
Practice with R – Laboratory Exercises

John Maindonald

December 27, 2006

Laboratory exercises make extensive use of datasets from the DAAG package. Make sure that it
is installed. Data that are not included in the DAAG package, are available from

http://www.maths.anu.edu.au/~johnm/datasets/

References

Maindonald, J.H. and Braun, W.J., 2nd edn, 2007. Data Analysis and Graphics Using R – An
Example-Based Approach. Cambridge University Press.
<URL:http://www.maths.anu.edu.au/~johnm/r-book.html>
[This is aimed at practicing scientists who have some modest statistical sophistication, and at
statistical practitioners. It demonstrates the use of the R system for data analysis and for graphics.]

Maindonald, J.H. 2006a. Statistical Perspectives on Data Mining (referred to as SPDM).
http://www.maths.anu.edu.au/~johnm/courses/dm

Maindonald, J.H. 2006b. The R System – An Introduction and Overview.
http://www.maths.anu.edu.au/~johnm/courses/dm

1

REFERENCES 2

CONTENTS 3

Contents

I Data Input, Graphs, & Data Manipulation 5

1 Data Input 5

2 Subsets of Dataframes 6

3 Scatterplots 6

4 Information about the Columns of Data Frames 7

5 Factors 8

6 Stripplots (base graphics) and Stripcharts (lattice) 8

7 Sorting 9

II For loops, Functions & Data Exploration 11

1 For loops 11

2 Functions 12

3 Data Exploration – Distributions of Data Values 13

III Practice with R – Further Exercises 15

1 Tabulation 15

2 Smooth Curves 15

3 Avoiding For Loops 16

4 Different Ways to Do a Calculation – Timings 16

5 Functions 17

6 Data Exploration – A Further Exercise 20

7 Esoterica 20

CONTENTS 4

5

Part I

Data Input, Graphs, & Data Manipulation

1 Data Input

Exercise 1
The files molclock.txt, molclock1.txt and molclock2.txt are available from
http://www.maths.anu.edu.au/~johnm/datasets/text/ Download each of these files, into your
working directory. In each case, examine their contents. From the R command line you can do
this using, e.g., readLines("molclock.txt"). Alternatively, you can use R’s script editor (under
Windows, go to File | Open script...), or use another editor such as the Windows tinn-R editor that
is designed to interface to R.
Use read.table() to read each of them into R. Check carefully whether you need header=TRUE.
Then display the data frame and check that the data have been input correctly.

Exercise 2
For the next exercise, it will be handy to use the paste() function. Compare the following:

> paste("Leo", "the", "lion")

[1] "Leo the lion"

> paste("a", "b")

[1] "a b"

> paste("a", "b", sep = "")

[1] "ab"

Given

> webpage <- "http://wwwmaths.anu.edu.au/~johnm/datasets/text/"

paste the file name onto the end to give

"\http://wwwmaths.anu.edu.au/~johnm/datasets/text/molclock.txt"

Exercise 3
Files can be input directly from a web page. Try

> webpage <- "http://wwwmaths.anu.edu.au/~johnm/datasets/text/"

> molclock <- read.table(url(paste(webpage, "molclock.txt", sep = "")))

Use this approach to input the file travelbooks.txt that is available from this same web page.
The function read.csv() is a variant of read.table() that is designed to read in comma delimited
files such as may be obtained from Excel. Use this function to read in the file houses.csv that is
availble from this same web page.

2 SUBSETS OF DATAFRAMES 6

Exercise 4
For a more challenging data input task, input the data from the file bostonc.txt. You can create
this by attaching the DAAG package (enter library(DAAG)) and entering

> datafile("bostonc")

2 Subsets of Dataframes

Exercise 5
Use head() to check the names of the columns, and the first few rows of data, in the data frame
rainforest (DAAG). Use table(rainforest$species) to check the names and numbers of each
species that are present in the data. The following extracts the rows for the species Acmena smithii

> Acmena <- subset(rainforest, species == "Acmena smithii")

The following extracts the rows for the species Acacia mabellae and Acmena smithii

> AcSpecies <- subset(rainforest, species %in% c("Acacia mabellae",

+ "Acmena smithii"))

(a) From the data frame ais (DAAG), extract the data for the rowers.

