAG)

> qreference(m = 10)

> qreference(m = 50)

> qreference(m = 200)

Exercise 9
The intended use of qreference() is to draw a normal probability for a set of data, and place
alongside it some number of normal probability plots for random normal data. For example

> qreference(possum$totlngth)

Obtain similar plots for each of the variables taill, footlgth and earconch in the possum data.
Repeat the exercise for males and females separately
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Exercise 10
Use normal probability plots to assess whether the following sets of values, all from data sets in
the DAAG package, have distributions that seem consistent with the assumption that they have been
sampled from a normal distribution?

(a) the difference heated - ambient, in the data frame pair65 (DAAG)?

(b) the values of earconch, in the possum data frame (DAAG)?

(c) the values of body, in the data frame Animals (MASS )?

(d) the values of log(body), in the data frame Animals (MASS )?

4 Boxplots – Simple Summary Information on a Distribution
In the data frame cfseal (DAAG), several of the columns have a number of missing values. A relevant
question is: “Do missing and non-missing rows have similar values, for columns that are complete?”

Exercise 11
Use the following to find, for each column of the data frame cfseal, the number of missing values:

sapply(cfseal, function(x)sum(is.na(x)))

Observe that for lung, leftkid, rightkid, and intestines values are missing in the same six rows.
For each of the remaining columns compare, do boxplots that compare the distribution of values
for the 24 rows that had no missing values with the distribution of values for the 6 rows that had
missing values.

Here is code that can be used to get started:

present <- complete.cases(cfseal)

boxplot(age ~ present, data=cfseal)

Or you might use the lattice function and do the following:

present <- complete.cases(cfseal)

library(lattice)

present <- complete.cases(cfseal)

bwplot(present ~ age, data=cfseal)

Exercise 12
Tabulate, for the same set of columns for which boxplots were obtained in Exercise 2, differences in
medians, starting with:

median(age[present]) - median(age[!present]))

Calculate also the ratios of the two interquartile ranges, i.e.

IQR(age[present]) - IQR(age[!present]))
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Part VIII

Informal Uses of Resampling Methods

1 Bootstrap Assessments of Sampling Variability

Exercise 1
The following takes a with replacement sample of the rows of Pima.tr2.

> rows <- sample(1:dim(Pima.tr2)[1], replace = TRUE)

> densityplot(~bmi, groups = type, data = Pima.tr2[rows, ], scales = list(relation = "free"),

+ xlab = "Measure")

Repeat, but using anymiss as the grouping factor, and with different panels for the two levels
of type. Repeat for several different bootstrap samples. Are there differences between levels of
anymiss that seem consistent over repeated bootstrap samples?

Exercise 2
The following compares density plots, for several of the variables in the data frame Pima.tr2,
between rows that had one or more missing values and those that had no missing values.

> missIND <- complete.cases(Pima.tr2)

> Pima.tr2$anymiss <- c("miss", "nomiss")[missIND + 1]

> library(lattice)

> stripplot(anymiss ~ npreg + glu | type, data = Pima.tr2, outer = TRUE,

+ scales = list(relation = "free"), xlab = "Measure")

The distribution for bmi gives the impression that it has a different shape, between rows where one
or more values was missing and rows where no values were missing, at least for type=="Yes". The
bootstrap methodology can be used to give a rough check of the consistency of apparent differences
under sampling variation. The idea is to treat the sample as representative of the population,
and takes repeated with replacement (“bootstrap”) samples from it. The following compares the
qq-plots between rows that had missing data (anymiss=="miss") and rows that were complete
(anymiss=="nomiss"), for a single bootstrap sample, separately for the non-diabetics (type=="No")
and the diabetics (type=="Yes").

> rownum <- 1:dim(Pima.tr2)[1]

> chooserows <- sample(rownum, replace = TRUE)

> qq(anymiss ~ bmi | type, data = Pima.tr2[chooserows, ], auto.key = list(columns = 2))

Wrap these lines of code in a function. Repeat the formation of the bootstrap samples and the plots
several times. Does the shift in the distribution seem consistent under repeating sampling?

