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Part I

Major Themes & Overview
Maindonald, J.H. (2006) comments, from a somewhat different perspective, on a number of the issues
that are raised below.

1 A ‘typical’ data mining problem?

Aa a prelude to discussing of the nature and philosophy of data mining, I will take a quick look at a
classification example that is intended to help illustrate some of the important issue. As is common
in many of the examples that are the stock-in-trade of the data mining literature, the interest is in
prediction rather than interpretation of model parameter of estimates.

1.1 Example – Forensic glass identification:

WinF WinNF Veh Con Tabl Head Class’n error
Window float (’WinF’: 70) 63 6 1 0 0 0 0.10

Window non-float (’WinNF’: 76) 11 59 1 2 2 1 0.22
Vehicle window (’Veh’: 17) 6 4 7 0 0 0 0.59

Containers (’Con’: 13) 0 2 0 10 0 1 0.23
Tableware (’Tabl’: 9) 0 2 0 0 7 0 0.22

Headlamps (’Head’: 29) 1 3 0 0 0 25 0.14

The data consist of 214 rows × 10 columns.

Notice that:

• There are six different types of glass fragments. Window float and non-float glass (70 and 76
items respectively) are much more strongly represented than any other type of glass.

• A classification error is given – this is from use of the random forests algorithm – this will be
described in due course. The overall error rate was 20.1%.

The information that is given about these data is rather scant. Assuming these samples really are
representative, we can classify them with much more confidence than is the case for other glass types.

Questions, for any use of the results (e.g., to identify glass on a suspect)

How/when were data generated? (1987)

• Are the samples truly representative of the various categories of glass? (To make this judgement,
we need to know how data were obtained.)

Are they relevant to current forensic use? (Glass manufacturing processes and materials may
have changed since 1987.)

What are the prior probabilities? (Would you expect to find headlamp glass on the suspect’s
clothing?)

These data are probably not a good basis for making judgements about glass fragments found, in
2008, on a suspect’s clothing. Too much is likely to have changed since 1987. We’d want data that
are a better match with the glass fragments that one might currently expect to find. We can then
generalize with confidence, from the sample from which results have been obtained to some wider
population.

In practice, that may be an almost impossible ask. We may have to be content with data that
are from a population that is a less than perfect match to the population to which results are to be
applied.
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Figure 1: The two panels give two alternative two-dimensional views of the extent to which the
respective classification algorithms have separated the points into the six groups.

Picturing the results: Of course, a two-dimensional view be too simplistic. With six types of
glass, there are five dimensions in which one glass can be distinguished from other glasses. A two-
dimensional view may lose more information than is reasonable. Checks on the adequacy of the
two-dimensional view will be considered in a later chapter.

1.2 Issues for data miners to consider

Issues that need careful attention in any practical data mining project include:

• Results are required that apply to the population for which predictions are required? What are
the implications for data collection and/or choice of data?

• There are many different methods/algorithms. How should the analyst choose between them?
What are good ways to assess the performance of one or other algorithm?

• Often, the analyst would like to know which data columns (variables, or features) were important
for the classification. Could some of them be omitted without loss?

• The analyst may want to attach an interpretation to one or more coefficients? Does the risk of
heart attack increase with the amount that a person smokes?

• Above, I jumped directly into fitting a classification model, with no preliminary scrutiny of the
data. This can be risky. What sorts of preliminary scrutiny can be used to identify problems
with the data, or issues that ought to be addressed?

• I offered a two-dimensional summary of the results, allowing some insight into the classification
result. What can be learned from such a plot? What other investigations might give useful
insight on the analysis results?

Thus far, I have focused on classification. There are however other tools that the analyst will from
time to time want to call into use, or that in some contexts may be more useful than classification.
Easily the strongest candidate is regression. This will be needed whenever the outome is an outcome
variable or measure, rather than a classification.

In fact, I will take the view that classification is a species of regression – a regression where
the outcome is a classification rather than an outcome values for a continuous variable. It will
become apparent that the two methodologies have important common features, as well as important
differences. Where the focus is on features that they have in common, it makes sense to consider
them together in the same discussion. When the differences seem more important than the common
features, they will be considered together.
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1.3 Statistics versus data mining – what is the connection?

I will start by giving my definition of statistics. It is the science of data collection and data analysis.
Some, including perhaps some statisticians, will think this too broad. However that may be, it is the
definition that underpins my thinking.

This advertises itself as a text about data mining, albeit from a statistician’s perspective. I have
given a definition of statistics. What however is data mining? Is it distinct from statistics? The
previous section has, by way of an example, made some suggestions. It will become clear that I do
not have a simple definition for data mining. Rather I will identify it by describing the territory that
I judge it to have staked out for itself.

2 What is data mining?

This section will explore some of the issues that have influenced the development of data mining as a
tradition of data analysis. Perhaps the most important is technological change.

2.1 Technological change

Advances in the past several decades have brought a variety of changes that affect the collection,
manipulation and analysis of data (this list is taken from Maindonald , 2005):

• Large datasets that have been created by automation of data collection, and by the merging
of existing databases, bring new challenges. The challenge may be to obtain forms of data
summary that are suitable for analysis, and/or to handle the sheer bulk of the data. Or, as in
the analysis of genomic expression array or other data where the number of outcome measures
is large, the data may require substantial adaptation of existing analysis methods.

• There are new types of data, derived for example from documents, images and web pages.

• New data analysis methodologies often allow analyses that make better use of the data, more
directly attuned to the questions of scientific interest, than was readily possible 15 years ago.

• Advances in statistical methodology have widened the gap between those whose statistical knowl-
edge has not advanced much in the past decade, and those professionals who are fully au fait
with modern methods.

• New statistical “meta-analysis” approaches that combine data from multiple studies into a single
analysis may allow the detection of patterns that were not apparent from the individual stud-
ies. They may resolve some discrepancies between the separate analyses, while raising further
questions. Note however that meta-analysis typically has complications that make automation
hazardous.

2.2 A definition of data mining

Daryl Pregibon’s definition of data mining as “Statistics at scale and speed” may be as apt as any.
Scale and speed create, inevitably, a large demand for automation. The skill lies in knowing what
to automate, when to call on the skill of the human expert, and in the use of tabular and graphical
summaries that will assist the judgment of skilled data analysts or call attention to features of the
data that might not otherwise be obvious. The demand for scale, speed and automation has created
many opportunities for researchers from a computer science tradition to take a lead role.

Data mining, and indeed all data analysis, draws both from statistics and from computing.

• Statistics contributes: models, the distinction between signal and noise, attention to issues
of generalization, well-tested modeling approaches, and a long tradition of experience in the
analysis of data.
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• Computing has contributed the means for managing data, for automating large parts of com-
putations, for maintaining an audit of all steps in an analysis, and some novel algorithms and
algorithmic approaches.

Comments in Witten and Frank (2000), with respect to machine learning. seem relevant also to
data mining:

In truth, you should not look for a dividing line between machine learning and statistics,
for there is a continuum, and a multidimensional one at that, of data analysis techniques.
. . . Right from the beginning, when constructing and refining the initial data set,
standard statistical methods apply: visualisation of data, selection of attributes, discarding
of outliers, and so on. Most learning algorithms use statistical tests . . . (p.26).1

There are then several alternative names for disciplines, or traditions, that operate in the same general
arena as statistics – including especially machine learning and data mining. Another name that has
soem currency is analytics, witness Davenport and Harris’s text that Competing on Analytics. I will
use data analysis as a name for activites that attract one or more of these names.

2.3 Linkages into statistics

There is an extensive statistical theory that offers important insights on all data analysis. This module
will be unable to use this theory to any substantial extent; there is not time to develop the necessary
theoretical tools. Instead

• This text will often fall back on a relatively informal ideas-based approach that makes little
explicit use of mathematical formulae.

• Empirical approaches, e.g., to assessing accuracy, will be emphasized at the expense of modeling
approaches that rely more heavily on statistical theory.

Good ways to move on from this module include getting up to speed in statistics, and working
closely with experienced statisticians. This module, and other modules in this course, will give hints
on areas of statistical theory that it will be useful to master, and should help motivate the theoretical
content of any subsequent study of statistics.

Ideas of population and sample are crucial. These can be treated in a formal theoretical way. I
will however adopt a less formal approach, using practical examples as motivation.

Statistical theory, as it affects practical data analysis, is currently developing very rapidly. This is
a result of a synergy between new theoretical developments, and the computational power (software
and hardware) of modern computer systems. The R system is one product of this synergy.

3 Planning, Context, Interpretation and Generalization

3.1 Questions to ask

Key issues for any study are:

1. Why am I undertaking this investigation?

2. What is the intended use of results?

3. What limitations, arising from the manner of collection or from the incompleteness of the infor-
mation, may constrain that intended use?

When the analysis is complete, a key question will be: “What is the relevance of these results?”
1Be careful, though, what you do with outliers! Unless demonstrably erroneaous, they should, although perhaps

omitted from the main analysis, be reported and included in graphs. In some analyses the interest may be in a small
number of points that lie away from the main body of the data.



3 PLANNING, CONTEXT, INTERPRETATION AND GENERALIZATION 8

3.2 Purposes of a data analysis exercise

The following is a (perhaps incomplete) list of the purposes that a data analysis may aim to serve:

1. Data collection and summarization may be an end in itself. A business needs to have accurate
accounts just so that it can know whether it is making a profit.

2. Prediction; i.e., the aim is to make statements that generalize beyond the circumstances that
generated the particular data that are under study.

3. Understanding – the elucidation of pattern. To be of interest, the pattern must usually be
relevant beyond the immediate data in which it was found, i.e., generalization is an issue here
also.

3.2.1 Generalization

Most (all?) data mining analyses involve an element of generalization. In predictive modeling, gener-
alization is an explicit concern. The nature of the generalization will typically have large implications
for the investigations that are to be undertaken, of a kind that this module will explore.

3.2.2 Is an hypothesis essential?

The hypothesis testing approach to inference, while in wide use in some areas of statistical application,
seems relatively uncommon in the data mining literature. Certainly, it offers a means for making
statements that apply beyond the specific data used to generate and/or test them. It is not however
always the best or most appropriate approach for this purpose.

3.2.3 Example –the different uses of Australian Bureau of Statistics data

Note the variety of uses of data that are collected by the the Australian Bureau of Statistics. By
explicit use of samples, or (less often) census data, statements will be made that apply to one or
other Australian population – to humans, sheep, farms, or whatever. Results may be used directly to
allocate resources, e.g., the distribution of GST revenue to states. They are also a resource that will be
used by researchers (statisticians, data miners) to find that patterns that will guide decision-making.
As those decisions will affect the future, the interest is in those patterns that can be expected to
persist into the future, i.e., there is a predictive element.

3.2.4 Exercises:

Set out aims for analysis for the studies that have generated the following data:

The forest cover type data set, available from the web site noted in connection with Blackard
(1998). See the file covtype.info for details of these data.

The data set ant111b that gives yield of corn for each of four blocks at each of eight sites on
the island of Antigua in the Caribbean, in a single year.2

The data set on tinting of car windows (tinting (also in DAAG).

The attitudes to science data set (science,DAAG).

Data on diet-disease associations, with the food frequency questionnaire as the diet measurement
instrument.

Data on diet-genotype associations, with SNP (single nucleotide polymorphism) information for
each of a number of positions on the chromosome used to indicate genotype.

2These data are included in the DAAG package for R. Several of the data sets that appear in illustrative examples in
these notes are from DAAG.
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Studies and/or associated data sets that may be encountered in remaining modules of the course.

Part II

Populations, Samples & Sample Statistics

4 Populations and Samples

The available data rarely comprises a total population. At best, it is likely to be a sample, preferably
a random sample in which all population values appear with equal probability, from the population.

This is likely to be true even if the sample comprises all the data that were available at the time.
Results will typically be applied in some new context, later in time, where the available data have
changed. At best, changes between the original data and the later point in time for which predictions
will be made will be rather similar to changes between one sample and another. This is however a
best case scenario. Commonly there will be changes similar to those between one sample and another,
plus systematic changes in time.

Thus a bank will have, in principle at least, complete information on financial transactions with
current customers. As a guide to future financial transactions for those same customers, this is a
sample of customer behavior that may or may not be a good guide to future transactions.

4.1 Why are continuous distributions important in data mining?

The stock-in-trade of data mining is classification. Why should we interested in characterizing and
comparing continuous distributions?

• Commonly some explanatory variables will be continuous. Before fitting a classification model,
it is desirable to do exploratory analyses that compare the groups with respect to both discrete
and continuous variables.

• Categories will in some instances be formed by discretizing a continuous variable. Where possi-
ble, comparisons on the continuous scale should precede or accompany the discrete comparisons.

• For each category A, suppose that pA is the probability, assessed independently of the data
for an observation, that an observation belongs to category A. Many classification algorithms
model log(pA/(1 − pA)), as a function of the explanatory factors and variables. The distribution
of log(pA/(1 − pA)) is then of interest.

• Regression with a continuous dependent variable is an important methodology in its own right.

4.2 Empirical vs theoretical distributions

Consider now data that give the heights of 118 female students attending a first year statistics class
at the University of Adelaide. Figure 2 plots a histogram and overlays it with a density plot. (The
parameter setting prob=TRUE for the histogram is needed so that the units on the vertical scale are
the same both for the histogram and for the density plot.) Vertical bars above the x-axis give the
positions of the actual points. The function na.omit() omits missing values.

The vertical scale is chosen so that multiplying the height of each rectangle by the width of its
base (5cm in each case) gives an estimate of the proportion of data values in that range. The same
scale is used for the density plots, except that the density now changes continuously. It estimates, at
each point, the proportion of values per unit interval.

> library(MASS) # MASS has the survey data set

> library(lattice)

> heights <- na.omit(survey[survey$Sex=="Female", "Height"])

> ## NB: The vertical scale for the histogram must be a density scale.
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> ## for consistency with the density plot.

> hst <- histogram(heights, type="density", breaks=seq(from=145, to=185, by=5),

+ panel=function(x, ...){

+ panel.histogram(x, col="gray90", ...)

+ panel.densityplot(x, plot.points="", ...)

+ panel.rug(x, ..., start=0.01, end=0.045)

+ xval <- pretty(x, n=40)

+ den <- dnorm(xval, mean=mean(x), sd=sd(x))

+ panel.lines(xval, den, col="gray40", lty=2)

+ },

+ xlab=paste("Heights (cm) of female 1st year\n",

+ "Adelaide University statistics students"))

> print(hst)

The data set survey is included with the MASS package.

Heights (cm) of female 1st year
 Adelaide University statistics students
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Figure 2: Vertical bars along the
axis show the heights of 118 female
students in a first year statistics
class at the University of Adelaide.
Alternative summaries of the distri-
bution are a histogram, the overlaid
density plot (solid curve), and a fit-
ted normal curve (dashed).

Observe that:

• The vertical bars that show the distribution of data values are not very informative.

• The top of each histogram estimates the relative number of points (students) per unit along the
x-axis, within the class boundaries of that histogram. That estimate changes suddenly at the
class boundaries; this is an unsatisfactory feature of the histogram.

• The density curves give smooth estimates of the relative number of points (students) per unit
along the x-axis. This is much preferable. However there is still an issue of the choice of bandwith
for the smoother. This corresponds to the need to choose, for the histogram, the class width.

• The solid curve is a density estimate that makes very limited assumptions about the population
density. The appearance of the curve will, depending on the sample size, be quite strongly
affected by sampling variation. Try repeating the plot with random samples of size 102 (the
same size as the sample of Adelaide students) from the normal distribution.

• The dashed curve makes the strong assumption that the population distribution is normal.
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Histograms are almost never used for formal inference, i.e., for reaching conclusions about the
population from which the data have come. For reaching conclusions about the population from
which the data have come there are two common approaches:

1. Resampling approaches work with the actual data values.

2. Reasoning may proceed as though the population distribution is normal, i.e., use the dashed
density curve.

Proceeding as though the population distribution is normal is fine provided that

• Inferences will be based on the sample mean.

• The population distribution is not too far from normal. (NB: Greater deviations from normality
can be tolerated for larger sample sizes).

