A Concept-based Model for Enhancing Text Categorization

- MATH3346 Fernando Figueiredo
- Research Paper by:
- Shady Shehata Fakhri Karray Mohamed Kamel
- Pattern Analysis and Machine Intelligence Research Group
- Electrical and Computer Engineering Department
- University of Waterloo
- Canada

Presentation Outline

- Overview of text mining.
- Concept based Model framework.
 - Statistical Analyzer.
 - Conceptual Ontological Graph.
 - Concept Extractor.
 - Experimental results.
- Critique
- Acknowledgments
- Questions

What is Text Mining?

- Text mining is the automated retrieval of novel, interesting and possibly intelligent information from one single document or from many documents
- Combines machine learning, pattern recognition, data mining and linguistics
- Issues:
 - Text is a very compact representation
 - Texts can be considered as unstructured data
 - How to convert text into numbers?
 - Making dictionaries
 - Language and text
- Applications:
 - Text classification
 - Case study retrieval in medicine and law
 - Automated translation
 - Ontologies
 - Document identification and retrieval
 - Discovering trends and intelligence (e.g. time-based text mining)
 - Document summarization
 - Spam filtering
 - Author/Language identification

Text mining - step #1: Generating a dictionary from text file(s)

- - dictionary from single or multiple documents
 - consider number of words, different dictionaries (e.g., emotional dictionary)
 - concatenation/wordstemming (e.g., lumping book and books, walk and walking)

Text mining - step #2: Converting texts to numbers

tf-idf Encoding

- tf-idf: term frequency inverse document frequency (use occurrence matrix)
- How important is a word to a document in a collection or corpus?
 - Importance ~ # times word appears in document
 - Offset by frequency by which word appears in the corpus of all documents
- Variations of td-idf weighting used by search engines to score relevance to query
- tf: Term frequency = number of times a term appears in a particular document

$$tf_i = \frac{n_i}{\sum_k n_k}$$

 idf: Inverse document frequency = importance of term by dividing the number of all documents by the number of documents containing the term

$$idf_i = \log \frac{|D|}{|\{d: d \ni t_i\}|}$$

D total number of ducuments in corpus

 $\{d: d \ni t_i\}$ number of documents where the term t_i appears

$$tfidf = tf_i \cdot idf_i$$

Example: 4 text classes, 29 files

· Make first a dictionary, by going into dictionary tab

- Make_Dictionary (e.g., type wok\c00757.txt, 200 words)

Activate_Dictionary

Prepare

- Word_Freqs
- Make_Meta_File
- Run_SOM

c00050.txt	1	101
c00131.bt	1	102
c00182.bd	1	103
c00192.bit	1	104
c00494.bit	1	105
c00496.bit	1	106
c00498.bit	1	107
c00627.bd	1	108
c00672.bd	1	109
c00757.bd	1	110
IEEE_Buda.txt	2	209
AE_using_wavelet_6.txt	2	210
comparing_keyw_extract_techn_1.txt	2 2 2	201
IEEE_May2000_Kewley_3.txt		202
JN/Natson_8.txt	2 2	203
KB-ME-PLS_4.txt	2	204
Kewley_2002_Battle_5.txt	2	205
KKSLPD4_9.txt	2 2	206
roussinov98information_7.bd	2	207
Websom_Lagus_10.brt	3 3	208
shak_hamlet.bd	3	301
shak_lear.bt		302
shak_mobeth.txt	3	303
shak_caesar.bd	3	304
shak_henry4.txt	3	305
dreicer_twelve_men.txt	4	401
dreicer_titan.txt	4	401
dreicer_sister_carrie.txt	4	403
dreicer_financier.txt	4	404

Figure 1: Concept-based Model

Concept-based Statistical Analyzer

$$weight_{stat_i} = tfweight_i + ctfweight_i$$
 (1)

$$tfweight_i = \frac{tf_{ij}}{\sqrt{\sum_{j=1}^{cn} (tf_{ij})^2}},$$
 (2)

$$ctfweight_i = \frac{ctf_{ij}}{\sqrt{\sum_{j=1}^{cn} (ctf_{ij})^2}},$$
 (3)

Conceptual Ontological Graph (COG)

$$weight_{COG_i} = tfweight_i * L_{COG_i}$$
 (4)

- 1st term is calculated in equation 4.
- 2nd term is discussed in a separate paper by the authors "Enhancing text retrieval performance using COG".

Concept Extractor

$$weight_{comb_i} = weight_{stat_i} * weight_{COG_i}$$
 (5)

- Combines the term calculated by the concept based statistical analyzer and the term calculated by the COG representation.
- Selects the top concepts with the maximum weight value.

Experimental Results

Table 2: Text Classification Improvement using Combined Approach ($weight_{comb}$)

DataSet		Single-Term		$Concept\hbox{-} based$		
		Macro Avg(F1)	Avg Error	$ \text{Macro} \\ \text{Avg}(\text{F1}) $	Avg Error	Improvement
Reuters	SVM NB Rocchio	0.7421 0.6127 0.6513	0.0871 0.2754 0.1632	0.8953 0.8462 0.8574	0.0121 0.0342 0.0231	+20.64%, -86.10% +38.11%, -87.58% +31.64%, -85.84%
ACM	SVM NB Rocchio	0.4973 0.4135 0.4826	0.1782 0.4215 0.2733	0.8263 0.7964 0.7935	0.0532 0.0641 0.0635	+66.15%, -70.14% +92.59%, -84.79% +64.42%, -76.76%
Brown	SVM NB Rocchio	0.6143 0.5071 0.5728	0.1134 0.3257 0.2413	0.8753 0.8372 0.8465	0.0211 0.0341 0.0243	+42.48%, -81.39% +65.09%, -89.53% +47.78%, -89.92%

Critique

- Novel approach to text Categorization.
- Concept Ontological Graph explained in a different research paper.
- Experimental results used "editor" documents, where terms are, in general, well structured and clean.
- Difficult to explain when "concepts" are extracted either by the concept based statistical analysis, or the COG.
- It would be interesting to reproduce the results using different techniques and datasets.

Acknowledgment

- Text Mining Slides courtesy of:
- Mark J. Embrechts (embrem@rpi.edu)
- Department of Decision Sciences & Engineering Systems
- Department of Information Technology
- Rensselaer Polytechnic Institute, Troy, NY 12180
- Presented at ICANN 2007

Thank You