Judgements based on examination of graphs are inevitably subjective. They do however make it
possible to compare differences in the shapes of distributions. Here, the shape difference is of more
note than any difference in mean or median.

Exercise 3
In the data frame nswdemo (DAAGxtras package), compare the distribution of re78 for those who
received work training (trt==1) with controls (trt==0) who did not.

> library(DAAGxtras)

> densityplot(~re78, groups = trt, data = nswdemo, from = 0, auto.key = list(columns = 2))

The distributions are highly skew. A few very large values may unduly affect the comparison.
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Exercise 3, continued
A reasonable alternative is to compare values of log(re78+23). The value 23 is chosen because it
is half the minimum non-zero value of re78. Here is the density plot.

> unique(sort(nswdemo$re78))[1:3]

> densityplot(~log(re78 + 23), groups = trt, data = nswdemo, auto.key = list(columns = 2))

Do the distribution for control and treated have similar shapes?

Exercise 4
Now examine the displacement, under repeated bootstrap sampling, of one mean relative to the
other. Here is code for the calculation:

> twoBoot <- function(n = 999, df = nswdemo, ynam = "re78", gp = "trt") {

+ fac <- df[, gp]

+ if (!is.factor(fac))

+ fac <- factor(fac)

+ if (length(levels(fac)) != 2)

+ stop(paste(gp, "must have 2 levels"))

+ y <- df[, ynam]

+ d2 <- c(diff(tapply(y, fac, mean)), rep(0, n))

+ for (i in 1:n) {

+ chooserows <- sample(1:length(y), replace = TRUE)

+ faci <- fac[chooserows]

+ yi <- y[chooserows]

+ d2[i + 1] <- diff(tapply(yi, faci, mean))

+ }

+ d2

+ }

> d2 <- twoBoot()

> quantile(d2, c(0.025, 0.975))

Note that a confidence interval should not be interpreted as a probability statement. It takes no
account of prior probability. Rather, 95% of intervals that are calculated in this way can be expected
to contain the true probability.

2 Use of the Permutation Distribution as a Standard

Exercise 5
If the difference is entirely due to sampling variation, then permuting the treatment labels will give
another sample from the same null distribution. The permutation distribution is the distribution of
differences of means from repeated samples, obtained by permuting the labels.
This offers a standard against which to compare the difference between treated and controls. Does
the observed difference between treated and controls seem “extreme”, relative to this permutation
distribution? Note that the difference between treat==1 and treat==1 might go in either direction.
Hence the multiplication of the tail probability by 2. Here is code:

> dnsw <- numeric(1000)

> y <- nswdemo$re78

> treat <- nswdemo$trt

> dnsw[1] <- mean(y[treat == 1]) - mean(y[treat == 0])

> for (i in 2:1000) {

+ trti <- sample(treat)

+ dnsw[i] <- mean(y[trti == 1]) - mean(y[trti == 0])

+ }

> 2 * min(sum(d2 < 0)/length(d2), sum(d2 > 0)/length(d2))

Replace re78 with log(re78+23) and repeat the calculations.
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Part IX

Sampling Distributions, & the Central
Limit Theorem
Package: DAAGxtras

1 Sampling Distributions
The exercises that follow demonstrate the sampling distribution of the mean, for various different
population distributions. More generally, sampling distributions of other statistics may be important.

Inference with respect to means is commonly based on the sampling distribution of the mean,
or of a difference of means, perhaps scaled suitably. The ideas extend to the statistics (coefficients,
etc) that arise in regression or discriminant or other such calculations. These ideas are important in
themselves, and will be useful background for later laboratories and lectures.

Here, it will be assumed that sample values are independent. There are several ways to proceed.

• The distribution from which the sample is taken, although not normal, is assumed to follow a
common standard form. For example, in the life testing of industrial components, an exponential
or Weibull distribution might be assumed. The relevant sampling distribution can be estimated
by taking repeated random samples from this distribution, and calculating the statistic for each
such sample.