There are many different possible probability distributions. As has been hinted, the normal dis-
tribution often has a special role. Before explaining the reason for that role,

4.3 Theoretical probability distributions and their parameters

Models that are commonly used for population distributions include the normal (heights and weights,
preferably on a logarithmic scale), exponential (lifetimes of components, where the probability of
failure is unchanged over time), uniform, binomial (number of female children in a family of size N),
and Poisson (failures in some fixed time interval, where the probability of failure is unchanged over
time). Even if none of these is the correct distribution, one of them may be a reasonable starting
point for investigation.

4.3.1 Mathematical definition

A probability distribution on the real line is a measure that defines, for all x1 and x2 in the support
of X

Pr[x1 < X ≤ x2].

In a discrete population, each value has a probability (or probability mass) associated with it. In
a continuous population, each value x has an associated density f (x), such that for any two values a
and b in the support of f (),

Pr[a < x <= b] =

∫ b

a
f(x)dx

4.3.2 Density Curves and Cumulative Distribution Functions

These may be defined either by a density function, or by a cumulative distribution curve.
The following plots the density of a normal distribution with a mean of 0 and SD=1:

> curve(dnorm(x), from = -3, to = 3)

Why were the limits for the curve taken to be -3 and 3?
The height of the curve is the probability density. For a small interval of width h including the

point, the probability is
h × normal density

The area under the curve between x = x1 and x = x2 is the probability that the random variable X
will lie between x = x1 and x = x2.
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Cumulative probability curves The following plots the cumulative probability curve of a normal
distribution with a mean of 0 and SD=1 (these are the defaults):

> curve(pnorm(x), from = -3, to = 3)
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Figure 3: Normal den-
sity curve, with cumulative
distribution function along-
side.

The ordinates of the cumulative density curve give the cumulative probabilities, i.e., the height of
the curve at x is Pr[X ≤ x]. It follows that

Pr[x1 < X ≤ x2 = Pr[X ≤ x2 − Pr[X ≤ x1.

Thus, suppose that X has a normal distribution with a mean of 0 and a standard deviation equal
to 1. The probability that X is between -1 and 1 can be calculated as:

> pnorm(1) - pnorm(-1)

[1] 0.6826895

4.3.3 The mean and variance of a population

See Section 17 for the definition of the expectation of a random variable. The population mean is

µ = E[X] =

∫
xf(x)dx

while the variance is
σ2 = E[(X − µ)2] =

∫
(x − µ)2f(x)dx

4.4 Samples from a Population – R functions

Unless stated otherwise, “sample” will mean “simple random sample”.
The R functions rnorm() (normal), rexp() (exponential), runif() (uniform), rbinom() (bino-

mial), and rpois() (Poisson), all take samples from infinite distributions.

> rnorm(n=10)

> runif(n=10)

The function sample() takes samples from a specified finite distribution. Samples may be taken
without (the default) or with replacement. In without replacement sampling, each population value
can appear at most once in the sample.

In with replacement sampling, each sampled element is placed back in the population before taking
the next element. This is equivalent to sampling without replacement from the infinite population
obtained by specifying a uniform distribution on the sample values. Try
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> sample(1:8, size=5)

> sample(1:8, size=5, replace=TRUE)

> sample(c(2,8,6,5,3), size=4)

> sample(c(2,8,6,5,3), size=10, replace=TRUE)

Bootstrap sampling is with replacement sampling from an empirical distribution.

4.5 Displaying the distribution of sample values:

Examination of a the sample distribution may allow an assessment of whether the sample is likely to
have come, e.g., from a normal population distribution. There is an art to making this comparison.
In the sequel, some of the different ways in which the comparion might be made will be investigated.

4.5.1 An estimated density curve

Earlier, in Figure 2, we fitted a density curve to the distribution of heights of 118 female students
attending a first year statistics class at the University of Adelaide. We now continue that discussion.

First, repeat the plot with a wider smoothing window. In the figure, I’ve added marks on the
horizontal axis that show the actual heights. Also marked off, in gray lines, are the mean, mean-SD
and mean+SD.

> heights <- na.omit(survey[survey$Sex=="Female", "Height"])

> ## NB: The vertical scale for the histogram must be a density scale.

> ## for consistency with the density plot.

> ## bw is the bandwidth of the smoother, in x-axis units

> den <- densityplot(heights, type="density", plot.points="rug", bw=2.5,

+ panel=function(x, ...){

+ panel.densityplot(x, ...)

+ xval <- pretty(x, n=40)

+ av <- mean(x); sdev <- sd(x)

+ panel.abline(v=av, col="gray")

+ panel.abline(v=av-sdev, col="gray", lty=2)

+ panel.abline(v=av+sdev, col="gray", lty=2)

+ den <- dnorm(xval, mean=av, sd=sdev)

+ panel.lines(xval, den, col="gray40", lty=2)

+ ytop <- 1.02*current.panel.limits()$ylim[2]

+ panel.text(av-sdev, ytop, pos=1,

+ labels="mean-SD ", col="gray40")

+ panel.text(av+sdev, ytop, pos=1,

+ labels=" mean+SD", col="gray40")

+ },

+ xlab=paste("Heights (cm) of female 1st year\n",

+ "Adelaide University statistics students"))

> print(den)
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Heights (cm) of female 1st year
 Adelaide University statistics students

D
en

si
ty

0.00

0.02

0.04

0.06

150 160 170 180

mean−SD  mean+SD

Figure 4: Density plot, now with a
larger smoothing window (bw) and
with a gaussian (normal) kernel,
showing the distribution of heights
of 118 female students in a first year
statistics class at the University of
Adelaide. A normal density curve
has been added. Marks on the hori-
zontal axis show the actual heights.
Also marked off, in gray lines, are
the mean, mean-SD and mean+SD.

Note: If data have a sharp lower or upper cutoff (a sharp lower cutoff at zero is common), parameters
from and/or to can be set to ensure that this sharp cutoff is reflected in the fitted density.

Exercise: Draw a random sample of size 20 from an exponential distribution with rate = 1. Plot
an estimated density curve.

4.5.2 Normal and other probability plots

Although preferable to histograms, density plots not in general an ideal tool for judging whether
the sample is likely to have come from one or other theoretical distribution, most often the normal
distribution. The appearance depends too much on the choice of bandwith. It lacks visual cues
that can be used to identify differences from the theoretical distribution and decide whether they are
important.

A much better tool is the Q-Q plot, which is a form of cumulative probability plot. Here, the
focus will be on the comparison with a normal distribution, and the relevant Q-Q plot is a normal
probability plot, using the function qqnorm(). Figure 5 shows a normal probability plot for the
distribution of heights of the 118 female students in a first year statistics class at the University of
Adelaide.

> y <- na.omit(survey[survey$Sex=="Female", "Height"])

> qqnorm(y)
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Figure 5: Normal probabil-
ity plot for the distribution of
heights of 118 female students
in a first year statistics class at
the University of Adelaide.
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If data are from a normal distribution, points should lie close to a line. For a small sample size,
quite large deviations from a line can be accepted. If the sample is large, points should lie close to
a line. It is useful to draw repeated Q-Q plots with random samples of the same size from a normal
distribution, in order to calibrate the eye. The function qreference() from the DAAG package may
be useful for this purpose. For example:

> y <- na.omit(survey[survey$Sex=="Female", "Height"])

> qreference(y, nrep=6)

4.5.3 *Boxplots, and the inter-quartile range:

Another widely used measure of variability is the inter-quartile range. Boxplots, often used as sum-
mary plots to indicate the distribution of values in a sample, are drawn so that 50% of the sample
lies between the upper and lower bounds of the central box. Figure 6 shows a boxplot representation
of data on heights of female students in a first year statistics class at the University of Adelaide. The
following code may be used to reproduce the boxplot, omitting the annotation.

> attach(survey)

> boxplot(Height[Sex=="Female"])

> detach(survey)
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Figure 6: Boxplot, with annotation that explains boxplot features. Lines in gray show mean-SD,
mean, and mean+SD. Data are heights of 118 female students in a first year statistics class at the
University of Adelaide.

4.5.4 A further note on density estimation – controlling smoothness

We can control the smoothness of the density plot. There are various ways to do the smoothing. By
default, with a normal “kernel”, a mixture of normal densities is used.

Increasing the bandwidth makes the estimated density more like the density that is used as the
kernel. Thus increasing the bandwith, with a "gaussian" kernel, is alright providing that the sample
really is from a normal distribution. Try the following:

> plot(density(rnorm(50), kernel="rectangular", bw=0.5), type="l")

> plot(density(runif(50), kernel="rectangular", bw=0.5), type="l")

> plot(density(runif(50), kernel="gaussian", bw=0.5), type="l")
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The density curve for a set of sample values lies somewhere between the theoretical distribution
that is used as the kernel, and the sample distribution. Figure 7 shows, for the Adelaide female
student data, the effect of varying the bandwidth.
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Figure 7: Density curves for Adelaide female student heights. Curves are shown for three different
choices of bandwidth: 0.25, 1.98 (the default for these data), 2.5 and 5.0. The normal kernel (the
default) is used in each case, so that increasing the bandwidth forces the curve closer to normal.

The default bandwith usually gives acceptable results. Experimentation with different choices of
bandwidth is sometimes insightful.

5 Sample Statistics and Sampling Distributions

5.1 Variance and Standard Deviation:

In a sample, the variance is the average of the sum of squares of the deviations from the mean. If n
is the sample size then, to correct for the fact that deviations are measured from the sample mean
(rather than from the true mean), the sum of squares of deviations from the mean is usually divided
by n − 1. Thus, given sample values x1, x2, . . . , xn, the usual estimate of the variance σ2 is

σ̂2 =

∑n
i=1(xi − x̄)2

n − 1
Why divide by n − 1 rather than by n. A sample of one gives no information on the variance.

Every value additional to the first gives one additional piece of information.
The standard deviation (SD) is the square root of the variance. The standard deviation is widely

used, both in statistical theory and for descriptive purposes, as a measure of variability. The most
obvious intuitive interpretations of the SD assume a normal population, or a random sample from
a normal population. If data are from a normal population, then 68% of values will on average be
within one standard deviation either side of the mean.

A key idea is that sample statistics have a sampling distribution – the distribution of values that
would be observed from repeated random samples. This is an idea that will be illustrated in laboratory
exercises.

Sample survey theory is one of several areas where there has been a strong tradition of basing all
inferences on variances. This works well when inferences are mostly for means or totals and samples are
large. The reason for this will become apparent below, in the discussion of the sampling distribution
of the mean. There are however important small sample applications where it does not work well, and
sample survey analysts are now moving away from the former relatively exclusive reliance on variance
based inferences.

5.2 The Standard Error of the Mean (SEM):

The standard deviation estimates the variability for an individual sample value. This variability does
not change (though the estimate will) as the sample size increases. On the other hand, the sample
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mean does become less susceptible to variability as the sample size increases. If σ is the standard
deviation then, for a random sample, the standard error of the mean is σ/

√
n.

Here are calculations that give, for the student heights, the mean, the standard deviation and the
standard error:

> attach(survey)

> y <- na.omit(Height[Sex=="Female"])

> sd(y)

[1] 6.151777

> sd(y)/sqrt(length(y))

[1] 0.6091167

> detach(survey)

The standard error of the mean is, with a sample of 118, less than a tenth the size of the standard
deviation. This result relies crucially on the i.i.d. assumption. This will be an important issue for
multi-level models.

5.3 The sampling distribution of the mean:

We have just one sample, and therefore just one mean. The standard error of the mean relates to the
distribution of means that might be expected if multiple samples (always of size 118) could be taken
from the population that provided the sample.

It is however possible to simulate the taking of such repeated samples. As the sample distribution
seems close to normal, the use of repeated samples of size 118 from a normal distribution seems
reasonable. The following assumes a mean of 165.69, as for the sample, and the same SD of 6.15 as
for the sample.

> av <- numeric(1000)

> for (i in 1:1000) av[i] <- mean(rnorm(118, mean=165.69, sd=6.15))

> plot(density(av), main="")
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Figure 8: Simulated distribution
of the mean, for samples of size
118 from a normal distribution with
mean=165.7 and SD=6.15, as for the
sample of UAdelaide students.

An alternative is to take repeated samples, with replacement, from the original sample itself.
This is equivalent to sampling from a population in which each sample value is repeated an infinite
number of times. The approach is known as “bootstrapping”. This repeated sampling from the
sample is just about as good an approximation as is available, if no use is made of theoretical results
or approximations, to repeated sampling from the original population.
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> av <- numeric(1000)

> for (i in 1:1000)

+ av[i] <- mean(sample(y, size=length(y), replace=TRUE))

> avdens <- density(av)

> plot(density(y), ylim=c(0, max(avdens$y)))

> lines(avdens, col="gray")
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ple of University of Adelaide students.

The sampling distribution for the mean looks, in the company of the distribution of sample values.
like a veritable Eiffel tower!

A practical consequence of the Central Limit Theorem is that the sampling distribution will for a
sample of this size be much the same (close to a normal distribution) irrespective of the distribution
from which the sample is taken, providing that the distribution is roughly symmetric and not unduly
spread out in the tails. Try the following, which takes samples from a uniform distribution on the
interval (0,1):

> par(mfrow=c(1,2))

> av <- numeric(1000)

> xval <- pretty(c(-.5, 1.5), 500)

> plot(xval, dunif(xval), type="l")

> for (i in 1:1000) av[i] <- mean(runif(n=118))

> plot(density(av))

> par(mfrow=c(1,1))

All statistics have sampling distributions. For example, there is a sampling distribution for the
median. Unlike the distribution of the mean, this is strongly affected by the distribution from which
the sample is drawn. Coefficients in linear or other models have sampling distributions.

Exercise 1: Try varying the sizes of the samples for which the averages are calculated. Even with n
as small as 5 or 6, the distribution will be quite close to normal. Try also varying the number of samples
that are taken. Taking some number of samples greater than 1000 will estimate the distribution more
accurately; with fewer samples the estimate will be less accurate.

Exercise 2: Repeat, but now sampling from: (a) a uniform distribution, and (b) an exponential
distribution.
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6 The Assessment of Accuracy

Having trained a model, we would like to know how well the model has performed. If model A
performs better than model B we will, other things being equal, prefer model A.

The discussion separates into two parts: model accuracy, and the accuracy of parameter esti-
mates, with model accuracy usually an over-riding requirement. Accuracy of parameter estimates has
additional complications, beyond those involved in assessing accuracy of model predictions.

6.1 Predictive accuracy

A first requirement is that predictions should be accurate, ideally for test data that accurately reflect
the context in which the model will be used.

1. For a regression model with a continuous outcome, define the prediction error to be the difference
between the model prediction and the observed value. The root mean square prediction error is
then a measure of accuracy.

2. For a classification model, the percentage of correct classifications is often a suitable measure of
accuracy. The deviance, or another “information” measure may by used, in some computational
and theoretical contexts, as a proxy for percentage of correct classifications.

In practice predictive accuracy is commonly assessed for the same population from which the
sample is derived. Assessment of the extent to which results are relevant to the target population is
then a matter for separate investigation. This is a key issue, that is too often ignored.

Mechanisms that can be used for such assessment include:

• Derivation of a theoretically based estimate, e.g., for the error mean square for an lm() linear
model.

• The training/test set approach, using a random split into training and test set.

• Cross-validation, in which each of k parts of the data become in turn the test set, with remaining
data (k − 1 out of k parts) used for training.

• Bootstrap approaches can be used in much the same way as cross-validation, c.f., the approach
used by the randomForest package. Observations that for the time being serve as test data are
said to be “out-of-bag”, or OOB.

The final three methods are “resampling” methods, i.e., they rely on taking some form of sample from
the one original available sample. As described here, all methods assume that observations have been
sampled independently.

Laboratory Notes 4 demonstrate the use of cross-validation for assessing the predictive accuracy
of a model.

6.2 Accuracy of parameter estimates

Quite stringent conditions are necessary to ensure that estimates for a regression or classifiction model
will be unbiased or have negligible bias. The model must be correct. Part V illustrates, with examples,
some of the issues.

Available methods are:

1. Estimates that depend heavily on distributional assumptions may be calculated from the one
available sample. The standard errors, t-statistics, and related statistics that are included in the
output from R’s lm() linear modelling function have this character.