(b) From the data frame ais (DAAG), extract the data for the rowers, the netballers and the
tennis players.

3 Scatterplots

Exercise 6
Using the Acmena data from the data frame rainforest, plot wood (wood biomass) vs dbh (diameter
at breast height), trying both untransformed scales and logarithmic scales.

> Acmena <- subset(rainforest, species == "Acmena smithii")

> plot(wood ~ dbh, data = Acmena)

> plot(wood ~ dbh, data = Acmena, log = "xy")

Use of the argument log="xy" gives logarithmic scales on both the x and y axes. For purposes of
adding additional features to the plot, note that logarithms to base 10 are used.
For the second plot, we add a line, thus:

> plot(wood ~ dbh, data = Acmena, log = "xy")

> abline(lm(log10(wood) ~ log10(dbh), data = Acmena))

> coef(lm(log10(wood) ~ log10(dbh), data = Acmena))

> coef(lm(log(wood) ~ log(dbh), data = Acmena))

Write down the equation that gives the fitted relationship between wood and dbh.

4 INFORMATION ABOUT THE COLUMNS OF DATA FRAMES 7

Exercise 7
The orings data frame gives data on the damage that had occurred in US space shuttle launches
prior to the disastrous Challenger launch of January 28, 1986. Only the observations in rows 1, 2,
4, 11, 13, and 18 were included in the pre-launch charts used in deciding whether to proceed with
the launch. Add a new column to the data frame that identifies rows that were included in the
pre-launch charts. Now make three plots of Total incidents against Temperature:

(a) Plot only the rows that were included in the pre-launch charts.

(b) Plot all rows.

(c) Plot all rows, using different symbols or colors to indicate whether or not points were included
in the pre-launch charts.

Comment, for each of the first two graphs, whether and open or closed symbol is preferable. For
the third graph, comment on the your reasons for choice of symbols.

Use the following to identify rows that hold the data that were presented in the pre-launch charts:

> orings$Included <- logical(23)

> orings$Included[c(1, 2, 4, 11, 13, 18)] <- TRUE

The construct logical(23) creates a vector of length 23 in which all values are FALSE. The following
are two possibilities for the third plot; can you improve on these choices of symbols and/or colors?

> plot(Total ~ Temperature, data = orings, pch = orings$included +

+ 1)

> plot(Total ~ Temperature, data = orings, col = orings$Included +

+ 1)

Exercise 8
Using the data frame oddbooks, use graphs to investigate the relationships between:

(a) weight and volume;

(b) density and volume;

(c) density and page area.

4 Information about the Columns of Data Frames

Exercise 9
Functions that may be used to get information about data frames include str(), dim(),
row.names() and names(). Try each of these functions with the data frames allbacks, ant111b
and tinting (all in DAAG).
For getting information about the class of each column use e.g.

> sapply(ant111b, class)

or

> unlist(sapply(ant111b, class))

This applies the function class() to each column of the data frame.
For each of these data frames, use table() to tabulate the number of values for each level.

5 FACTORS 8

5 Factors

Exercise 10
Investigate the use of the functions as.character() and unclass() with a factor argument. Com-
ment on their use in the following code.

> par(mfrow = c(1, 2), pty = "s")

> plot(weight ~ volume, pch = unclass(cover), data = allbacks)

> plot(weight ~ volume, data = allbacks, type = "n")

> with(allbacks, text(weight ~ volume, labels = as.character(cover)))

> par(mfrow = c(1, 1))

[The setting mfrow=c(1,2) gives side by side plots. The setting pty="s" gives a square plotting
region.]