• If the distribution is normal, then the sample distribution of the mean will also be normal. Thus,
taking repeated random samples is unnecessary; theory tells us the shape of the distribution.

• Even if the distribution is not normal, the Central Limit Theorem states that, by taking a large
enough sample, the sampling distribution can be made arbitrarily close to normal. Often, given
a population distribution that is symmetric, a sample of 4 or 5 is enough, to give a sampling
distribution that is for all practical purposes normal.

• The final method [the ”bootstrap”] that will be described is empirical. The distribution of sample
values is treated as if it were the population distribution. The form of the sampling distribution
is then determined by taking repeated random with replacement samples (bootstrap samples),
of the same size as the one available sample, from that sample. The value of the statistic is
calculated for each such bootstrap sample. The repeated bootstrap values of the statistic are
used to build a picture of the sampling distribution.

With replacement samples are taken because this is equivalent to sampling from a population
in which each of the avaialble sample values is repeated an infinite number of times.

The bootstrap method obviously works best if the one available sample is large, thus providing
an accurate estimate of the population distribution. Likewise, the assumption that the sampling
distribution is normal is in general most reasonable if the one available sample is of modest size, or
large. Inference is inevitably hazardous for small samples, unless there is prior information on the
likely form of the distribution. As a rough summary:

• Simulation (repeated resampling from a theoretical distribution or distributions) is useful

– as a check on theory (the theory may be approximate, or of doubtful relevance)

– where there is no adequate theory

– to provide insight, especially in a learning context.

• The bootstrap (repeated resampling from an empirical distribution or distributions) can be
useful
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– when the sample size is modest and uncertainty about the distributional form may mate-
rially affect the assessment of the shape of the sampling distribution;

– when standard theoretical models for the population distribution seem unsatisfactory.

The idea of a sampling distribution is wider than that of a sampling distribution of a statistic. It
can be useful to examine the sampling distribution of a graph, i.e., to examine how the shape of a
graph changes under repeated bootstrap sampling.

Exercise 1
First, take a random sample from the normal distribution, and plot the estimated density function:

> y <- rnorm(100)

> plot(density(y), type="l")

Now take repeated samples of size 4, calculate the mean for each such sample, and plot the density
function for the distribution of means:

> av <- numeric(100) # will take 100 means

> for (i in 1:100){

+ av[i] <- mean(rnorm(4))

+ }

> lines(density(av), col="red")

Repeat the above: taking samples of size 9, and of size 25.

Exercise 2
It is also possible to take random samples, usually with replacement, from a vector of values, i.e.,
from an empirical distribution. This is the bootstrap idea. Again, it may of interest to study the
sampling distributions of means of different sizes. Consider the distribution of heights of female
Adelaide University students, in the data frame survey (MASS package). The following takes 100
bootstrap samples of size 4, calculating the mean for each such sample:

> library(MASS)

> y <- na.omit(survey[survey$Sex=="Female", "Height"])

> av <- numeric(100)

> for(i in 1:100)av[i] <- mean(sample(y, 4, replace=TRUE))

Repeat, taking samples of sizes 9 and 16. In each case, use a density plot to display the (empirical)
sampling distribution.

Exercise 3
Repeat exercise 1 above: (a) taking values from a uniform distribution (replace rnorm(4) by
runif(4)); (b) from an exponential distribution with rate 1 (replace rnorm(4) by rexp(4,

rate=1)).
[As noted above, density plots are not a good tool for assessing distributional form. They are how-
ever quite effective, as here, for showing the reduction in the standard deviation of the sampling
distribution of the mean as the sample size increases. The next exercise but one will repeat the
comparisons, using normal probability plots in place of density curves.]
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Exercise 4
Laboratory 3 examined the distribution of bmi in the data frame Pima2 (MASS package). The
distribution looked as though it might have shifted, for data where one or more rows was missing,
relative to other rows. We can check whether this apparent shift is consistent under repeated
sampling. Here again is code for the graph for bmi

> library(MASS)

> library(lattice)

> complete <- complete.cases(Pima.tr2)

> completeF <- factor(c("oneORmore", "none")[as.numeric(complete)+1])

> Pima.tr2$completeF <- completeF

> densityplot(~bmi, groups=completeF, data=Pima.tr2, auto.key=list(columns=2))

Now take one bootstrap sample from each of the two categories of row, then repeating the density
plot.