2. Bootstrap samples can be used to derive the sampling distributions of some of the statistics that
may be of interest – means, means and regression coefficients. This approach does however have
limitations, which can be serious. For extreme quantiles, it will fail.
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3. In a limited range of circumstances, permutation methods may be used for tests of statistical
significance.

As described here, all methods assume that observations have been sampled independently from
the relevant population. Exact theoretically based results are available for models with iid normal
errors. If the distribution is not normal results are, under relatively weak independence assumptions,
valid asymptotically, i.e., it is valid in the limit as the sample size goes to infinity.

Bootstrap and permutation methods do not rely, directly, on normality assumptions. Some as-
sumptions are however necessary if results are to be susceptible to ready interpretation. How does one
interpret the result of a bootstrap version of a t-test for comparing two means, if the two distributions
have a markedly different shape?

Laboratory Notes 3 demonstrate bootstrap samping and a permutation distribution approach, for
the comparison of two means. It is assumed that there are no other factors that might, in part or
whole, account for any difference.

6.3 Comparing two populations

Cuckoos lay eggs in the nests of other birds. The eggs are then unwittingly adopted and hatched
by the host birds. Latter (1902) collected the cuckoo egg data presented in Figure 10A in order to
investigate claims, made in Newton (1893-1896, p. 123), that the eggs that cuckoos lay in the nests
of other birds tend to match the eggs of the host bird in size, shape and color.
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Figure 10: Length versus breadth of cuckoo eggs, identified according to the species of host bird in
whose nest the eggs were laid.

Eggs laid in the nests of wrens are clearly much smaller, both in length and breadth, than the
eggs laid in the nests of other birds. Visually, it is hard to see much distinction between eggs laid in
the nests of these other species. For now, it therefore seems reasonable to examine the comparison
between eggs laid in the nests of wrens, and eggs laid in the nexts of other birds, as in Figure 10B.
Observe that Figure 10B tells much the same story, whether we focus on length or on breadth.

There are two types of questions that these data might be used to answer:

1. Are the apparent differences, between eggs found in the nests of wrens and eggs found in the
nests of other birds, reproducible. If another sample of cuckoo eggs was collected, similarly a
mix of eggs from wrens’ nests and eggs from the nests of other birds, is it likely that similar
differences would again be found?
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2. Given a sample of cuckoo eggs is it possible to predict, with some reasonable accuracy, which
eggs are from cuckoos and which from other birds?

The first question is often of interest in a data mining context, but is not usually the question of most
direct interest. The second question is the one that is more commonly the focus of direct interest.

For the moment, the focus will be on the first question. I will look first at informal graphical
comparisons, then moving to more formal methods.

6.3.1 Comparisons for individual variables

Figure 10B provided what is perhaps the most obvious form of graphical comparison. But might the
difference between eggs laid in wren nests and eggs laid in other nests be merely a result of chance?

First, consider how we might do this separately for length. Figure 11 shows the comparison.

> dotwren <- dotplot(species %in% "wren" ~ length, data=cuckoos,

+ scales=list(y=list(labels=c("Other", "Wren"))),

+ xlab="Length (mm)")

> print(dotwren)

Length (mm)

Other

Wren

20 21 22 23 24 25

● ●● ● ● ●● ●● ●● ● ●● ●●● ●● ●●●●●● ●● ● ●●●●●●● ●●● ●● ●●● ● ●● ● ●●●●● ● ●● ●●● ●●● ●● ● ●●● ●● ●● ●●●● ● ●●● ●●● ●●● ●●●● ●● ● ●●●●●● ●●●● ●● ●

● ●●● ●● ●●● ● ●● ● ●● Figure 11: Dotplot com-
parison between lengths
of eggs laid in wren nests
and eggs laid in other
nests.

6.3.2 A check that uses the bootstrap

The bootstrap (resampling with replacement) may be used to check whether the difference is likely to
be more than noise. Repeated pairs of with replacement samples are drawn, the first member of the
pair from ”other” (non-wren), and the second member from eggs laid in wren nests. For each pair,
calculate the difference between the means. Repeat a number of times (here 100, so that points stand
out clearly, but 1000 would be better), and plot the differences. Figure 12 shows the result of one
such sampling experiment.

> avdiff <- numeric(100)

> for(i in 1:100){

+ avs <- with(cuckoos, sapply(split(length, species %in% "wren"),

+ function(x)mean(sample(x, replace=TRUE))))

+ avdiff[i] <- avs[1] - avs[2] # FALSE (non-wren) minus TRUE (wren)

+ }

> dotdiff <- dotplot(~ avdiff, xlab="Length difference, non-wren - wren (mm)")

> print(dotdiff)

Length difference, non−wren − wren (mm)

1.0 1.5 2.0

●● ●● ●●● ●●●● ●●● ● ●● ●● ●● ●●●● ●●●● ●●● ●● ●●● ● ●● ● ●● ●● ●● ● ●● ●● ● ●●●●● ● ●●●● ●● ●● ●● ● ●● ●● ●● ●● ●●● ●● ●● ● ●● ● ●●● ●● ●● ●● ● ●

Figure 12: Differences,
in successive bootstrap
samples, between mean
length of eggs in non-
wren nests, and eggs in
wren nests.
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Observe that none of the differences are anywhere near zero. This is convincing evidence that the
length differences are unlikely to be due to chance.

6.3.3 A check that uses simulation (the parametric bootstrap)

The difference here is that the random samples are drawn from normal distributions with the same
mean and variance as in the samples.

If the variances can be assumed equal, the relevant distribution (when an infinite number of
bootstrap samples are taken) can be determined theoretically, and except as a learning exercise there
is not much point in such a simulation. If variances are unequal, the situation is more complicated.
The standard theoretical approaches do however have simulation counterparts.

For a t-text comparison that allows for unequal variances, proceed thus:

> id <- as.numeric(with(cuckoos, species %in% "wren"))+1

> Species <- c("non-wren", "wren")[id]

> with(cuckoos, t.test(length[Species=="non-wren"],

+ length[Species=="wren"]))

Welch Two Sample t-test

data: length[Species == "non-wren"] and length[Species == "wren"]
t = 7.0193, df = 21.244, p-value = 5.872e-07
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.069984 1.970016
sample estimates:
mean of x mean of y

22.64 21.12

Part III

Linear Models with an i.i.d. Error
Structure
Most accounts of linear models assume that errors are independently and identically distributed (i.i.d.).
That assumption is by no means necessary. In real world examples, it is often patently false. It will
however be our starting point, for several reasons:

• There are a wide range of situations where the i.i.d. errors assumption is a reasonable approxi-
mation.

• It is enough to deal with one complication at a time.

7 Basic ideas of linear modeling

The base R system and the various R packages provide, between them, a huge range of model fitting
abilities. In these notes, the major attention will be on the model fitting function is lm(), where the
lm stands for linear model. Here, we fit a straight line, which is very obviously a linear model! This
simple starting point gives little hint of the range of models that can be fitted using R’s linear model
lm() function. A later laboratory will build on the simple ideas that are presented here to present a
far more expansive view of linear models.

R’s implementation of linear models uses a symbolic notation Wilkinson & Rogers (1973), that
gives a straightforward means for describing elaborate and intricate models.
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7.1 Straight line Regression

weight depression
1 1.90 2.00
2 3.10 1.00
3 3.30 5.00
4 4.80 5.00
5 5.30 20.00
6 6.10 20.00
7 6.40 23.00
8 7.60 10.00
9 9.80 30.00

10 12.40 25.00

Table 1: Data showing depression
in lawn (mm.), for various weights
of roller (t)

A straight line regression model for the data in Table 1 can be written

depression = α + β × weight + noise.

Writing y in place of depression and x in place of weight, we have:

y = α + βx + ε.

Subscripts are often used. Given observations (x1, y1), (x2, y2), . . . ,(xn, yn), we may write

yi = α + βxi + εi.

In standard analyses, we assume that the εi are independently and identically distributed as normal
variables with mean 0 and variance σ2. The α+ βx term is the deterministic component of the model,
and ε is the random noise. Greatest interest usually centers on the deterministic term. The R function
lm() provides a way to estimate the slope β and the intercept α (the line is chosen so that the sum
of squares of residuals is as small as possible). Given estimates (a for α and b for β), we can pass the
straight line

ŷ = a + bx

through the points of the scatterplot. Fitted or predicted values are calculated using the above
formula, i.e.

ŷ1 = a + bx1, ŷ2 = a + bx2, . . . .

By construction, the fitted values lie on the estimated line. The line passes through the cloud of
observed values. Useful information about the noise can be gleaned from an examination of the
residuals, which are the differences between the observed and fitted values,

e1 = y1 − ŷ1, e2 = y2 − ŷ2, . . . .

In particular, a and b are estimated so that the sum of the squared residuals is as small as possible,
i.e., the resulting fitted values are as close (in this “least squares” sense) as possible to the observed
values. The residuals are shown as vertical lines, gray for negative residuals and black for positive
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residuals, in Figure 13.
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Figure 13: Lawn depression for various
weights of roller, with fitted line. The
fitted line is designed to minimize the
sum of squares of residuals, i.e., the sum
of squared lengths of the vertical lines,
joining x’s to o’s, that are shown on the
graph.

7.2 Syntax – model, graphics and table formulae:

The syntax for lm() models that will be demonstrated here is used right throughout the modeling
functions in R, with modification as required. A very similar syntax can be used for obtaining graphs
and for certain types of tables.

The following plots the data in the data frame roller (shown in Table 1) that is in the DAAG
package.

> library(DAAG)

> plot(depression ~ weight, data=roller)

The formula depression ~ weight can be used either as a graphics formula or as a model formula.
Just to see what happens, try fitting a straight line, and adding it to the above plot:

> lm(depression ~ weight, data=roller)

Call:
lm(formula = depression ~ weight, data = roller)

Coefficients:
(Intercept) weight

-2.087 2.667

> abline(lm(depression ~ weight, data=roller))

The different components of the model are called terms. In the above, there is one term only on the
right, i.e., weight.

7.3 The technicalities of linear models

7.3.1 The model matrix – straight line regression example

The quantity that is to be minimized can be written:

10∑
i=1

(yi − a − bxi)2



7 BASIC IDEAS OF LINEAR MODELING 25

Now observe how this can be written in matrix form. Set

X =



1 1.9
1 3.1
1 3.3
1 4.8
1 5.3
1 6.1
1 6.4
1 7.6
1 9.8
1 12.4



y =



2
1
5
5
20
20
23
10
30
25



b =

(
a
b

)

Here X has the name “model matrix”.

The quantity that is to be minimized is, then, the sum of squares of

e = y − Xb =



2 − (a + 1.9b)
1 − (a + 3.1b)
5 − (a + 3.3b)
5 − (a + 4.8b)

20 − (a + 5.3b)
20 − (a + 6.1b)
23 − (a + 6.4b)
10 − (a + 7.6b)
30 − (a + 9.8b)
25 − (a + 12.4b)


The sum of squares of elements of e = y − Xb can be written

e′e = (y − Xb)′(y − Xb)

The least squares equations can be solved using matrix arithmetic. For our purposes, it will be
sufficient to use the R function lm() to handle the calculation:

> lm(depression ~ weight, data=roller)

Call:
lm(formula = depression ~ weight, data = roller)

Coefficients:
(Intercept) weight

-2.087 2.667

Both weight and depression are variables, i.e., they take values on the real line. They have,
within R, class “numeric”.

Recap, and Next Steps in Linear Modeling

The straight line regression model is one of the simplest possible type of linear model. We have shown
how to construct the model matrix that R uses when it fits such models. Here, it had two columns
only. Omission of the intercept term will give an even simpler model matrix, with just one column.

Regression calculations in which there are several explanatory variables are handled in the obvious
way, by adding further columns as necessary to the model matrix. This is however just the start.
There is a great deal more that can be done with model matrices, as will be demonstrated.

7.3.2 What is a linear model?

The models discussed here are linear, in the sense that predicted values are a linear combination of a
finite set of basis functions. The basis functions can be nonlinear functions of the features, allowing
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the modeling of systems in which there can nonlinear components that enter additively. The technical
mathematical apparatus of linear models has a wider importance than linear models per se. It is a
fundamental component of many of the algorithms that have been developed by machine learners, by
data miners, and by statisticians.

Data that are intended for regression calculations consist of multiple observations (or instances,
or realizations) of a vector (x1, x2, . . . , xk, y) of real numbers, where the xis are explanatory variables
and y is the dependent variable.

Given x1, x2, . . . , xk, which take values on the real line, a first step (which in the simplest case
maps the xis onto themselves), is the formation of basis’ functions

φ1(x1, x2, . . . xk), φ2(x1, x2, . . . xk), . . . , φp(x1, x2, . . . xk)

In the simplest case p = k and φ1(x1, x2, . . . xp) = x1, φ2(x1, x2, . . . xp) = x2, . . . , φp(x1, x2, . . . xp) = xp.
Then any function with values on the real line such that

f (x1, x2, . . . xk) = b1φ1(x1, x2, . . . xk) + b2φ2(x1, x2, . . . xk) + . . . + bpφp(x1, x2, . . . xk)

where the elements of b = (b1, b2, . . . bp) are the only unknowns, specifies a linear model.
The model is linear in the values that the φ’s take on the sample data. It is not, in general, linear

in the xi’s. Here endeth our brief excursion that has defined the term linear model.

The random part of the model: The statistical output (standard errors, p-values, t-statistics)
from the lm() function assumes that the random term is i.i.d. (independently and identically dis-
tributed) normal. Least squares estimation is them equivalent to maximising the likelihood.

What if the i.i.d. assumption is false? Depending on the context, this may or may not matter. In
general, it is unwise to assume that it does not matter!

If the i.i.d. normal errors assumption is false in ways that are to some extent understood, then
it may be possible to make use of functions in one or other of the R packages that are designed to
facilitate the modeling of the random part of the model. Typically, these fit the model by maximising
the likelihood. Note especially the R packages nlme and lme4, for handling multilevel and related
models, and arima and related functions in the stats package that fit time series models.

7.3.3 Model terms, and basis functions:

In the very simple model in which depression is modeled as a linear function of weight, there the one
term (weight generates two basis functions: φ1(x) = 1 and φ2(x) = x which mapped values of weight
into itself. (Basis functions seem an unnecessary complication, for such a simple example.)

7.3.4 Multiple Regression

In multiple regression, the model matrix has one column for the constant term (if any), plus one
column for each additional explanatory variable. Thus, multiple regrssion is an easy extension of
straight line regression. Further flexibility is obtained by transforming variable values, if necessary,
before use of the variable in a multiple regression equation.

In the next example, there are multiple explanatory variables. We start with simple multiple
linear regression model, and then look to see whether there is a case to replace the linear terms by
polynomial or spline terms. Polynomial and spline terms extend the idea of “linear model”, with
the result that the dependence upon the variables in the model may be highly nonlinear! The lm()
function will fit any model for which the fitted values are a linear combination of basis functions. Each
basis function can in principle be an arbitrary transformation of one or more explanatory variables.
“Additive models” may be better terminology.

The example will use the hills2000 data set that is in the DAAG package. The row names store
the names of the hillraces. For the Caerketton race, where the time seems anomalously small, dist
should probably be 1.5mi not 2.5mi. The safest option may be to omit this point.
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The interest is in prediction of time as a function of dist and climb. First examine the scatterplot
matrices, for the untransformed variables, and for the log transformed variables. The pattern of rela-
tionship between the two explanatory variables – dist and climb – is much closer to linear for the log
transformed data, i.e., the log transformed data are consistent with a form of parsimony that is advan-
tageous if we hope to find a relatively simple form of model. Note also that the graphs of log(dist)
against log(time) and of log(climb) against log(time) are consistent with approximately linear
relationships. Thus, we will work with the logged data:

> library(DAAG)

> match("Caerketton", rownames(hills2000))

[1] 42

> loghills2k <- log(hills2000[-42, ]) # Omit the dubious point

> names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")

> loghills2k.lm <- lm(ltime ~ ldist + lclimb, data=loghills2k)

> par(mfrow=c(2,2))

> plot(loghills2k.lm) # Diagnostic plot

> par(mfrow=c(1,1))

We pause at this point and look more closely at the model that has been fitted. Does log(time)
really depend linearly on the terms ldist and log(lclimb)?