Exercise 11
Run the following code:

> gender <- factor(c(rep("female", 91), rep("male", 92)))

> table(gender)

> gender <- factor(gender, levels = c("male", "female"))

> table(gender)

> gender <- factor(gender, levels = c("Male", "female"))

> table(gender)

> rm(gender)

Explain the output from the final table(gender).
The output is

gender
female male

91 92

> table(gender)

> gender <- factor(gender, levels = c("Male", "female"))

> table(gender)

> rm(gender)

6 Stripplots (base graphics) and Stripcharts (lattice)

Exercise 12
Look up the help for the lattice function dotplot().

(a) Compare the following:

> with(ant111b, stripchart(harvwt ~ site))

> library(lattice)

> stripplot(site ~ harvwt, data = ant111b)

Comment on the differences in syntax between the two graphics systems.

(b) Repeat the above plots, using whichever of the two graphics you prefer, but now with the data
frame vince111b.

7 SORTING 9

7 Sorting

Exercise 13
Sort the rows in the data frame Acmena in order of increasing values of dbh.
[Hint: Use the function order(), applied to age to determine the order of row numbers required to
sort rows in increasing order of age. Reorder rows of Acmena to appear in this order.]

> Acmena <- subset(rainforest, species == "Acmena smithii")

> ord <- order(Acmena$dbh)

> acm <- Acmena[ord,]

Sort the row names of possumsites (DAAG) into alphanumeric order. Reorder the rows of
possumsites in order of the row names.

7 SORTING 10

11

Part II

For loops, Functions & Data Exploration
> library(DAAG)

1 For loops

Exercise 1

(a) Create a for loop that, given a numeric vector, prints out one number per line, with its square
and cube alongside.

(b) Look up help(while). Show how to use a while loop to achieve the same result.

(c) Show how to achieve the same result without the use of an explicit loop.

Exercise 2
The following code uses a for loop to plot graphs that compare the relative population growth
(here, by the use of a logarithmic scale) for the Australian states and territories.

> oldpar <- par(mfrow = c(2, 4))

> for (i in 2:9) {

+ plot(austpop[, 1], log(austpop[, i]), xlab = "Year", ylab = names(austpop)[i],

+ pch = 16, ylim = c(0, 10))

+ }

> par(oldpar)

Which Australian adminstration(s) showed the most rapid increase in the early years? Which
showed the most rapid increase in later years?

Exercise 3
A ramdom sample of 500 values from a normal distribution (with mean 0 and standard deviation
1) can be obtained thus:

> y <- rnorm(500)

Use the function hist() to show the distribution of values.
In the laboratory on distributions, repeated samples of size n (e.g., n=4, n=9) will be taken from
such a distribution and the mean calculated for each such sample. For example, the following gives
500 means, each obtained from samples of size n=4:

> av <- numeric(500)

> for (i in 1:500) {

+ av[i] <- mean(rnorm(4))

+ }

Repeat the above calculation, with samples of sizes 9 and 25. For each of the sample sizes 4, 9 and
25, use the function hist() to show the distribution of values.

2 FUNCTIONS 12

Exercise 4
Here is an alternative way to do the calculations of Exercise 3. Code is given for samples of size 4:

> mat <- matrix(rnorm(500 * 4), nrow = 500)

> av <- apply(mat, 2, mean)

Explain why this is this equivalent to the code of Exercise 4.

2 Functions

Exercise 5
The following function calculates the mean and standard deviation of a numeric vector.

> meanANDsd <- function(x) {

+ av <- mean(x)

+ sdev <- sd(x)

+ c(mean = av, sd = sdev)

+ }

Modify the function so that: (a) the default is to use rnorm() to generate 20 random normal
numbers, and return the standard deviation; (b) if there are missing values, the mean and standard
deviation are calculated for the remaining values.

Exercise 6
Write a function that does the calculations of Exercises 3 (and 4) above for an arbitrary choice
of sample size n in place of n=4), and for an arbitary number of samples numsamp in place of
numsamp=500. It should return the vector of sample means.