> rownum <- seq(along=complete) # generate row numbers

> allpresSample <- sample(rownum[complete], replace=TRUE)

> # By default, sample size is the number of vales of the first argument

> NApresSample <- sample(rownum[!complete], replace=TRUE)

> densityplot(~bmi, groups=completeF, data=Pima.tr2,

+ auto.key=list(columns=2), subset=c(allpresSample, NApresSample))

Wrap these lines of code in a function. Repeat the formation of the bootstrap samples and the plots
several times. Does the shift in the distribution seem consistent under repeating sampling?

Exercise 5
More commonly, one compares examines the displacement, under repeated sampling, of one mean
relative to the other. Here is code for the calculation:

> twot <- function(n=99){

+ complete <- complete.cases(Pima.tr2)

+ rownum <- seq(along=complete) # generate row numbers

+ d2 <- numeric(n+1)

+ d2[1] <- with(Pima.tr2, mean(bmi[complete], na.rm=TRUE)-

+ mean(bmi[!complete], na.rm=TRUE))

+ for(i in 1:n){

+ allpresSample <- sample(rownum[complete], replace=TRUE)

+ NApresSample <- sample(rownum[!complete], replace=TRUE)

+ d2[i+1] <- with(Pima.tr2, mean(bmi[allpresSample], na.rm=TRUE)-

+ mean(bmi[NApresSample], na.rm=TRUE))

+ }

+ d2

+ }

> # NB: There are n+1 values in all; the mean difference for the

> # actual sample values, plus differences for n bootstrap samples

> ## Now estimate and plot the density function

> d2 <- twot(n=999)

> dens <- density(d2)

> plot(dens)

> ## Check the proportion of values of d2 that are less than or equal to 0

> sum(d2<0)/length(d2)

[1] 0.171

Those who are familiar with t-tests may recognize the final calculation as a bootstrap equivalent of
the t-test.



2 THE CENTRAL LIMIT THEOREM 18

Exercise 6
The range that contains the central 95% of values of d2 gives a 95% confidence (or coverage) interval
for the mean difference. Given that there are 1000 values in total, the interval is the range from the
26th to the 975th value, when values are sorted in order of magnitude, thus:

> round(sort(d2)[c(26, 975)], 2)

[1] -0.86 2.50

Repeat the calculation of d2 and the calculation of the resulting 95% confidence interval, several
times.

2 The Central Limit Theorem
Theoretically based t-statistic and related calculations rely on the assumption that the sampling
distribution of the mean is normal. The Central Limit Theorem assures that the distribution will for
a large enough sample be arbitrarily close to normal, providing only that the population distribution
has a finite variance. Simulation of the sampling distribution is especially useful if the population
distribution is not normal, providing an indication of the size of sample needed for the sampling
distribution to be acceptably close to normal.

Exercise 7
The function simulateSampDist() (DAAGxtras) allows investigation of the sampling distribution
of the mean or other stastistic, for an arbitrary population distribution and sample size. Figure 1
shows sampling distributions for samples of sizes 4 and 9, from a normal population. The function
call is

> library(DAAGxtras)

> sampvalues <- simulateSampDist(numINsamp=c(4,9))

> plotSampDist(sampvalues=sampvalues, graph="density", titletext=NULL)

Experiment with sampling from normal, uniform, exponential and t2-distributions. What is the
effect of varying the value of numsamp?
[To vary the kernel and/or the bandwidth used by density(), just add the relevant arguments in
the call to to simulateSampDist(), e.g. sampdist(numINsamp=4, bw=0.5). Any such additional
arguments (here, bw) are passed via the ... part of the parameter list.]
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Figure 1: Empirical density curve, for a
normal population and for the sampling
distributions of means of samples of sizes
4 and 9 from that population.
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Exercise 8
The function simulateSampDist() has an option (graph="qq") that allows the plotting of a normal
probability plot. Alternatively, by using the argument graph=c("density","qq"), the two types
of plot appear side by side, as in Figure 2. Figure 2 is an example of its use.