The function termplot() gives a graphical summary that can be highly useful. The graph is
called a termplot because it shows the contributions of the different terms in the model. We use the
function mfrow() to place the graphs side by side in a panel of one row by two columns:

> ## Plot the terms in the model

> if(dev.cur()==3)invisible(dev.set(2))

> par(mfrow=c(1,2))

> termplot(loghills2k.lm, col.term="gray", partial=TRUE,

+ col.res="black", smooth=panel.smooth)

> par(mfrow=c(1,1))

The plot shows the “partial residuals” for log(time) against log(dist) (left panel), and for log(time)
against log(climb) (right panel). They are partial residuals because, for each point, the means of
contributions of other terms in the model are subtracted off. The vertical scales show changes in
ltime, about the mean of ltime.

The lines, which are the contributions of the individual linear terms (“effects”) in this model, are
shown in gray so that they do not obtrude unduly. For the lines as well as the points, the contributions
of each term are shown after averaging over the contributions of all other terms. The dashed curves,
which are smooth curves that are passed through the partial residuals, are the primary feature of
interest in these plots. In both panels, they show clear indications of curvature.

This can be modeled, in the R context, by fitting either polynomial or spline curves. Spline curves
are vastly more flexible than polynomial curves.

7.3.5 Modeling qualitative effects – a single factor

The sugar data frame (DAAG package) compares the amount of sugar obtained from an unmodified
wild type plant with the amounts from three different types of genetically modified plants. In Table
2, the data are shown, with a model matrix alongside that may be used in explaining the effect of
plant type (Control, or one of the three modified types A or B or C) on the yield of sugar.

In the model matrix in Table 2, Control is the baseline, and the yields for A, B and C are estimated
as differences from this baseline. Then for each of the three treatments A, B and C there is an indicator
variable that is 1 for that treatment, and otherwise zero. There are three basis functions that are
used to account for the four levels of the factor trt.

The code used to fit the model is:
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Sugar yield data
weight trt

1 82.00 Control
2 97.80 Control
3 69.90 Control
4 58.30 A
5 67.90 A
6 59.30 A
7 68.10 B
8 70.80 B
9 63.60 B

10 50.70 C
11 47.10 C
12 48.90 C

Model matrix
(Intercept) trtA trtB trtC

1 0 0 0
1 0 0 0
1 0 0 0
1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

Table 2: The data frame sugar is shown in the left panel. The right panel has R’s default form of
model matrix that is used in explaining the yield of sugar as a function of treatment (trt)

> library(DAAG)

> sugar.lm <- lm(weight ~ trt, data = sugar)

> summary(sugar.lm)

Call:
lm(formula = weight ~ trt, data = sugar)

Residuals:
Min 1Q Median 3Q Max

-13.3333 -2.7833 -0.6167 2.1750 14.5667

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.367 2.236 29.229 2.03e-09
trt1 17.867 3.874 4.613 0.00173
trt2 -3.533 3.874 -0.912 0.38834
trt3 2.133 3.874 0.551 0.59685

Residual standard error: 7.747 on 8 degrees of freedom
Multiple R-squared: 0.7915, Adjusted R-squared: 0.7133
F-statistic: 10.12 on 3 and 8 DF, p-value: 0.004248

Control was taken as the baseline; the fitted value is 83.23, which is given as (Intercept). The
vales that are given for remaining treatments are differences from this baseline. Thus the fitted value
(here equal to the mean) for treatment A is 83.23-21.40, that for B is 83.23-15.73, while that for C is
83.23-34.33.

The termplot summary

Again, termplots can be an excellent way to summarize results. Here is the termplot summary for
the analysis of the cuckoo egg length data:

> termplot(sugar.lm, partial.resid = TRUE, se = TRUE)

The dotted lines show one standard deviation limits either side of the mean.
In the above model there was just one term, i.e., species, and hence just one graph. This one

graph brings together information from the values of the six basis functions that correspond to the
term species. The vertical scale is labeled to show deviations of egg lengths from the overall mean.
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In this example the so-called “partial residuals” are the deviations from the overall mean. The
dashed lines show one standard error differences in each direction from the species mean. (The
standard error of the mean measures the accuracy of the mean, in the same way that the standard
deviation measures the accuracy of the of an individual egg length.)

A note on factors: The names for the different values that a factor can take are the “levels”.

> levels(bowler)

> levels(innings)

Internally, factors are stored as integer values. Each of the above factors has two levels. A lookup
table is used to associate levels with these integer values.

Other things to try: The function expand.grid() can be helpful for setting up the values of the
factors. We use xtable() to check that this gives the correct table:

> y <- c(10, 14, 40, 50)

> Z <- expand.grid(bowler = c("A", "B"), innings = c("one", "two"))

> xtabs(y ~ bowler + innings, data = Z)

innings
bowler one two

A 10 40
B 14 50

Other parameterizations

1. Above we used the default ”corner” parameterization, which R calls the “treatment” parameter-
ization. There are alternatives. The most commonly used alternative parameterization is the
“anova” parameterization, which R calls the “sum” parameterization. Use it thus:

> options(contrasts = c("contr.sum", "contr.poly"))

> model.matrix(~trt, data = sugar)

(Intercept) trt1 trt2 trt3
1 1 1 0 0
2 1 1 0 0
3 1 1 0 0
4 1 0 1 0
5 1 0 1 0
6 1 0 1 0
7 1 0 0 1
8 1 0 0 1
9 1 0 0 1
10 1 -1 -1 -1
11 1 -1 -1 -1
12 1 -1 -1 -1
attr(,"assign")
[1] 0 1 1 1
attr(,"contrasts")
attr(,"contrasts")$trt
[1] "contr.sum"

> lm(weight ~ trt, data = sugar)
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Call:
lm(formula = weight ~ trt, data = sugar)

Coefficients:
(Intercept) trt1 trt2 trt3

65.367 17.867 -3.533 2.133

These are called the “sum” contrasts (i.e., a particular form of parameterization) because they
are constrained to sum to zero. The sum contrasts have been favoured in texts on analysis of
variance.

2. There can be interactions between factors, or between factors and variables.

7.3.6 Grouping model matrix columns according to term

Quite generally, the basis functions φ1, φ2, . . . , φp may be further categorized into groups, with one
group for each term the model, thus:

φ1, . . . , φm1︸       ︷︷       ︸
Term1

, φm1+1, . . . , φm2︸           ︷︷           ︸
Term2

, . . .

In the above, the basis functions for one factor formed just one termx. More generally, thare may
be one group of basis functions for each of several factors. In the later discussion of spline terms,
several basis functions will be required to account for each spline term in the model.

7.4 *Linear models, in the style of R, can be curvilinear models

We want to model y as a curvilinear function of x. This is straightforward, using the abilities of the
splines package. The following uses the data frame fruitohms in the DAAG package.

First ohms is plotted against juice. The function ns() (splines package) is then used to set up
the basis functions for the curve and pass a curve through these data. (There are other mechanisms,
some of them more direct, but this is more insightful for present purposes.)

> library(DAAG)

> plot(ohms ~ juice, data = fruitohms)

> library(splines)

> fitohms <- fitted(lm(ohms ~ ns(juice, df = 3), data = fruitohms))

> points(fitohms ~ juice, data = fruitohms, col = "gray")

The parameter df (degrees of freedom) controls the smoothness of the curve. A large value for df
allows a very flexible curve, e.g., a curve that can have multiple local maxima and minima.

The termplot() function offers another way to view the result. There is an option that allows,
also, one standard error limits about the curve:

> ohms.lm <- lm(ohms ~ ns(juice, df = 3), data = fruitohms)

> termplot(ohms.lm, partial = TRUE, se = TRUE)

The labeling on the vertical axis shows differences from the overall mean of ohms. In this example
the partial is just the difference from the overall mean.

Spline basis elements

It is insightful to extract and plot the elements of the B-spline basis. This can be done as follows:

> par(mfrow = c(2, 2))

> basismat <- model.matrix(ohms.lm)

> for (j in 2:5) plot(fruitohms$juice, basismat[, j])

The first column of the model matrix is the constant term in the model. Remaining columns are the
spline basis terms. The fitted values are determined by adding a linear combination of these four
curves to the constant term.
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Splines in models with multiple terms

For present purposes, it will be enough to note that this is possible. Consider for example

> loghills2k <- log(hills2000[, ])

> names(loghills2k) <- c("ldist", "lclimb", "ltime", "ltimef")

> loghill2k.lm <- lm(ltime ~ ns(ldist, 2) + lclimb, data = loghills2k)

> par(mfrow = c(1, 2))

> termplot(loghill2k.lm, col.term = "gray", partial = TRUE, col.res = "black",

+ smooth = panel.smooth)

> par(mfrow = c(1, 1))

7.5 *Linear models – matrix derivations & extensions

• y (n by 1) is a vector of observed values, X (n by p) is model matrix, and β (p by 1) is a vector
of coefficients.

• The model is y = Xβ + ε, i.e. yi = Xiβ + εi where the vector ε of residuals is n by 1

• Least squares normal equations are
X′Xβ = X′y

(assuming εi are iid normal, these are the maximum likelihood estimates)

• If variances are unequal, modify normal equations to

X′WXβ = X′Wy

where W is a diagonal matrix with elements equal to the inverses of the variances (justification
is from maximum likelihood, or argue that leverage should be independent of variance)

• Assume E [y] = µ = Xβ, i.e. E[ε] = 0.

7.5.1 Linear Models – general variance-covariance matrix

More generally, if ε is multivariate normal with known variance-covariance matrix Σ, then ML theory
gives the equation as above with W = Σ−1.

Two values with a high positive correlation contain, jointly, less information than two independent
values. In the extreme case where the correlation is 1, the two variables carry the same information.

If the variance-covariance matrix Σ is not known, many different special methods are available for
specific types of correlation structure that have in practice proved useful. For example, time series
models typically try to account for correlations that are highest between points that are close together
in time. Spatial analysis models typically allow for correlations that are a function of separation in
space. Hierarchical multi-level models allow for different variance-covariance structures at each of
several levels of hierarchy.

7.5.2 Least squares computational methods

A separate set of notes describes the approach, based on the QR matrix decomposition, that is used
in R and in most of the R packages. Where methods that are directly based on QR are too slow, there
may be a specialized method that takes advantage of structure in X to greatly speed up computation.
Sparse least squares is an important special case. See Bates (2006); Koenker and & Ng (2003).
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Part IV

Linear Classification Models & Beyond
See Ripley (1996); Venables and Ripley (2002); Maindonald & Braun (2007, Section 12.2).

The methods discussed here may be contrasted with the strongly non-parametric random forest
method that uses an ensemble of trees. See Maindonald & Braun (2007, Section 11.7). A good
strategy for getting started on an analysis where predictive accuracy is of primary importance is to
fit a linear discriminant model with main effects only, comparing the accuracy from a random forest
analysis. If the random forest analysis gives little or no improvement, the linear discriminant model
may be hard to better. There is much more that can be said, but this may be a good starting strategy.

Notation and types of model

Observations are rows of a matrix X with p columns. The vector x, is a row of X, but in column
vector form. The outcome is categorical, one of g classes.

Methods discussed here will all work with monotone functions of the columns of X. By allowing
columns that are non-linear monotone functions of the initial variables, additive non-linear effects can
be accommodated.

For the discussion of logistic regression that now follows, g = 2. Logistic regression is a specific
type of Generalized Linear Model, and will be introduced in this more general context.

The logistic regression model, fitted using R’s glm() function, is closely analagous to the linear
discriminant model, fitted using lda() with g = 2. Classification may be seen as regression with a
categorical outcome. The differences in output between glm() and lda() reflect in part the difference
between a regresson focus and a discrimination focus. They use different estimation criteria. Addi-
tionally, there are differences in output that in part reflect the different motivations of the two types
of model.

The regression perspective, as implemented in glm(), is better suited to uses of the model where it
is hoped to interpret model parameters in some meaningful manner. The classification/discrimination
perspective, as implemented in lda() and qda(), has advantages if the chief interest is in prediction
and predictive accuracy is of primary importance. It is often useful, with the one set of data, to
complement the output from lda() with ouptut from glm().

Section V will describe problems where the output from glm(), or some equivalent software, is
more or less essential for the intended purpose of the analysis. Implementations that have a regression
prespective are better adapted than those with a discrimination perspective for handling the problems
described in Subsections 12.3, 12.5 and 12.6.

8 Generalized Linear Models

The models described here, or in the case of the airbag data an extension of such a model, are needed
for handling the problems that are described in Subsections 12.3, 12.5 and 12.6. Data analysts should
be aware of them, as they provide the only satistactory way to handle many of the problems for which
they are designed.

Generalized linear models (GLMs) extend linear models in two ways. They allow for a more
general form of expression for the expectation, and they allow various types of non-normal error
terms. Logistic regression models are perhaps the most widely used GLM. In later comparisons with
classification models, these will be the only models considered.

8.1 GLM models – models for E[y]

The straight line regression model has the form

y = α + βx + ε
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where, if we were especially careful, we would add subscript i s to y, x, and ε. In this introductory
discussion, we will consider with models where there is just one x, in order to keep the initial discussion
simple.

Taking expectation on both sides of the equation used for the above straight line regression model,
it follows that

E[y] = α + βx

where E is expectation. It is this form of the equation that is the point of departure for our discussion
of generalized linear models. This class of models was first introduced in the 1970s, giving a unified
theoretical and computational approach to models that had previously been treated as distinct. These
models have been a powerful addition to the data analyst’s armory of statistical tools.

8.1.1 Transformation of the expected value on the left

GLMs allow a transformation f () to the left hand side of the regression equation, i.e., to E[y]. The
result specifies a linear relation with x. In other words,

f (E[y]) = α + βx

where f () is a function, which is usually called the link function. In the fitted model, we call α+βx the
linear predictor, while E[y] is the expected value of the response. The function f () transforms from
the scale of the response to the scale of the linear predictor.

Some common examples of link functions are: f (x) = x, f (x) = 1/x, f (x) = log(x), and f (x) =

log(x/(1 − x)). The last is referred to as the logit link and is the link function for logistic regression.
Note that these functions are all monotonic, i.e., they increase or (in the case of 1/x) decrease with
increasing values of x.

8.1.2 Noise terms need not be normal

We may write
yi = E[yi] + εi.

Here the yi may have a distribution different from the normal distribution. The restriction is that
the distribution must be from the exponential family. Common distributions are the binomial where
yi is the number responding out of a given total ni, and the Poisson where yi is a count. The yi are
assumed independent between observations, usually with different E[yi].

Even more common may be models where the random component differs from the binomial or
Poisson by having a variance that is larger than the mean. The analysis proceeds as though the
distribution were binomial or Poisson, but the theoretical binomial or Poisson variance estimates
are replaced by a variance that is estimated from the data. Such models are called, respectively,
quasi-binomial models and quasi-Poisson models.

8.2 Generalized Linear Models – theory & computation

Here, it is convenient to recast the equations in matrix form.

• As before, we have µ = E[y] (n by 1), X (n by p), and β (p by 1).

• The model is now
f (µ) = Xβ, where E[y] = µ

Here, f (), which must be monotonic, has the name link function. For example,

f (µi) = log(
µi

Ni − µi
)
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• The distribution of yi is a function of the predicted value µi, independently for different ob-
servations. The different yi are from the same exponential family, but the distributions are
not identical. Commonly used exponential family distributions are the normal, binomial and
Poisson.

• An extension is to the quasi-exponential family, where the variance is a constant multiple of
an exponential family variance. The multiplying constant is estimated as part of the analysis.
Applications for models with quasibinomial or quasipoisson errors may if anything be more
extensive than for their exponential family counterparts.

• Just as for linear models, spline or other terms that model nonlinear responses can be fitted.

8.2.1 Maximum likelihood parameter estimates

• Recall that the equation is
f (µ) = E (y) = Xβ

where µ = E [y]

• Assuming a distribution from the exponential family, the maximum likelihood estimates of the
parameters are given by

X′Wµ = X′Wy
where f (µi) = Xiβ

• Note that the (diagonal) element Wii of W are functions both of var[yi] and of f (µi)

• The ML equations must in general be solved by iteration (β appears on both sides of the
equation.) Iteratively reweighted least squares is used, i.e. Newton-Raphson. Each iteration
uses a weighted least squares calculation. As the weights are inversely proportional to the
variances, they depend on the fitted values. Starting values are required to initiate calculations.
The weighted least squares calculation is repeated, with new weights at each new iteration, until
the fitted values converge.