Exercise 7

(a) Use library(MASS) to attach the MASS package. Look up the help page for the data frame
Pima.tr2, and note the columns in the data frame.

Several of the columns have missing values. Determine the number of missing values in each
column, thus:

> library(MASS)

> count.na <- function(x) sum(is.na(x))

> count.na(c(1, 5, NA, 5, NA, 8))

> sapply(Pima.tr2, count.na)

Write a function that does this last calculation, i.e., it takes a data frame as argument, and
returns, for each column, the number of rows where values are missing. Apply this function
both to the data frame Pima.tr2 and to the data frame cfseal (DAAG).

(b) Modify this function so that it returns, in addition, the number of rows where one or more
columns have missing values.

[Hint: Use complete.cases() to identify rows where there are no missing values.]

3 DATA EXPLORATION – DISTRIBUTIONS OF DATA VALUES 13

3 Data Exploration – Distributions of Data Values

Exercise 8
The data frame rainforest (DAAG package) has data on four different rainforest species. Use
table(rainforest$species) to check the names and numbers of the species present. In the fol-
lowing, attention will be limited to the species Acmena smithii.
Here are two ways to plot histograms showing the distribution of the diameter at base height:

> library(DAAG)

> Acmena <- subset(rainforest, species == "Acmena smithii")

> hist(Acmena$dbh)

> hist(Acmena$dbh, prob = TRUE)

The density is a local estimate of the number per unit interval. The second plot is readily overlaid
with a density plot, thus:

> hist(Acmena$dbh, prob = TRUE, xlim = c(0, 50))

> lines(density(Acmena$dbh, from = 0))

Why use the argument from=0? What is the effect of omitting it?

Exercise 9
Missing values are an issue for many data sets. Never cavalierly ignore their possible effect on
results from an analysis. Ask: “Were observations where values of one or more variables are missing
different in some important way from the rest of the data?”

(a) Split the data frame Pima.tr2 into two data frames – the first consisting of rows where there
are no missing values, and the second consisting of rows where there is one or more missing
value. Here is how to do this:

> anymiss <- complete.cases(Pima.tr2)

> Pima.nomiss <- Pima.tr2[!anymiss,]

> Pima.miss <- Pima.tr2[anymiss,]

Calculate the mean values of columns other than Type for each of these two data frames. For
Type, use table() to compare the relative numbers of the two types.

(b) Use the assignment Pima.tr2$anymiss <- anymiss to create a version of the data frame
Pima.tr2 that has anymiss as an additional column. Use strip plots to compare values of
all columns except Type. Are there any columns where the distribution of differences seems
shifted for the rows that have one or more missing values, relative to rows where there are no
missing values?

3 DATA EXPLORATION – DISTRIBUTIONS OF DATA VALUES 14

Exercise 10

(a) Density plots may be better than the strip plots of Exercise 9 for comparing the distributions,
Try the following, first with the variable npreg as shown, and then with each of the other
columns except Type. Note that the comparison for skin is not very useful, though it may be
educational. Why?

> densityplot(~npreg, groups = anymiss, data = Pima.tr2)

[For present purposes, it will be adequate to describe a density plot as a smoothed version of
a histogram. Density plots, although like histograms open to misuse and misinterpretation,
are in general preferable to histograms. Why? What are the traps?]

(b) If some differences are found that are greater than could be expected as a result of chance,
what are the implications?
[The graphs are obviously an overly subjective basis for making this judgment. They are
however a good start.]

15

Part III

Practice with R – Further Exercises
Exercises that are more technical or challenging are marked with an asterisk.

> library(DAAG)

1 Tabulation

Exercise 1
Tabulate the number of observations in each of the different districts in the data frame rockArt
(DAAGxtras). Create a factor groupDis in which all Districts with less than 5 observations are
grouped together into the category other.