> sampvalues <- simulateSampDist()

> plotSampDist(sampvalues=sampvalues, graph=c("density", "qq"))

In the right panel, the slope is proportional to the standard deviation of the distribution. For means
of a sample size equal to 4, the slope is reduced by a factor of 2, while for a sample size equal to 9,
the slope is reduced by a factor of 3.
Comment in each case on how the spread of the density curve changes with increasing sample size.
How does the qq-plot change with increasing sample size? Comment both on the slope of a line that
might be passed through the points, and on variability about that line.
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Empirical sampling distributions of the mean

Figure 2: Empirical density curves, for a normal population and for the sampling distributions of
means of samples of sizes 4 and 9, are in the left panel. The corresponding normal probability plots
are shown in the right panel.

Exercise 9
How large is ”large enough”, so that the sampling distribution of the mean is close to normal? This
will depend on the population distribution. Obtain the equivalent for Figure 2, for the following
populations:

(a) A t-distribution with 2 degrees of freedom
[rpop = function(n)rt(n, df=2)]

(b) A log-normal distribution, i.e., the logarithms of values have a normal distribution
[rpop = function(n, c=4)exp(rnorm(n)+c)]

(c) The empirical distribution of heights of female Adelaide University students, in the data frame
survey (MASS package). In the call to simulateSampDist(), the parameter rpop can specify
a vector of numeric values. Samples are then obtained by sampling with replacement from
these numbers. For example:

> library(MASS)

> y <- na.omit(survey[survey$Sex=="Female", "Height"])

> sampvalues <- simulateSampDist(y)

> plotSampDist(sampvalues=sampvalues)

How large a sample seems needed, in each instance, so that the sampling distribution is approxi-
mately normal – around 4, around 9, or greater than 9?
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Appendix A

Use of the Sweave (.Rnw) Exercise Files

The following is a wrapper file, called wrap-basic.Rnw, for the sets of exercises generated by process-
ing rbasics.Rnw and rpractice.Rnw. It is actually pure LATEX , so that it is not strictly necessary
to process it through R’s Sweave() function.

\documentclass[a4paper ]{ article}

\usepackage{url}

\usepackage{float}

\usepackage{exercises}

\usepackage{nextpage}

\pagestyle{headings}

\title{``Basic R Exercises '' and ``Further Practice with R''}
\author{John Maindonald}

\usepackage{Sweave}

\begin{document}

\maketitle

\tableofcontents

\cleartooddpage

\include{rbasics}

\cleartooddpage

\setcounter{section }{0}

\include{rpractice}

\end{document}

To create a LATEX file from this, ensure that wrap-basic.Rnw is in the working directory, and do:

> Sweave("wrap-basic")

This generates the file wrap-basic.tex
Now process rbasic.Rnw and rpractice.Rnw through Sweave():

> Sweave("rbasics", keep.source=TRUE)

> Sweave("rpractice", keep.source=TRUE)

This generates files rbasics.tex and rpractice.tex, plus pdf and postscript versions of the graphics
files. Specifying keep.source=TRUE ensures that comments will be retained in the code that appears
in the LATEX file that is generated.

Make sure that the file Sweave.sty is in the LATEX path. A simple way to ensure that it is available
is to copy it into your working directory. Process wrap-basic.tex through LATEX to obtain the pdf
file wrap-basic.pdf.

You can find the path to the file Sweave.sty that comes with your R installation by typing:

> paste(R.home(), "share/texmf/", sep="/") # NB: Output is for a MacOS X system

[1] "/Library/Frameworks/R.framework/Resources/share/texmf/"