8.2.2 Use and interpretation of model output

• GLMs with binomial errors are formally equivalant to discriminant models where there are two
categories. The GLM framework has advantages for some problems.

• Output is in much the same form as for the lm models. There are additional subtleties of
interpretation – a z value is not a t-statistic, though for some GLMs that yield z values there
are specific circumstances where it is reasonable to treat z values as t-statistics.
[More technically, they are Wald statistics.]

• Except in special cases, the statistical properties of parameters rely on asymptotic results.
Standards errors and t-statistics rely on first-order Taylor series approximations that, in the
worst case, can fail badly. This applies, especially, to binary logistic regression.

• Predicted values are calculated on one or other of two different scales

– Write µ̂ for the estimate of E[y]. This is the vector of predicted values on the scale of the
response.

– The vector of predicted values on the scale of the response is f (µ̂) = Xβ̂.

Predictions on the scale of the response are, for logistic regression models, predictions of the
probability that the outcome will be 1, rather than 0. If the probability is greater than 0.5,
the prediction will be 1; if less than 0.5 the prediction is 0. The 0.5 cutoff can be adjusted for
differences in the prior probability.

• For logistic regression models, and Poisson models with small expected values, assessments of
predictive accuracy should be derived using a resampling approach, perhaps cross-validation.
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9 Linear Methods for Discrimination

As before, observations are rows of a matrix X with p columns. The vector x, is a row of X, but in
column vector form.

The outcome is categorical, one of g classes, where now g may be greater than 2. The matrix W
estimates the within class variance-covariance matrix, while B estimates the between class variance-
covariance matrix. Details of the estimators used are not immediately important. Note however that
they may differ somewhat between computer programs.

The functions that will be used here are lda() and qda(), from the MASS package. The function
lda() implements linear discriminant analysis, while qda() implements quadratic discriminant anal-
ysis. Quadratic discriminant analysis is an adaptation of linear discriminant analysis to handle data
where the variance-covariance matrices of the different classes are markedly different.

An attractive feature of lda() is that it yields “scores” that can be plotted. Let r = min(g − 1, p).
Recall that p is the number of columns of a version of the model matrix that lacks an initial column
of ones. Then assuming that X has no redundant columns, there will be r sets of scores. The r sets of
scores can be examined using a pairs plot. Often, most of the information is in the fist two or three
dimensions. Such plots may be insightful even for data where lda() is inadequate as a classification
tool.

9.1 lda() and qda()

The functions lda() and qda() in the MASS package implement a Bayesian decision theory approach.

• A prior probability πc is assigned to the cth class (i = 1, . . . g).

• The density p(x|c) of x, conditional on the class c, is assumed multivariate normal, i.e., rows of
X are sampled independently from a multivariate normal distribution.

• For linear discrimination, classes are assumed to have a common covariance matrix Σ, or more
generally a common p(x|c). For quadratic discrimination, different p(x|c) are allowed for different
classes.

• Use Bayes’ formula to derive p(c|x). The allocation rule that gives the largest expected accuracy
chooses the class with maximal p(c|x); this is the Bayes’ rule.

• More generally, assign cost Li j to allocating a case of class i to class j, and choose c to minimize∑
i Lic p(i|x).

Note that lda() and qda() use the prior weights, if specified, as weights in combining the within
class variance-covariance matrices.

Using Bayes’ formula

p(c|x) =
πc p(x|c)

p(x)
∝ πc p(x|c)

The Bayes’ rule maximizes p(c|x). For this it is sufficient, for any given x, to maximize

πc p(x|c)

or, equivalently, to maximize
log(πc) + log(p(x|c))

Now assume p(x|c) is multivariate normal, i.e.,

p(x|c) = (2π)
p
2 | Σc |)−

1
2 exp(−

1
2

Qc)
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where
Qc = (x − µc)T Σ−1

c (x − µc)

Then
log(πc) + log(p(x|c)) = log(πc) −

1
2

Qc +
p
2

log(2π) −
1
2

log(| Σc |)

Leaving off the log(2π) and multiplying by -2, this is equivalent to minimization of

Qc + log(| Σc |) − 2 log(πc) = (x − µc)T Σ−1
c (x − µc) + log(| Σc |) − 2 log(πc)

The observation x is assigned to the group for which

(x − µc)T Σ−1
c (x − µc) + log(| Σc |) − 2 log(πc)

is smallest.
Set µc = x̄c, and replace | Σc | by an estimate Wc.

[Note that the usual estimate of the variance-covariance matrix (or matrices) is positive definite,
providing that the same observations are used in calculating all elements in the variance-covariance
matrix and X has no redundant columns.]

Then x is assigned to the group to which, after adjustments for possible differences in πc and | Σc |,
the Mahalanobis distance

(x − x̄c)T W−1
c (x − x̄c)

of x from xc is smallest.
If a common variance-covariance matrix Wc = W can be assumed, a linear transformation is

available to a space in which the Mahalanobis distance becomes a Eucliean distance. Replace x by

z = (UT )−1x

and x̄c by z̄c = (UT )−1x̄c where U is an upper triangular matrix such that UT U = Σ. Then

(x − µc)T W−1(x − µc) = (z − z̄c)T (z − z̄c)

which in the new space is the squared Euclidean distance to from z to z̄c.

Note: For estimation of the posterior probabilities, the simplest approach is that described above.
Thus, replace p(c|x; θ) by p(c|x; θ̂) for calculation of posterior probabilities (the ‘plug-in’ rule). Here, θ is
the vector of parameters that must be estimated. The functions predict.lda() and predict.qda()
offer the alternative estimate method="predictive", which takes account of uncertainty in p(c|x; θ̂).
Note also method="debiased", which may be a reasonable compromise between method="plugin"
and method="predictive"

9.2 Canonical discriminant analysis

Here we assume a common variance-covariance matrix. As described above, replace x by

z = UT−1x

where U is an upper triangular matrix such that UTU = W.
The between classes variance-covariance matrix becomes

B̃ = UT−1BU−1

The ratio of between to within class variance of the linear combination αT z is then

αT B̃α
α̃T α̃
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The matrix B̃ admits the principal components decomposition

B̃ = λ1u1uT
1 + λ2u2uT

2 + . . . + λruruT
r

The choice α = u1 maximizes the ratio of the between to the within group variance, a fraction λ1 of
the total. The choice α = u2 accounts for the next largest proportion λ2, and so on.

The vectors u1, . . . ur are known as “linear discriminants” or “canonical variates”. Scores, which
are conveniently centered about the mean over the data as a whole, are available on each observation
for each discriminant. These locate the observations in r-dimensional space, where r is at most
min(g − 1, p). A simple rule is to assign observations to the group to which they are nearest, i..e., the
distance dc is smallest in a Euclidean distance sense.

For plotting in two dimensions, one takes the first two sets of discriminant scores. A point zi that
is represented as

ζi1u1 + ζi2u2 + ... + ζirur

is plotted in two dinsensions as (ζi1, ζi2), or in three dinsensions as (ζi1, ζi2, ζi3). The amounts by which
the original columns of xi need to be multiplied to give ζi1 are given by the first column of the list
element scaling in the lda object. For ζi2, the elements are those in the second column, and so on.
See the example below.

As variables have been scaled so that within group variance-covariance matrix is the identity, the
variance in the transformed space is the same in every direction. An equal scaled plot should therefore
be used to plot the scores.

9.2.1 Linear Discriminant Analysis – Fisherian and other

Fisher’s linear disciminant analysis was a version of canonical discriminant analysis that used a single
discriminant axis. The more general case, where there can be as many as r = min(g−1, p) discriminant
functions, is described here.

The theory underlying lda() assigns x to the class that maximizes the likelihood. This is equivalent
to choosing the class c that minimizes dc + log(πc), where if the same estimates are used for W and
B, dc is the distance as defined for Fisherian linear discriminant analysis. Recall that πc is the prior
probability of class c.

The output from lda() includes the list element scaling, which is a matrix with one row for
each column of X and one column for each discriminant function that is calculated. This gives the
discriminant(s) as functions of the values in the matrix X.

9.2.2 Example – analysis of the forensic glass data

The data frame fgl in the MASS gives 10 measured physical characteristics for each of 214 glass
fragments that are classified into 6 different types.

The following may help make sense of the information in the list element scaling.

library(MASS}
fgl.lda <- lda(type ~ ., data=fgl)
scores <- predict(fgl.lda, dimen=5)$x # Default is dimen=2
## Now calculate scores from other output information
checkscores <- model.matrix(fgl.lda)[, -1] %*% fgl.lda$scaling
## Center columns about mean
checkscores <- scale(checkscores, center=TRUE, scale=FALSE)
plot(scores[,1], checkscores[,1]) # Repeat for remaining columns
## Check other output information
fgl.lda

93% of the information, as measured by the trace, is in the first two discriminants.
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9.3 Two groups – comparison with logistic regression

Logistic regression, which can be handled using R’s function glm(), is a special case of a Generalized
Linear Model (GLM). The approach is to model p(c|x; θ̂) using a parametric model that may be the
same logistic model as for linear and quadratic discriminant analysis.

In this context it is convenient to change notation slightly, and give X an initial column of ones.
In the linear model and generalized linear model contexts, X has the name “model matrix”.

The vector x is a row of X, but in column vector form. Then if π is the probability of member-
shipÂăin the second group, the model assumes that

log(π/(1 − π) = β′x

where β is a constant.
Compare logistic regression with linear discriminant analysis:

• Inference is conditional on the observed x. A model for p(x|c) is not required. Results are
therefore more robust against the distribution p(x|c).

• Parametric models with “links” other than the logit f (π) = log(π/(1 − π) are available. Where
there are sufficient data to check whether one of these other links may be more appropriate, this
should be done. Or there may be previous experience with comparable data that suggests use
of a link other than the logit.

• Observations can be given prior weights.

• There is no provision to adjust predictions to take account of prior probabilities, though this
can be done as an add-on to the analysis.

• The fitting procedure minimizes the deviance, which is twice the difference between the log-
likelihood for the model that is fitted and the loglikelihood for a ‘saturated’ model in which
predicted values from the model equal observed values. This does not necessarily maximize
predictive accuracy.

• Standard errors and Wald statistics (roughly comparable to t-statistics) are provided for param-
eter estimates. These are based on approximations that may fail if predicted proportions are
close to 0 or 1 and/or the sample size is small.

9.4 Linear models vs highly non-parametric approaches

The linearity assumptions are restrictive, even allowing for the use of regression spline terms to model
non-linear effects. It is not obvious how to choose the appropriate degree for each of a number of
terms. The attempt to investigate and allow for interaction effects adds further complications. In
order to make progress with the analysis, it may be expedient to rule out any but the most obvious
interaction effects. These issues affect regression methods (including GLMs) as well as discriminant
methods.

On a scale in which highly parametric methods lie at one end and highly non-parametric methods
at the other, linear discriminant methods lie at the parametric end, and tree-based methods and
random forests at the non-parametric extreme. An attraction of tree-based methods and random
forests is that model choice can be pretty much automated.

9.5 Low-dimensional Graphical Representation

In linear discriminant analysis, discriminant scores in as many dimensions as seem necessary are used
to classify the points. These scores can be plotted. Each pair of dimensions gives a two-dimensional
projection of the data. If there are three groups and at least two explanatory variables, the two-
dimensional plot is a complete summary of the analysis. Even where higher numbers of dimensions
are required, two dimensions may capture most of the information. This can be checked.
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With most other methods, a low-dimensional representation does not arise so directly from the
analysis. The following approach, which can be used directly with random forests, can be adapted
for use with other methods. The proportion of trees in which any pair of points appear together
at the same node may be used as a measure of the “proximity” between that pair of points. Then,
subtracting proximity from one to obtain a measure of distance, an ordination method can be used
to find a representation of those points in a low-dimensional space.
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Part V

Data Analysis and Interpretation Issues
Here, we draw attention to sources of bias or misleading results.

10 Sources of Bias

10.1 Data collection biases

Large biases can arise from the way that data have been collected. The Literary Digest poll that was
taken prior to the US 1936 Presidential election, where Roosevelt had 62% of the vote rather than the
predicted 43%, is an infamous example. The estimate of 43% was based on a sample, highly biased
as it turned out, of 2.4 million!

The problems that arise can be exacerbated by more directly statistical problems, i.e., issues that
it is important to note even if random samples are available. Estimates of regression coefficients, or
other model parameters, cannot necessarily be taken at their face value.

10.2 Biases from omission of features (variables or factors)

Data analysis has as its end point the use of forms of data summary that will convey, fairly and
succinctly, the information that is in the data. Considerable technical skill may be required to extract
that information. Simple forms of data summary, which seem superficially harmless, can lead to
misleading inferences.

The problem arises, often, from a combination of unbalance in the data and failure to account
properly for important variables. To focus the discussion, consider observational studies of the effects
of modest wine-drinking on heart disease (Jackson et al., 2005). There are a large number of factors
that affect heart disease – genetic, lifestyle, diet, and so on. Any analysis of observational data
that tries to account for their joint effect will inevitably be simplistic. The assumptions made about
the form of the response (usually, a straight line on a suitably transformed scale) will be simplistic.
Simplistic assumptions will be made about interaction effects (how does alcohol intake interact with
other dietary habits?), and so on.

Some of the possibilities that it may be necessary to contemplate, for this specific example and
more generally, are:

1. The issue is one of design of data collection, as well as analysis. If information has not been
collected on relevant variables, the analyst cannot allow for their effect(s).

2. If the data are observational, there may be crucial variables on which it is impossible to collect
information. Or there may be no good understanding of what the relevant variables are.

3. Providing the problem is understood and handled appropriately, large effects are unlikely, in
large data sets, to arise from differences between sub-populations.

4. Small effects are highly likely, and should always be treated with scepticism. Small effects that
are artefacts of the issues noted here show up more readily than small effects that are genuine.
This is because the effects that will be noted here will almost invitably skew estimates of genuine
effects, either exaggerating the effect or (just as likely) reversing the direction of its apparent
effect.

10.2.1 Unequal subgroup weights – an example

Figure 10.2.1 relates to data collected in an experiment on the use of painkillers.3. Notice that the
overall comparison (average for baclofen versus average for no baclofen) goes in a different direction

3Gordon, N. C. et al.(1995): “Enhancement of Morphine Analgesia by the GABAB against Baclofen”. Neuroscience
69: 345-349
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from the comparison for the two sexes separately.
Researchers had been looking for a difference between the two analgesic treatments, without and

with baclofen. When the paper was first submitted for publication, an alert reviewer spotted that some
of the treatment groups contained more women than men, and proposed a re-analysis to determine
whether this accounted for the results.4 When the data were analysed to take account of the gender
effect, it turned out that the main effect was a gender effect, with a much smaller difference between
treatments.

Average reduction: 30 min vs 0 min

all

female

male

1.5 2.0 2.5 3.0 3.5 4.0
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3 9

15 7
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Baclofen No baclofen● ●

Figure 14: Does ba-
clofen, following opera-
tion (additional to earlier
painkiller), reduce pain?
Subgroup numbers,
shown below each point
in the graph, weight the
overall averages when sex
is ignored.

The overall averages in Figure 10.2.1 reflect the following subgroup weighting effects:

Baclofen: 15f to 3m, i.e. 15
18 to 3

18 (a little less than f average)
No baclofen: 7f to 9m, i.e. 7

16 to 9
16 (≈ 1

2 -way between m & f)

This is still only part of the story. More careful investigation revealed that the response to pain
has a different pattern over time. For males, the sensation of pain declined more rapidly over time.

Strategies

(i) Simple approach Calculate means for each subgroup separately.
Overall treatment effect is average of subgroup differences.
Effect of baclofen (reduction in pain score from time 0) is:

Females: 3.479 - 4.151 = -0.672 (-ve, therefore an increase)

Males: 1.311 - 1.647 = -0.336

Average over male and female = -0.5 × (0.672+0.336) = -0.504

(ii) Fit a model that accounts for sex and baclofen effects y = overall mean + sex effect +
baclofen effect + interaction
(At this point, we are not including an error term).