> library(DAAGxtras)

> groupDis <- as.character(rockArt$District)

> tab <- table(rockArt$District)

> le4 <- rockArt$District %in% names(tab)[tab <= 4]

> groupDis[le4] <- "other"

> groupDis <- factor(groupDis)

2 Smooth Curves

Exercise 2
The following compares three different smoothing functions. Comment on the different syntax and,
in the case of lowess(), the different default output that is returned. Why, for the smooth obtained
using lowess(), is it necessary to sort data in order of values of dbh? (Try omitting the ordering,
and observe the result.)

> Acmena <- subset(rainforest, species == "Acmena smithii")

> plot(wood ~ dbh, data = Acmena)

> ord <- order(Acmena$dbh)

> with(Acmena[ord,], lines(predict(loess(wood ~ dbh)) ~ dbh))

> plot(wood ~ dbh, data = Acmena)

> with(Acmena, panel.smooth(dbh, wood))

For each of the functions just noted, what are the parameters that control the smoothness of the
curve? What, in each case, is the default?

Exercise 3*
Here is yet another way to add a smooth curve.

> plot(wood ~ dbh, data = Acmena)

> with(Acmena, lines(smooth.spline(wood ~ dbh, spar = 0.5)))

> with(Acmena, lines(smooth.spline(wood ~ dbh, df = 4), col = "red"))

Experiment with different choices of df. What choice gives the same smoothness as for spar=0.5

3 AVOIDING FOR LOOPS 16

3 Avoiding For Loops

Exercise 4*
Here is code for the calculations that compare the relative population growth rates for the Australian
states and territories (Exercise 2 of Laboratory Exercises 2), but avoiding the use of a loop:

> oldpar <- par(mfrow = c(2, 4))

> invisible(sapply(2:9, function(i, df) plot(df[, 1], log(df[,

+ i]), xlab = "Year", ylab = names(df)[i], pch = 16, ylim = c(0,

+ 10)), df = austpop))

> par(oldpar)

Run the code, and check that it does indeed give the same result as the use of an explicit loop.
[By wrapping the code in the function invisible(), printed output that gives no useful information
can be suppressed.]
Note that lapply() could be used in place of sapply().

Note that there are several subtleties here:

(i) The first argument to sapply() can be either a list (which is, technically, a type of vector) or a
vector. Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an anonymous function that has
two arguments. The argument i takes as its values, in turn, the sucessive elements in the first
argument to sapply

(iii) Where as here the anonymous function has further arguments, they area supplied as additional
arguments to sapply(). Hence the parameter df=austpop.

4 Different Ways to Do a Calculation – Timings

Exercise 5
This exercise will investigate the relative times for different alternative ways to do a calculation.
First, we will create both matrix and data frame versions of a largish data set.

> xxMAT <- matrix(runif(480000), ncol = 50)

> xxDF <- as.data.frame(xxMAT)

The function system.time() will provide timings. The first three numbers that are returned will
be of interest; these are the user cpu time, the system cpu time, and the elapsed time. Repeat each
calculation several times, and note whether there is variation between repeats. If there is, make
the setting options(gcFirst=TRUE), and see whether this leads to more consistent timings. NB: If
your computer chokes on these calculations, reduce the dimensions of xxMAT and xxDF

(a) The following compares the times taken to increase each element by 1:

> system.time(invisible(xxMAT + 1))[1:3]

> system.time(invisible(xxDF + 1))[1:3]

5 FUNCTIONS 17

Exercise 5*, continued

(b) Now compare the following alternative ways to calculate the means of the 50 columns:

> system.time(av1 <- apply(xxMAT, 2, mean))[1:3]

> system.time(av1 <- sapply(xxDF, mean))[1:3]

> system.time({

+ av2 <- numeric(50)

+ for (i in 1:50) av[i] <- mean(xxMAT[, i])

+ })[1:3]

> system.time({

+ av2 <- numeric(50)

+ for (i in 1:50) av[i] <- mean(xxDF[, i])

+ })[1:3]

> system.time({

+ colOFones <- rep(1, dim(xxMAT)[2])

+ av3 <- xxMAT %*% colOFones/dim(xxMAT)[2]

+ })[1:3]

(c) Pick one of the above calculations. Vary the number of rows in the matrix, keeping the number
of columns constant, and plot each of user CPU time and system CPU time against number
of rows of data.

