A Concept-based Model for

| Enhancing Text Categorization

MATH3346 - Fernando Figueiredo

Research Paper by:

Shady Shehata - Fakhri Karray - Mohamed Kamel
Pattern Analysis and Machine Intelligence
Research Group

Electrical and Computer Engineering Department
University of Waterloo

Canada



I Presentation Outline

I * Overview of text mining.

» Concept based Model framework.
- Statistical Analyzer.
— Conceptual Ontological Graph.
— Concept Extractor.
- Experimental results.
 Critique
* Acknowledgments
» Questions



What 1s Text Mining?

» Text mining 1s the automated retrieval of novel, interesting and possibly

intelligent information from one single document or from many documents
* Combines machine learning, pattern recognition. data mining and linguistics
* Issues:

- Text 1s a very compact representation

- Texts can be considered as unstructured data

- How to convert text into numbers?
- Making dictionaries
- Language and text
« Applications:
- Text classification

IWDERSTANDIMNG

- Case study retrieval i medicine and law
- Automated translation / KNOWLEDGE \
- Ontologies
- Document i1dentification and retrieval / INFORMATION \
- Discoverning trends and intelligence
(e.g. ime-based text mining) / BATA \
- Document summarization

- Spam filtering
- Author'Language wdentification



Text mining - step #1: Generating a dictionary from text file(s)
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+ A good dictionary 1s key to success mn text mining PR REOr =

- dictionary from single or multiple documents
- consider number of words, different dictionaries (e g.. emotional dictionary)




Text mining - step #2: Converting texts to numbers
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tf-1df Encoding

 tf-1df: term frequency — inverse document frequency (use occurrence matrix)

* How important 15 a word to a document in a collection or corpus?
- Importance -~ # times word appears in document
- Offset by frequency by which word appears in the corpus of all documents
* Variations of td-idf weighting used by search engines to score relevance to query

« tf: Term frequency = number of times a term appears in a particular document

Fi,
ifi ==
>.n

+ 1df: Inverse document frequency = importance of term by dividing the number
of all documents by the number of documents containing the term

i =log— 2L

|{a" “d 3 r}l

|D| total number of ducuments m corpus

|{:1' 1 3 :__}lmur.be:r of decuments where the term f, appears

fidf =1, - idf,



Example: 4 text classes. 29 files

» Make first a dictionary. by going into dictionary tab
- Make Dictionary (e.g., type wok'c00757.txt, 200 words)
- Activate Dictionary
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Language Independent

Matural Language Processinmg

POS Tagger
Text Sentence Separator

Syntax Parser

Language
Dependent

Comcepi-based Model

Text Pre-processor

Conceptual Ontological Graph I[:"'“[:'ﬂll‘t-lil'-ﬂ!l ed Statistical
nalyzer
(OGS
Representation (tf: term frequency)
(cif: comncepiual te=rm frequemncy)

Figure 1: Concept-based MhNModel




Concept-based Statistical Analyzer
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Conceptual Ontological Graph (COG)

weightoog. = tfweight;  Loog )

» st term is calculated in equation 4.
« 2" term is discussed in a separate paper by the authors
“Enhancing text retrieval performance using COG".



Concapiual Ontologleal Graph (C0G) Represaniation
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Concept Extractor

H"f"ﬁlﬁmmmlh = H"f"flj“[ht.f”( f fI‘q“'fIHhTL("'(){;é B

1
v

 Combines the term calculated by the concept based
statistical analyzer and the term calculated by the COG
representation.

* Selects the top concepts with the maximum weight value.



Experimental Results

Table 2: Text Classification Improvement using Combined Approach (weight.oms)

DataSet Single-Term Concept-based

Macro Avg Macro Avg Improvement
Avg(F1)  Error Avg(F1l} Error p ' -

Reuters | SYM 07421 00871 0.8958 00121 +20.64%, -86.10%
CHEE L NB 0.6127 02754  0.8462  0.0342 +38.11%, -87.58%
Rocchio  0.6513 01632 08574  0.0231 +31.64%. 85.54%

SVM 04973 01782 0.8263  0.0532  +66.15%, -70.14%
NB {:I'.'-l].-l:_:i-r_-i U‘,—LEJ_E 1:'1796_]: ”J_H’"_Ll +9-:| Fgl'l':‘ ‘ _:x:_]: anT_u
Rocchio 0.4826 (0,2733 (1.7935 0.0635 +64.42%. -T6.76%

ACM

SV M 06143 (L1134 0.8753  0.0211 +42.48%, -81.39%
NB 0.5071 (L3257 0.8372  0.0341 +65.09%, -89.53%
Roecchio 05728 0.2413  0.8465  0.0243  447.78%, -89.92%

Brown




Critique

Novel approach to text Categorization.

Concept Ontological Graph explained in a different
research paper.

Experimental results used “editor” documents, where
terms are, in general, well structured and clean.
Difficult to explain when “concepts” are extracted
either by the concept based statistical analysis, or the
COG.

It would be interesting to reproduce the results using
different techniques and datasets.
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