Why specify a model?

It makes assumptions explicit. More anon!

4Cohen, P. 1996. Pain discriminates between the sexes. New Scientist, 2 November, p. 16.
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10.2.2 Simpson’s paradox

In multi-way tables, weighting effects such as have been noted lead to Simpson’s paradox, known
in the genetic context as epistasis. Here is a contrived example; data are admissions to a fictitious
university:

Engineering Sociology Total

Female Male Female Male Female Male
Admit 10 30 30 15 40 45
Deny 10 30 10 5 20 35

Summing over the two separate tables is equivalent, for purposes of calculating overall admission
rates, to the following:

Females: 10
20 ×

20
60 + 30

40 ×
40
60 [0.33 (Eng) : 0.67 (Soc)]

Males: 30
60 ×

60
80 + 15

20 ×
20
80 [0.75 (Eng) : 0.25 (Soc)]

The Overall Rates are:

• females ( 2
3 ): bias (0.33:0.67) is towards the Sociology rate (0.75)

• males ( 45
80 ): bias is (0.75:0.25) towards the Engineering rate (0.5).

For a real-life example that demonstrates this effect, see the data set UCBAdmissions that is
supplied with the R system. Type

help(UCBAdmissions) # Optional; get details of the data
example(UCBAdmissions) # Summarize total data, and breakdown

# by departments

Several further examples, of this same general character, will be given in the next subsection.

Simpson’s paradox and epistasis

In population genetics, Simpson’s paradox type effects are known as epistasis. Most human societies
are genetically heterogeneous. In San Francisco, any gene that is different between the European
and Chinese populations will be found to be associated with the use of chopsticks! If a disease
differs in frequency between the European and Chinese populations, then a naive analysis will find
an association between that disease and any gene that differs in frequency between the European and
Chinese populations.

Such effects are a major issues for gene/disease population association studies. It is now common to
collect genetic fingerprinting data that should identify major heterogeneity. Providing such differences
are accounted for, large effects that show up in large studies are likely to be real. Small effects may
well be epistatic.

10.3 Model and/or variable selection bias

10.3.1 Model selection

When the model is fitted to the data used to select the model from a set of possible models, the effect is
anti-conservative. Thus, standard errors will be smaller than indicated by the theory, and coefficients
and t-statistics larger. Such anti-conservative estimates of standard errors and other statistics may,
unless the bias is huge, nevertheless provide the useful guidance. Use of test data that are separate
from data used to develop the model deals with this issue.

There is a further important issue, that use of separate test data does not address. Almost
inevitably, none of the models on offer will be strictly correct. Mis-specification of the fixed effects,
and to a lesser extent of the random effects, is likely to bias model estimates, at the same time inflating
the error variance or variances, i.e., it may to some extent work in the opposite direction to selection
effects.
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10.3.2 Variable selection and other multiplicity effects

Variable selection has the same, or greater, potential for bias as model selection. This is an especial
issue for the analysis of microarray and other genomic data, where a small number of gene expression
measures, perhaps of the order of 5 - 20, may be selected from 10,000 or more. See Ambroise and
McLachlan (2001) for a critique of papers where the authors have fallen prey to this trap. This can
also be an issue for graphs that are based on the data that remain after selection.

Empirical accuracy assessments seem the only good way to address the major issues that can arise
here. There are traps for data analysts who have not taken adequate account of the implications
of selecting, for use in a regression or discriminant or similar analysis, a small number of variables
(“features”) from a much larger number. Maindonald (2003) gives a relatively elementary account of
this matter, which should be accessible to non-specialists. The paper Ambroise and McLachlan (2001)
is a careful examination of several examples, all concerned with the use of discriminant methods in
connection with microarray data, from the literature. The same effects can arise from model tuning.
Cross-validation is a key tool in this context. This, or the bootstrap, seems the only good way to
allow for the skewing of results that can arise from potentially huge variable selection effects. Any
model tuning and/or variable selection must be repeated at each cross-validation fold.

11 Errors in x

In the discussion so far, it has been assumed, either that the explanatory variables are measured
with negligible error or that the interest is in the regression relationship given the observed values of
explanatory variables.

This subsection is designed to draw attention to the effect that errors in the explanatory variables
can have on regression slope. Discussion will be limited to a relatively simple “classical” errors in x
model. For this model the error in x, if large, reduces the chances that the estimated slope will appear
statistically significant. Additionally, it reduces the expected magnitude of the slope, i.e., the slope is
attenuated. Even with just one explanatory variable x, it is not possible to estimate the magnitude
of the error or consequent attenuation from the information shown in a scatterplot of y versus x.
For estimating the magnitude of the error, there must be a direct comparison with values that are
measured with negligible error.

The discussion will now turn to as study on the measurement of dietary intake. The error in the
explanatory variable, as commonly measured, turned out to be larger and of greater consequence than
most researchers had been willing to contemplate.

11.0.3 Measurement of dietary intake

The 36-page Diet History Questionnaire is a Food Frequency Questionnaire (FFQ) that was developed
and evaluated at the U.S. National Cancer Institute, for use in large-scale trials that look for dietary
effects on cancer and on other diseases. Given the huge scale of some of these trials, some costing
US$100,000,000 or more, it has been important to have an instrument that is relatively cheap and
convenient. Unfortunately, as the study that is reported in Schatzkin et al (2003) demonstrates, the
FFQ seems too inaccurate to serve its intended purpose.

This FFQ queries frequency of intake over the previous year for 124 food items, asking details
of portion sizes for most of them. There are supplementary questions on such matters as seasonal
intake and food type. More detailed food records may be collected at specific times, which can then
be used to calibrate the FFQ results. One such instrument is a 24-hour dietary recall, questioning
participants on their dietary intake in the previous 24 hours. The accuracy of the 24-hour dietary
recall was a further concern of the Schatzkin et al (2003) study. Doubly Labeled Water, which is a
highly expensive biomarker, was used as an accurate reference instrument.

Schatzkin et al (2003) reported measurement errors where the standard deviation for estimated
energy intake was seven times the standard deviation, between different individuals, of the reference.
Additionally, Schatzkin et al (2003) found a bias in the relationship between FFQ and reference that
further reduced the attenuation factor, to 0.04 for women and to 0.08 for men. For the relationship



11 ERRORS IN X 44

between the 24 hour recalls and the reference, the attenuation factors were 0.1 for women and 0.18 for
men, though these can be improved by the use of repeated 24-hour recalls. These errors were much
larger than most researchers had been willing to contemplate.

The results reported in Schatzkin et al (2003) raise serious questions about what such studies can
achieve, using instruments such as those presently available that are sufficiently cheap and convenient
that they can be used in large studies. The measurement instrument and associated study design issues
have multi-million dollar implications. Carroll (2004) gives an accessible summary of the issues.

This is a multi-million dollar issue. The following prospective studies that use such instruments
are complete or nearly complete:

NHANES: n = 3,145 women aged 25-50
(National Health and Nutrition Examination Survey)
Nurses Health Study: n = 60,000+
Pooled Project: n = 300,000+
Norfolk (UK) study: n = 15,000+
AARP: n = 250,000+

Only 1 prospective study has found firm evidence suggesting a fat and breast cancer link, and 1
has found a negative link. The lack of consistent (even positive) findings led to the Women’s Health
Initiative Dietary Modification Study in which 60,000 women have been randomized to two groups:
healthy eating and typical eating. Objections to this study are:

• Cost ($100,000,000+)

• Can Americans can really lower % fat calories from to 20%, from the current 35%

• Even if the study is successful, difficulties in measuring diet mean that we will not know what
components led to the decrease in risk.

11.0.4 A simulation of the effect of measurement error

Suppose that the underlying regression relationship that is of interest is

yi = α + βzi + εi (i = 1, . . . , n)

and that the measured values are
xi = zi + ηi

where
var[εi] = σ2; var[ηi] = τ2

Figure 15 shows the effect. If τ is 40% of the standard deviation in the x direction, i.e., τ = 0.4sz, the
effect on the slope is modest. If τ = 2sz, the attenuation is severe.

The expected value of the attenuation in the slope is, to a close approximation

λ =
1

1 + τ2/s2
z

where sz =
√∑n

i=1(zi − z̄)2. If τ = 0.4sz, then λ ' 0.86.
Whether a reduction in slope by a factor of 0.86 is of consequence will depend on the nature of

the application. Often there will be more important concerns. Very small attenuation factors (large
attenuations), e.g. less than 0.1 such as were found in the Schatzkin et al (2003) study, are likely to
have serious consequences for the use of analysis results.

Points to note are:

• From the data used in the panels of Figure 15, it is impossible to estimate τ, or to know the
underlying zi values. This can be determined only from an investigation that compares the
xi with an accurate, i.e., for all practical purposes error-free, determination of the zi. The
Schatzkin et al (2003) study that will be discussed below made use of a highly expensive
reference instrument, too expensive for standard use, to assess and calibrate the widely used
cheaper measuring instruments.
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Figure 15: The fitted solid lines show how the regression line for y on x change as the error in x
changes. The underlying relationship, shown with the dashed line, is in each instance y = 15 + 2.5 z.
Note that s2

z =
∑n

i=1(zi − z̄)2, and that τ is the standard deviation of the independent errors that are
added to the zi.
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• A test for β = 0 can be undertaken in the usual way, but with reduced power to detect an effect
that may be of interest.

• The t-statistic for testing β = 0 is affected in two ways; the numerator is reduced by an expected
factor of λ, while the standard error that appears in the numerator increases. Thus if λ = 0.1,
the sample size required to detect a non-zero slope is inflated by more than the factor of 100
that the effect on the slope alone would suggest.

In social science, the ratio τ2/s2
z has the name reliability. As Fuller (1987) points out, a better

name is reliability ratio.

11.0.5 Errors in variables – multiple regression

Again, attention will be limited to the classical errors in x model. Where one only of several variables
is measured inaccurately, its coefficient may on that account not appear statistically significant, or
be severely attenuated. For remaining variables (measured without error) possible scenarios include:
the coefficient suggests a relationship when there is none, or the coefficient is reversed in sign. Where
several variables are measured with error, there is even more room for misleading and counter-intuitive
coefficient values.

12 Further examples and discussion

12.1 Does screening reduce deaths from gastric cancer?

The issue here is that of comparing groups who may differ in respects other then the respect that is
under investigation. In other words, there are likely to be hidden variables.

Patients who had surgery for gastric cancer were divided into two groups – those who had presented
with cancer at a hospital or doctor’s surgery, and those who had been diagnosed with cancer as a
result of screening. Mortality was assessed in the 5 years following surgery:

Mortality Number
Unscreened Group 41.9% 352

Screened Group 28.2% 308

Table 3: Mortality in five-year period following surgery for cancer, classified according to whether
patients presented with cancer, or cancer was detected by screening.

What are the possible explanations for the higher mortality in the unscreened group?

Screening may be catching cancer early, thus reducing the risk of death.

Cancers detected by screening may be at an earlier stage of development, and thus less imme-
diately fatal.

Some cancers detected by screening may be of a less dangerous type, that progress slowly, or
may never progress to become fatal.

All three effects may contribute to the difference.

Question: What are likely/possible missing variables/factors, for these data?

The appropriate approach is to identify several large groups of patients, randomly assigning groups
for screening or no screening. Study participants are then followed for, e.g., the next decade. One
study5 classified 24,134 survey recipients as screened or unscreened, according as they had been
screened, or not, in the previous year. It then followed them up for 40 months:

5used in: Inaba et al. 1999: Evaluation of a Screening Program on Reduction of Gastric Cancer Mortality in Japan:
Preliminary Results from a Cohort Study. Preventive Medicine 29: 102-106
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Male Female
Unscreened Screened Unscreened Screened
(n = 6,536) (n = 4,934) (n = 8,456) (n = 4,208)

Gastric cancer
No. of deaths 19 8 9 4
Mortality rate 86.8 53.0 31.0 40.2

All causes
No. of deaths 473 237 403 97
Mortality rate 2,199.0 1,593.1 1,370.7 829.4

Table 4: Mortality rates (deaths per 100,000 person years), from gastric cancer and from all causes.

Question: What are likely/possible missing variables/factors, for these data?

12.2 Cricket – Runs Per Wicket:

1st innings 2nd innings Overall
Runs Wickets Runs Wickets

Bowler A 40 4 240 6 280 10
Bowler B 70 5 50 1 120 6

Table 5: Runs per wicket for each bowler in the two innings.

The runs per wicket are:

1st innings 2nd innings
Bowler A 10.00 40.00
Bowler B 14.00 50.00

Table 6: Runs per wicket for each bowler in the two innings.

Observe that although Bowler A does better than bowler B in each innings, his overall average is
worse – 28 runs per wicket as opposed to 20.

A fair way to make the comparison is to model the effects both of bowler and of innings, using a
linear model.

12.3 Alcohol consumptions and risk of coronary heart disease

Here, there are may factors for which there should be an adjustment. After adjusting for the effects
of other factors. how does level of alcohol consumption affect risk of death? The method of analysis
used is survival analysis, which will not be covered in this course. Think of it as an extension of the
regression methodology that will be considered later in the course, with the risk of death relative to
the baseline as the outcome. (Risk is expressed as a probability density; in this context it has the
name “hazard” rate.)
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No. of events (mortality/CHD) All-cause mortality Coronary heart disease
Men

Never drink (16/43) 2.3 (1.2 – 3.8) 1.8 (1.3 – 2.5)
Special occasions (33/76) 1.4 (0.9 – 2.2) 1.1 (0.8 – 1.4)
1–2 times/month (37/93) 1.5 (1.0 – 2.2) 1.0 (0-8 – 1.3)
1–2 times/week (82/306) 1 (baseine) 1.0 (baseline)
Almost daily (52/219) 0.9 (0.7 – 1.3) 0.9 (0.8 – 1.1)
Twice a day or more (22/41) 2.5 (1.5 – 4.1) 1.1 (0.8 – 1.5)

Women
Never drink (9/43) 1.5 (0.7 – 3.5) 1.8 (1.3 – 2.8)
Special occasions (40/127) 1.5 (0.7 – 3.5) 1.2 (0.9 – 1.5)
1–2 times/month (14/61) 1.7 (1.0 – 2.9) 1.0 (0-8 – 1.8)
1–2 times/week (26/137) 1 (baseine) 1.0 (baseline)
Almost daily (18/59) 1.3 (0.7 – 2.4) 0.8 (0.6 – 1.2)
Twice a day or more (5/7) 4.8 (1.8 – 12.7) 1.3 (0.6 – 2.8)

Table 7: Increased risk of mortality, relative to baseline, according to frequency of alcohol consump-
tion. Factors for which adjustment was made were age, smoking, employment grade, blood cholesterol,
blood pressure, body mass index, and general health as measured by a score from a questionnaire.
CHD was recorded as an outcome if there was an episode of fatal or non-fatal cornonary heart disease.

Britton & Marmot (2004) report on an 11-year follow-up of a study of 10,308 London-based civil
servants aged 35-55 years at baseline (33% female). Adjustments were made for age, smoking, em-
ployement grade, blood cholesterol, blood pressure, body mass index, and general health as measured
by a score from a questionnaire. Table 7 shows the estimated ratio of risk relative to the baseline line,
i.e., to the risk from all other factors.

Thus, it looks as though modest levels of alcohol consumption may be beneficial. However the
results remain controversial. There may for example be lifestyle factors, associated with levels of
alcohol consumption, for which factors such as employment have not made adequate adjustment. If
such factors are correlated with frequency of drinking, this might in part explain the result. See
especially Jackson et al. (2005).

Note also another source of evidence, derived from so-called Mendelian randomization studies.
(Mendelian dose assignment would be a more accurate description than “Mendelian randomization”.)
Half of the Japanese population is homozygous or heterozygous for a non-functional variant of the
gene ALDH2, making them unable to metabolise alcohol properly, with unpleasant consequences. The
effect is more serious for the homozygotes than for the heterozygotes. The result is that homozygotes
heavily curtail their alcohol consumption and heterozygotes curtail it to some lesser extent. The
incidence of CHD closely reflects results predicted by Britton & Marmot (2004). At the same time,
no association was apparent between genotype and other factors implicated in CHD. See Davey Smith
& Ebrahim (2005).