Suggest why the calculation that uses matrix multiplication is so efficient, relative to the other
options.

5 Functions

Exercise 6

(a) Use library(MASS) to attach the MASS package. Look up the help page for the data frame
Pima.tr2, and note the columns in the data frame.

Several of the columns have missing values. Determine the number of missing values in each
column, thus:

> library(MASS)

> count.na <- function(x) sum(is.na(x))

> count.na(c(1, 5, NA, 5, NA, 8))

> sapply(Pima.tr2, count.na)

Write a function that does this last calculation, i.e., it takes a data frame as argument, and
returns, for each column, the number of rows where values are missing. Apply this function
both to the data frame Pima.tr2 and to the data frame cfseal (DAAG).

(b) Modify this function so that it returns, in addition, the number of rows where one or more
columns have missing values.

[Hint: Use complete.cases() to identify rows where there are no missing values.]

5 FUNCTIONS 18

Exercise 7*
Data in the data frame fumig (DAAGxtras) are from a series of fumigation trials, in which produce
was exposed to the fumigant over a 2-hour time period. Concentrations in the chamber were
measured at times 5, 10, 30, 60, 90 and 120 minutes. Two different formulae are in use for comparing
the concentration-time (c-t) product that measures exposure to the fumigant, one using the the times
and concentrations in the data, and the other using the times 15, 30, 60 and 120. The 15-minute
concentration has to be estimated by interpolation. The following code does these calculations, and
returns the two different estimates of the concentration-time (c-t) product.

> "calcCT" <- function(df = fumig, times = c(5, 10, 30, 60, 90,

+ 120), ctcols = 3:8) {

+ usualfac <- c(7.5, 12.5, 25, 30, 30, 15)

+ modfac <- c(20, 25, 30, 30, 15)

+ modtimes <- c(15, 30, 60, 120)

+ require(splines)

+ m <- dim(df)[1]

+ x1 <- times[-1]

+ conc15 <- numeric(m)

+ usualct <- numeric(m)

+ modct <- numeric(m)

+ for (i in 1:m) {

+ y <- unlist(df[i, ctcols])

+ y1 <- y[-1]

+ ct.lm <- lm(y1 ~ ns(x1, 4))

+ xy = data.frame(x1 = c(15, 30, 60, 120))

+ hat <- predict(ct.lm, newdata = xy)

+ conc15[i] <- hat[1]

+ usualct[i] <- sum(usualfac * y)/60

+ modct[i] <- sum(modfac * y1)/60

+ }

+ df <- cbind(usualct = usualct, modct = modct, df[, -ctcols],

+ estconc15 = conc15)

+ df

+ }

Examine the code, and the data frame fumig that is given as the default argument for the parameter
df.
Attach the DAAGxtras package, and do the following:

(a) Run the function, with the default arguments, and note the output.

(b) Are fumigant concentration measurements noticeably more variable at some times than at
others?

(c) Why was the first time omitted, in fitting the spline curve?

(d) Compare the two different calculations of the concentration-time (ct) sum – giving the esti-
mates usualct (the ’usual’ method) and modct) respectively. Is there any systematic bias, in
using one method as opposed to the other?

5 FUNCTIONS 19

Exercise 8
A workspace includes objects possum1, possum2, . . . possum5. The folowing shows how to get the
size of one of these objects one at a time.