12.4 Do the left-handed die young

A number of papers, in Nature, in the psychological literature and in the medical literature, have
argued that left-handed people have poorer survival prospects than right-handers. It turns out that,
in a large cross-sectional sample of the British population that was studied in the 1970s, the proportion
of left-handers declined from around 15% for ten-year-olds to around 5% for 70-year olds. If average
age at death is compared between left-handers and right-handers, left-handers will be over-represented
among those dying young, and over-represented among those dying in older years. Hence the average
age will be be lower for left-handers than for right-handers. Disturbingly it has been easier to get this
nonsense published than to get refutations published.

Again survival analysis methods are required for a proper analysis. Once the effect noted above
has been removed, there may be a small residual effect from lef-thandedness. See Bland & Altman
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(2005).

12.5 Do airbags reduce risk of death in an accident

Each year the National Highway Traffic Safety Administration in the USA collects, using a random
sampling method, data from all police-reported crashes in which there is a harmful event (people or
property), and from which at least one vehicle is towed. The data in Table 8 are a summary of a
subset of the 1997-2002 data, as reported in Meyer & Finney (2006).

Seatbelt Airbag Fatalities Occupants
seatbelt airbag 8626 4871940
none airbag 10650 870875
seatbelt none 7374 2902694
none none 20550 1952211

Table 8: Number of fatalities, by use of seatbelt and presence of airbag.

Meyer & Finney (2006) conclude that on balance (over the period when their data were collected)
airbags cost lives. Although their study is better than the official National Highway Traffic Safety
Administration assessment of the evidence, based on accidents where there was at least one death. In
order to obtain a fair comparison, it is necessary to adjust, not only for the effects of seatbelt use, but
also for speed of impact. When this is done, airbags appear on balance to be dangerous, with the most
serious effects in high impact accidents. Strictly, the conclusion is that, conditional on involvement
in an accident that was sufficiently serious to be included in the database (at least one vehicle towed
away from the scene), airbags are harmful.

Both sets of data are from accidents, and there is no way to know how many cases there were with
airbags where accidents (serious enough to find their way into the database) were avoided, as opposed
to the cases without aribags where accidents were avoided. Tests with dummies do not clinch the
issue; they cannot indicate how often it will happen that an airbag disables a driver to an extent that
they are unable to recover from an accident situation enough to avoid death or serious injury.

In ongoing debate and controversy over the use of airbags, errors have been identified in the data.
Use of the corrected data do not, however, substantially change the conclusions. Further questions,
additional to those noted above, have been raised. A forthcoming issue of Chance will take up some
of these further issues. The data (the initial data an/or perhaps the corrected data) will appear in
one of the sets of laboratory exercises.

Before installation of airbags was ever made mandatory, should there have been a large controlled
trial in which one out of every two cars off the production line was fitted with an airbag? Would it
have worked? Or would there be too much potential for driver behaviour to be influenced by whether
or not there was an airbag in the car? Would it have been possible to sell the idea of such a trial to
the public?

12.6 Hormone replacement therapy

Cohort and other population based studies have suggested hormone replacement therapy (HRT) re-
duces the risk of coronary heart disease (CHD). A large meta-analysis of what were identified as the
best quality observational studies found a relative reduction in risk of 50% from any use of HRT.

A large randomized controlled trial found an increase in hazard, from use of CRT, of 1.29 (95%
CI 1.02–1.63), after 5 years of follow-up. Thus, so far from reducing CHD risk, it increases the risk.
The conclusion given in a 2006 ABC Health Report interview is that:

Hormone therapy, both oestrogen combined with progesterone and oestrogen alone, in-
crease risk of cardio vascular disease, stroke, blood clots and the hormone therapy that
was combined meaning oestrogen and progesterone increase risk of breast cancer.
[This is taken from: http://www.abc.gov.au/rn/healthreport/stories/2006/1530042.
htm]
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This was an especial puzzle because the results of the observational studies have been consistent
with the results of randomized trials for other outcomes – breast cancer (increased risk for the combined
oestrogen/progesterone HRT; for a 50-year old from 11 in 1000 to maybe 15 in 1000), colon cancer
(reduced risk), hip fracture (reduced risk, but diet, exercise and other drugs can achieve the same or
better results) and stroke (increased risk; for a 50-year old from 4 in 1000 to 6 in 1000). See the ABC
web page just noted and, e.g., Rossouw et al. (2002) for further details and references.

A recent analysis by Hérnan et al. of the observational data gave the following factors by which
the average risk is multiplied: These effects are assumed to add.

Years of follow-up 0 - 2 >2 - 5 >5
Multiply risk by 1.5 1.3 0.67
Years since menopause <10 10 - 20 >20
Multiply risk by 0.89 1.24 1.65

The observational data included some individuals with long follow-up times, whereas the nature
of a randomized trial (after randomization, there is a limited follow-up time) rules out long follow-up
times. Moreover, in order to make up numbers, the randomized trials included many women with long
times following menopause. Both these factors increase the average estimated risk for the randomized
trials, relative to the observational data. The analysis will appear later this year, in a paper in the
journal Epidemiology.

In part, the issue is that both the randomized trials and the observational studies yielded averages
for populations that were heterogeneous in ways that gave different relative weights to relevant sub-
populations. Earlier analyses failed to identify important relevant covariates.

12.7 Freakonomics

Several of the studies that are discussed in Leavitt and Dubner (2005), some with major public policy
relevance, relied to an extent on regression methods – usually generalized linear models rather than
linear models. References in the notes at the end of their book allow interested readers to pursue
technical details of the statistical and other methodology. The conflation of multiple sources of insight
and evidence is invariably necessary, in such studies, if conclusions are to carry conviction. Ignore the
journalistic hype, obviously the responsibility of the second author, in the preamble to each chapter.

12.8 Further reading

See Rosenbaum (1999) and Rosenbaum (2002) for a comprehensive overview of issues that commonly
arise in the analysis of observational data, and of approaches that may be available to handle some
of the major sources of potential difficulty.

Part VI

Ordination

13 Examples, Theory and Overview

Ordination is a generic name for methods for providing a low-dimensionaL view of points in multi-
dimensional space, such that“similar”objects are near each other and dissimilar objects are separated.
The plot(s) from an ordination in 2 or 3 dimensions may provide useful visual clues on clusters in the
data and on outliers.

Here, the discussion will turn to multi-dimensional scaling (MDS) methods where distances are
given, or that start by calculating distances between points, then using the distances as the starting
point for an ordination. Similarities can be transformed into distances, though often with some
arbitrariness in the way that this is done.

Examples are:
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1. From Australian road travel distances between cities and larger towns, can we derive a plausible
“map” showing the relative geographic locations?

2. Starting with genomic data, various methods are available for calculating genomic “distances ”
between, e.g., different insect species. The distance measures are based on evolutionary models
that aim to give distances between pairs of species that are a monotone function of the time
since the two species separated.

3. Given a matrix X of n observations by p variables, a low-dimensional representation is required,
i.e., the hope is that a major part of the information content in the data can be summarized
in a small number of constructed variables. There is typically no good model, equivalent to
the evolutionary models used by molecular biologists, that can be used to motivate distance
calculations. There is then a large element of arbritariness in the distance measure used.

If data can be separated into known classes that should be reflected in any ordination, then the
scores from classification using lda() may be a good basis for an ordination. Plots in 2 or perhaps 3
dimensions may then reveal additional classes and/or identify points that may be misclassified and/or
are in some sense outliers. It may indicate whether the classes that formed the basis for the ordination
seem real and/or the effectiveness of the discrimination method in choosing the boundaries between
classes.

The function randomForest() is able to return “proximities” that are measures of the closeness of
any pair of points. These can be turned into rough distance measures that can then form the basis
for an ordination. With Support Vector Machines, decision values are available from which distance
measures can be derived and used as a basis for ordination.

13.1 Distance measures

13.1.1 Euclidean distances

Treating the rows of X (n by p) as points in a p-dimensional space, the squared Euclidean distance
d2

i j between points i and j is

d2
i j =

p∑
k=1

(xik − x jk)2

The distances satistfy the triangle inequality

di j ≤ dik + dk j

The columns of X can be arbitrarily transformed before calculating the di j. Where all elements
of a column are positive, use of the logarithmic transformation is common. A logarithmic scale
makes sense for biological morphometric data, and for other data that has similar characteristics. For
morphometric data, the effect is to focus attention on relative changes in the various body proportions,
ignoring the overall magnitude.

The columns may be standardized before calculating distances, i.e., scaled so that the standard
deviation is one. The columns may be weighted differently. Use of an unweighted measure with all
columns scaled to a standard deviation of one is equivalent to working with the unscaled columns and
calculating d2

i j as

d2
i j =

p∑
k=1

wi j(xik − x jk)2

where wi j = (sis j)−1 is the inverse of the product of the standard deviations for columns i and j.
Results may depend strongly on the distance measure.
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13.1.2 Non-Euclidean distance measures

Euclidean distance is one of many possible choices of distance measures, still satisfying the triangle
inequality. As an example of a non-Euclidean measure, consider the Manhattan distance. This has

di j =

p∑
k=1

| xik − x jk |

The Manhattan distance is the shorest distance for a journey that always proceeds along one of the
co-ordinate axes. In Manhattan in New York, streets are laid out in a rectangular grid. This is then
(with k = 2) the walking distance along one or other street. For other choices, see the help page for
the function dist().

The function daisy() in the cluster package offers a still wider range of possibilities, including
distance measures that can be used when columns that are factor or ordinal. It has an argument
stand that can be used to ensure standardization when distances are calculated. Unless measurements
are comparable (e.g., relative growth, as measured perhaps on a logarithmic scale, for different body
measurements), then it is usually desirable to standardize before using ordination methods to examine
the data.

Irrespective of the method used for the calculation of the distance measure, ordination methods
yield a representation in Euclidean space. Dedpending on the distance measure and the particular set
of distances, an exact representation may or may not be possible.

See Gower & Legendre (1986) for a detailed discussion of the netric and Euclidean propoerties of
a wide variety of similarity coefficients.

13.2 From distances to a configuration in Euclidean space

Here, we show how an X-matrix like representation, i.e., a representation in Euclidean space, can be
recovered from a matrix of pairwise“distances”between points. The matrix that results will be written
X, to distinguish it from any initial matrix X that has been the starting point for the calculation of
distances.

The dimension (number of columns of X) may be as many as one less than the number of points.
The only constraint on the “distances” is that they must satisfy the triangle inequality that was noted
above, i.e., di j ≤ dik + dk j.

Clearly the distances will be unaffected if the columns of X are centred so that all columns have
mean 0. They will, also, be unaffected by arbitrary orthogonal rotation of the column space, i.e.,
replace X by XP, where P is an orthogonal matrix. Orthogonality implies that PT P = I, where I is the
identity matrix.

The methodology that will now be described yields a matrix X whose columns are orthogonal,
i.e., the pairwise innner product of any pair of columns is 0. Moreover, the columns can be (and
are) ordered so that the successive columns explain successively larger proportion of the inter-point
distances. Often, most of the information is in the first few columns.

Observe that, given X, the squared Euclidean distance between points i and j can be written

d2
i j =

p∑
k=1

(xik − x jk)2

=

p∑
k=1

x2
ik +

p∑
k=1

x2
jk − 2

p∑
k=1

xikx jk

Thus
d2

i j = qii + q j j − 2qi j (1)

where qii =
∑p

k=1 x2
ik; qi j =

∑p
k=1 xikx jk.

Observe that qi j is the (i, j)th element of the matrix Q = XX′. Thus, the matrix XX′ has all the
information needed to construct distances.



13 EXAMPLES, THEORY AND OVERVIEW 53

Now require that columns of X are centered, i.e.
n∑

i=1

xik = 0, i = 1, . . . p

This implies that
n∑

i=1

qi j =

n∑
i=1

(
p∑

k=1

xikx jk)

=

p∑
k=1

(
n∑

i=1

xikx jk)

=

p∑
k=1

(x jk

n∑
i=1

xik)

= 0

i.e., that the rows and columns of Q sum to zero.

13.2.1 Low-dimensional representation

It will now be shown that given distances di j, then equation 1 uniquely determines a matrix Q whose
rows and columns sum to zero. The demand that the di j satisfy the triangle inequality is unfortunately
not enough to guarantee that this matrix will be positive definite, as is required to yield a configuration
that can be exactly embedded in Euclidean space.

Set A =
∑n

i=1 qii. Summing di j = qii + q j j − 2qi j over i, it follows that
n∑

i=1

d2
i j = A + nq j j (2)

n∑
j=1

d2
i j = A + nqii (3)

n∑
i=1

n∑
j=1

d2
i j = 2nA (4)

From equation 4

A =
1

2n

n∑
i=1

n∑
j=1

d2
i j (5)

From equation 1, substituting for qii and q j j from equations 2 and 3 above, and then for A from
equation 5 above

qi j = −
1
2

d2
i j +

1
2n

(
n∑

i=1

d2
i j +

n∑
j=1

d2
i j − 2A)

= −
1
2

d2
i j +

1
2n

(
n∑

i=1

d2
i j +

n∑
j=1

d2
i j −

1
n

n∑
i=1

n∑
j=1

d2
i j)

Having thus recovered a symmetric matrix Q, the spectral decomposition yields

Q = UΛUT

where Λ is a diagonal matrix. The diagonal elements λi are ordered so that

λ1 ≥ λ2 . . . ≥ λn

As the rows and columns of Q sum to zero, Q is singular. Hence if Q is positive definite, as required
for exact embedding in Euclidean space, λi ≥ 0 for all λi and λn = 0.

Two important points are:
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• Often, most of the information will be in the first few dimensions. We may for example be able
to approximate Q by replacing Λ in Q = UΛUT by a version of Λ in which diagonal elements
after the kth have been set to zero. If cmdscale() is called with eig=TRUE, it returns both the
eigenvalue information (the λi) and a goodness of fit statistic, by default (assuming at least two
non-zero λi) for the configuration with k = 2.

• If Q is not positive semidefinite, the ordination can still proceed. However one or more eigen-
values λi will now be negative. If relatively small, it may be safe to ignore dimensions that
correspond to negative eigenvalues. It is then more than otherwise desirable to check that the
ordination reproduces the distances with acceptable accuracy.

13.2.2 The connection with principal components

Let X be a matrix that is the basis for the calculation of Euclidean distances, after any transformations
and/or weighting. Then metric p-dimensional ordination, applied to Euclidean distances between the
rows of X, yields an orthogonal transformation of the space spanned by the columns of X. If the
successive dimensions are chosen to “explain” successively larger proportions of the trace of XXT , it
is equivalent to the principal components transformation. Thus cmdscale() yields, by a different set
of matrix manipulations, a principal components decomposition.

13.3 Non-metric scaling

These methods all start from “distances”, but allow greater flexibility in their use to create an or-
dination. The aim is to represent the “distances” in as few dimensions as possible. AS described
here, a first step is to treat the distances as Euclidean, and determine a configuration in Euclidean
space. These Euclidean distances are then used as a starting point for a representation in which the
requirement that these are Euclidean distances, all determined with equal accuracy, is relaxed. The
methods that will be noted here are:

Sammon scaling: A configuration with distances d̃ is chosen to minimize a weighted squared
”stress”

1∑
i, j di j

∑
i, j

(di j − d̃i j)2

di j

Kruskal’s non-metric multidimensional scaling: This aims to minimize∑
i, j(θ(di j) − d̃i j)2∑

i, j d̃2
i j

with respect to the configuration of points and an increasing function θ of the distance di j.

Often, it makes sense to give greater weight to small distances than to large distances. The distance
scale should perhaps not be regarded as rigid. Larger distances may not be measured on the same
Euclidean scale as shorter distances. The ordination should perhaps preserve relative rather than
absolute distances.