> possum1 <- rnorm(10)

> object.size(possum1)

[1] 152

The names of the objects can be obtained with

> nam <- ls(pattern = "^possum")

To get the sizes from the names that are held in nam, do

> sapply(nam, function(x) object.size(get(x)))

Create objects possum2, . . . possum5, and enter this command. Explain the successive steps in the
computation.
[Hint: Compare class(possum1) with class("possum1"), and object.size(possum1) with
object.size("possum1")]

Exercise 9
The function ls() lists, by default, the names of objects in the current environment. If used from
the command line, it lists the objects in the workspace. If used in a function, it lists the names of
the function’s local variables. To get a listing of the contents of the workspace, do the following

> workls <- function() {

+ a <- 0

+ ls(name = ".GlobalEnv")

+ }

> workls()

[1] "Acmena" "Pima.miss" "Pima.nomiss" "anymiss" "betterls"
[6] "calcCT" "count.na" "delI" "flexisub" "groupDis"
[11] "heights" "i" "le4" "nam" "oldflexi"
[16] "oldpar" "ord" "possum1" "subI" "tab"
[21] "test" "vv" "workls" "xx" "xxDF"
[26] "xxMAT" "z" "zerodists" "zz"

[If ls(name=".GlobalEnv") is replaced by ls(), the function lists the names of its local variables.]

Write a function that calculates the sizes of all objects in the workspace, then listing the names and
sizes of the largest ten objects.

6 DATA EXPLORATION – A FURTHER EXERCISE 20

6 Data Exploration – A Further Exercise

Exercise 10
Missing values are an issue for many data sets. Never cavalierly ignore their possible effect on
results from an analysis. Ask: “Were observations where values of one or more variables are missing
different in some important way from the rest of the data?”

(a) Split the data frame Pima.tr2 into two data frames – the first consisting of rows where there
are no missing values, and the second consisting of rows where there is one or more missing
value. Here is how to do this:

> anymiss <- complete.cases(Pima.tr2)

> Pima.nomiss <- Pima.tr2[!anymiss,]

> Pima.miss <- Pima.tr2[anymiss,]

Calculate the mean values of columns other than Type for each of these two data frames. For
Type, use table() to compare the relative numbers of the two types.

(b) Use the assignment Pima.tr2$anymiss <- anymiss to create a version of the data frame
Pima.tr2 that has anymiss as an additional column. Use strip plots to compare values of
all columns except Type. Are there any columns where the distribution of differences seems
shifted for the rows that have one or more missing values, relative to rows where there are no
missing values?

(c) Density plots may be a better tool for comparing the distributions, Try the following, first
with the variable npreg as shown, and then with each of the other columns except Type. Note
that the comparison for skin is not very useful, though it may be educational. Why?

> library(lattice)

> densityplot(~npreg, groups = anymiss, data = Pima.tr2)

[For present purposes, it will be adequate to describe a density plot as a smoothed version of
a histogram. Density plots, although like histograms open to misuse and misinterpretation,
are in general preferable to histograms. Why? What are the traps?]

(d) If some differences are found that are greater than could be expected as a result of chance,
what are the implications?
[The graphs are obviously an overly subjective basis for making this judgment. They are
however a good start.]

7 Esoterica

Exercise 11*
Bored to tears by now? Here is something a bit different!
The binary arithmetic operators +, -, *, / and ^ are implemented as functions. (R is a functional
language; albeit with features that compromise its purity as a member of this genre!) Try the
following:

> 2 + 5

> 10 - 3

> 2/5

> (5 + 2) * (3 - 7)

Use this syntax to evaluate 1.25*(8-5)^3

7 ESOTERICA 21

Exercise 11*, continued
There are two other binary arithmetic operators – %% and %/%. Look up the relevant help page, and
explain, with examples, what they do. Try

> (0:25)%/%5

> (0:25)%%5

Of course, the relational operators are also implemented as functions. Write code that demonstrates
this.
Note also that [is implemented as a function. Try

> z <- c(2, 6, -3, NA, 14, 19)

> z[5]

> heights <- c(Andreas = 178, John = 185, Jeff = 183)

> heights[c("Jeff", "John")]

Rewrite these using the usual syntax.
Use this syntax to extract, from the data frame possumsites (DAAG), the altitudes for Byrangery
and Conondale.