13.4 Examples

13.4.1 Australian road distances

The distance matrix that will be used is in the matrix audists, in the image file audists.Rdata. Con-
sider first the use of classical multi-dimensional scaling, as implemented in the function cmdscale():

> library(DAAGxtras)

> aupoints <- cmdscale(audists)

> plot(aupoints)

> text(aupoints, labels = paste(rownames(aupoints)))
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An alternative to text(aupoints, labels=paste(rownames(aupoints))), allowing better place-
ment of the labels, is identify(aupoints, labels=rownames(aupoints)). We can compare the
distances in the 2-dimensional representation with the original road distances:

> audistfits <- as.matrix(dist(aupoints))

> misfit <- as.matrix(dist(aupoints)) - as.matrix(audists)

> for (j in 1:9) for (i in (j + 1):10) {

+ lines(aupoints[c(i, j), 1], aupoints[c(i, j), 2], col = "gray")

+ midx <- mean(aupoints[c(i, j), 1])

+ midy <- mean(aupoints[c(i, j), 2])

+ text(midx, midy, paste(round(misfit[i, j])))

+ }

> colnames(misfit) <- abbreviate(colnames(misfit), 6)

> print(round(misfit))

Adelad Alice Brisbn Broome Cairns Canbrr Darwin Melbrn Perth Sydney
Adelaide 0 140 -792 -156 366 20 11 82 482 -273
Alice 140 0 -1085 -175 -41 76 -118 106 -26 -314
Brisbane -792 -1085 0 198 319 -25 -233 -471 153 -56
Broome -156 -175 198 0 527 -7 6 -65 990 70
Cairns 366 -41 319 527 0 277 -31 178 8 251
Canberra 20 76 -25 -7 277 0 -1 -241 372 -8
Darwin 11 -118 -233 6 -31 -1 0 -12 92 -58
Melbourne 82 106 -471 -65 178 -241 -12 0 301 -411
Perth 482 -26 153 990 8 372 92 301 0 271
Sydney -273 -314 -56 70 251 -8 -58 -411 271 0

The graph is a tad crowded, and for detailed information it is necessary to examine the table.
It is interesting to overlay this “map” on a physical map of Australia.

> library(oz)

> oz()

> points(aulatlong, col = "red", pch = 16, cex = 1.5)

> comparePhysical <- function(lat = aulatlong$latitude, long = aulatlong$longitude,

+ x1 = aupoints[, 1], x2 = aupoints[, 2]) {

+ fitlat <- predict(lm(lat ~ x1 + x2))

+ fitlong <- predict(lm(long ~ x1 + x2))

+ x <- as.vector(rbind(lat, fitlat, rep(NA, 10)))

+ y <- as.vector(rbind(long, fitlong, rep(NA, 10)))

+ lines(x, y, col = 3, lwd = 2)

+ }

> comparePhysical()

An objection to cmdscale() is that it gives long distances the same weight as short distances. It is
just as prepared to shift Canberra around relative to Melbourne and Sydney, as to move Perth. It
makes more sense to give reduced weight to long distances, as is done by sammon() (MASS ).

> aupoints.sam <- sammon(audists)

Initial stress : 0.01573
stress after 10 iters: 0.00525, magic = 0.500
stress after 20 iters: 0.00525, magic = 0.500

> oz()

> points(aulatlong, col = "red", pch = 16, cex = 1.5)

> comparePhysical(x1 = aupoints.sam$points[, 1], x2 = aupoints.sam$points[,

+ 2])
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Notice how Brisbane, Sydney, Canberra and Melbourne now maintain their relative positions much
better.

Now try full non-metric multi-dimensional scaling (MDS). This preserves only, as far as possible,
the relative distances. A starting configuration of points is required. This might come from the
configuration used by cmdscale(). Here, however, we use the physical distances.

> oz()

> points(aulatlong, col = "red", pch = 16, cex = 1.5)

> aupoints.mds <- isoMDS(audists, as.matrix(aulatlong))

initial value 11.875074
iter 5 value 5.677228
iter 10 value 4.010654
final value 3.902515
converged

> comparePhysical(x1 = aupoints.mds$points[, 1], x2 = aupoints.mds$points[,

+ 2])

Notice how the distance between Sydney and Canberra has been shrunk quite severely.

13.4.2 Genetic Distances – Hasegawa’s selected primate sequences

Here, matching genetic DNA or RNA or protein or other sequences are available from each of the
different species. Distances are based on probabilistic genetic models that describe how gene sequences
change over time. The package ape implements a number of alternative measures. For details see
help(dist.ape).

Hasegawa’s sequences were selected to have as little variation in rate, along the sequence, as pos-
sible. The sequences are available from:
http://evolution.genetics.washington.edu/book/primates.dna. They can be read into R as:

> library(ape)

> webpage <- "http://evolution.genetics.washington.edu/book/primates.dna"

> primates.dna <- read.dna(con <- url(webpage))

> close(con)

Now calculate distances, using Kimura’s F84 model, thus

> primates.dist <- dist.dna(primates.dna, model = "F84")

We now try for a two-dimensional representation, using cmdscale().

> primates.cmd <- cmdscale(primates.dist)

> eqscplot(primates.cmd)

> rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.cmd[, 1], breaks = 4))]

> text(primates.cmd[, 1], primates.cmd[, 2], row.names(primates.cmd),

+ pos = rtleft)

Now see how well the distances are reproduced:

> d <- dist(primates.cmd)

> sum((d - primates.dist)^2)/sum(primates.dist^2)

[1] 0.1977138

This is large enough (20%, which is a fraction of the total sum of squares) that it may be worth
examining a 3-dimensional representation.
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> library(lattice)

> primates.cmd <- cmdscale(primates.dist, k = 3)

> cloud(primates.cmd[, 3] ~ primates.cmd[, 1] * primates.cmd[,

+ 2])

> d <- dist(primates.cmd)

> sum((d - primates.dist)^2)/sum(primates.dist^2)

[1] 0.1045168

Now repeat the above with sammon() and mds().

> primates.sam <- sammon(primates.dist, k = 3)

Initial stress : 0.11291
stress after 10 iters: 0.04061, magic = 0.461
stress after 20 iters: 0.03429, magic = 0.500
stress after 30 iters: 0.03413, magic = 0.500
stress after 40 iters: 0.03409, magic = 0.500

> eqscplot(primates.sam$points)

> rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.sam$points[, 1],

+ breaks = 4))]

> text(primates.sam$points[, 1], primates.sam$points[, 2], row.names(primates.sam$points),

+ pos = rtleft)

There is no harm in asking for three dimensions, even if only two of them will be plotted.

> primates.mds <- isoMDS(primates.dist, primates.cmd, k = 3)

initial value 19.710924
iter 5 value 14.239565
iter 10 value 11.994621
iter 15 value 11.819528
iter 15 value 11.808785
iter 15 value 11.804569
final value 11.804569
converged

> eqscplot(primates.mds$points)

> rtleft <- c(4, 2, 4, 2)[unclass(cut(primates.mds$points[, 1],

+ breaks = 4))]

> text(primates.mds$points[, 1], primates.mds$points[, 2], row.names(primates.mds$points),

+ pos = rtleft)

13.4.3 Pacific rock art

Here, the the 614 features were all binary – the presence or absence of specific motifs in each of
98 Pacific sites. (Actually, there were 103 sites, but 5 were omitted because they had no motifs in
common with any of the other sites.) Data are from Meredith Wilson’s PhD thesis at Australian
National University.

The binary measure of distance was used – the number of locations in which only one of the sites
had the marking, as a proportion of the sites where one or both had the marking. Here then is the
calculation of distances:

> pacific.dist <- dist(x = as.matrix(rockArt[-c(47, 54, 60, 63,

+ 92), 28:641]), method = "binary")

> sum(pacific.dist == 1)/length(pacific.dist)
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[1] 0.6311803

> plot(density(pacific.dist, to = 1))

> symmat <- as.matrix(pacific.dist)

> table(apply(symmat, 2, function(x) sum(x == 1)))

13 21 27 28 29 32 33 35 36 38 40 41 42 43 44 45 46 47 48 49 51 52 53 54 55 56
1 1 1 1 2 1 2 1 2 2 1 2 4 3 1 3 1 2 1 1 2 2 3 2 2 2
57 58 61 62 64 65 66 67 68 69 70 71 73 75 76 77 79 81 83 84 85 90 91 92 93 94
1 3 3 1 2 1 1 1 3 3 1 1 4 1 2 1 1 1 2 1 1 3 1 1 3 1
95 96 97
1 3 4

It turns out that 63% of the distances were 1. This has interesting consequences, for the plots we now
do.

> pacific.cmd <- cmdscale(pacific.dist)

> plot(pacific.cmd)

> pacific.sam <- sammon(pacific.dist, pacific.cmd)

Initial stress : 0.58369
stress after 10 iters: 0.41996, magic = 0.018
stress after 20 iters: 0.22171, magic = 0.213
stress after 30 iters: 0.18573, magic = 0.098
stress after 40 iters: 0.16241, magic = 0.225
stress after 50 iters: 0.15903, magic = 0.225
stress after 60 iters: 0.15786, magic = 0.500
stress after 70 iters: 0.15734, magic = 0.500
stress after 80 iters: 0.15717, magic = 0.500
stress after 90 iters: 0.15700, magic = 0.500
stress after 100 iters: 0.15687, magic = 0.338

> plot(pacific.sam$points)

Part VII

*Some Further Types of Model

14 *Multilevel Models – Introductory Notions

Basic ideas of multilevel modeling will be illustrated using data on yields from packages on eight sites
on the Caribbean island of Antigua. They are a summarized version of a subset of data given in
Andrews and Herzberg 1985, pp.3̃39-353.

Multilevel models break away from the assumption of independently and identically distributed
observations. The dependence is however of a very specific form. Models for time series move away
from those assumptions in a different way, typically allowing some form of sequential correlation.

Depending on the use that will be made of the results, it may be essential to correctly model the
structure of the random part of the model. The analysis will use the abilities of the lme() function
in the nlme package, though the example is one where it is easy, using modest cunning, to get the
needed sums of squares from a linear model calculation. For these data, there is more than one type (or
“level”) of prediction or generalization, with very different accuracies for the different generalizations.
The data give results for each of several packages at a number of different locations (sites). In such
cases, a prediction for a new package at one of the existing locations is likely to be more accurate than
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a prediction for a totally new location. Multi-level models are able to account for such differences in
predictive accuracy.

The multiple levels that are in view are multiple levels in the noise or error term, and are superim-
posed on any effects that are predictable. For example, differences in historical average annual rainfall
may partly explain location to location differences in crop yield. The error term in the prediction
for a new location will account for variation that remains after taking account of differences in the
rainfall.

Examples abound where the intended use of the data makes a multi-level model appropriate.
Examples of two levels of variability, at least as a first approximation, include: variation between
houses in the same suburb, as against variation between suburbs; variation between different clinical
assessments of the same patients, as against variation between patients; variation within different
branches of the same business, as against variation between different branches; variations in the
bacterial count between different samples from the same lake, as opposed to variation between different
subsamples of the same sample; variation between the drug prescribing practices of clinicians in a
particular specialty in the same hospital, as against variation between different clinicians in different
hospitals; and so on. In all these cases, the accuracy with which predictions are possible will depend
on the mix of the two levels of variability that are involved. These examples can all be extended in
fairly obvious ways to include more than two levels of variability.

In all the examples just mentioned, one source of variability is nested within the other – thus
packages of land are nested within locations. Variation can also be crossed. For example different
years may be crossed with different locations. Years are not nested in locations, nor are locations
nested in years. Examples of crossed error structures are beyond the scope of the present discussion.

14.1 The Antiguan Corn Yield Data

For the version of the Antiguan corn data presented here, the hierarchy has two levels of random
effects. Variation between packages in the same site is at the lower of the two levels, and is called level
0 in the later discussion. Variation between sites is the higher of the two levels, and is called level
1 in the later discussion. A farmer who lived close to one of the experimental sites might take data
from that site as indicative of what to expect. Other farmers may think it more appropriate to regard
their farms as new sites, distinct from the experimental sites, so that the issue is one of generalizing
to new sites.

The analysis will use the lme() function in the nlme package, though the example is one where it
is easy, using modest cunning, to get the needed sums of squares from a linear model calculation.

The data that will be analyzed are in the second column of Table 9, which has means of packages
of land for the Antiguan data. In comparing yields from different packages, there are two sorts of
comparison. Packages on the same site should be relatively similar, while packages in different sites
should be relatively more different. The figure that was given earlier suggested that this is indeed the
case.

Note: In an analysis of variance formalization, the two-level structure of variation is handled by splitting

variation, as measured by the total sum of squares about the grand mean, into two parts – variation within

sites, and variation between site means. The final two columns in Table 9 indicate how to calculate the relevant

sums of squares and (by dividing by degrees of freedom) mean squares. The division of the sum of squares

into two parts mirrors two different types of predictions that can be based on these data. First, suppose that

we are interested in another package on one of these same sites. Within what range of variation would we

expect its yield to lie? Second, suppose that a trial were to be carried out on some different site, not one of

the original eight. What is the likely range of variation of the mean yield, i.e., how accurate is the accuracy

of prediction of the yield for that new site?

The model

The model that is used is:

yield = overall mean +
site effect
(random) +

package effect
(random)
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Site Site means Site effect Residuals from
site mean

DBAN 5.16, 4.8, 5.07, 4.51 +0.59 0.28, −0.08, 0.18, −0.38
LFAN 2.93, 4.77, 4.33, 4.8 −0.08 −1.28, 0.56, 0.12, 0.59
NSAN 1.73, 3.17, 1.49, 1.97 −2.2 −0.36, 1.08, −0.6, −0.12
ORAN 6.79, 7.37, 6.44, 7.07 (4.29) +2.62 −0.13, 0.45, −0.48, 0.15
OVAN 3.25, 4.28, 5.56, 6.24 +0.54 −1.58, −0.56, 0.73, 1.4
TEAN 2.65, 3.19, 2.79, 3.51 −1.26 −0.39, 0.15, −0.25, 0.48

WEAN 5.04, 4.6, 6.34, 6.12 +1.23 −0.49, −0.93, 0.81, 0.6
WLAN 2.02, 2.66, 3.16, 3.52 −1.45 −0.82, −0.18, 0.32, 0.68

square, add, square, add, divide by
multiply by 4, d.f.=24, to give ms
divide by d.f.=7,

v to give ms

Table 9: The leftmost column has harvest weights (harvwt), for the packages in each site, for the
Antiguan corn data. Each of these harvest weights can be expressed as the sum of the overall mean
(= 4.29), site effect (third column), and residual from the site effect (final column). This information
that can be used to create the analysis of variance table. (Details of the analysis of variance approach
to analysis of these data, although straightforward, get only passing mention in these notes.)

In formal mathematical language:

yi j = µ +
αi

(site, random) +
βi j

(package, random) (i = 1, . . . , 8; j = 1, . . . , 4)

with var[αi] = σ2
L, var[βij] = σ2

B.
The quantities σ2

L and σ2
B are known, technically, as variance components. (Those who are familiar

with the analysis of variance breakdown may wish to note that the variance components analysis allows
inferences that are not immediately available from the breakdown of the sums of squares in the analysis
of variance table.) Importantly, the variance components provide information that can help design
another experiment.

14.2 The variance components

Here is how the variance components should be interpreted, for the Antiguan data:

• Variation between packages at a site is due to one source of variation only. Denote this variance
by σ2

B. The variance of the difference between two such packages is 2σ2
B

[Both packages have the same site effect αi, so that var(αi) does not contribute to the variance
of the difference.]

• Variation between sites in different plots is partly a result of variation between packages, and
partly a result of additional variation between sites. In fact, if σ2

L is the (additional) component
of the variation that is due to variation between sites, the variance of the difference between two
packages that are in different site is

2(σ2
L + σ2

B)

• For s single package, the variance is σ2
L +σ2

B. The variance of the estimate of the site mean is a
mean over the four packages at the one site, and is

σ2
B +

σ2
L

4
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[Notice that while σ2
L is divided by four, σ2

B is not. This is because the site effect is the same
for all four packages.]

15 *Survival models

Survival (or failure) analysis introduces features different from any of those encountered in the re-
gression methods discussed in earlier chapters. It has been widely used for comparing the times of
survival of patients suffering a potentially fatal disease who have been subject to different treatments.
Computations can be handled in R using the survival package, written for S-PLUS by Terry Therneau,
and ported to R by Thomas Lumley.

Section 12.4 discusses an example that is onveniently handled using survival models.
Other names, mostly used in non-medical contexts, are Failure Time Analysis and Reliability. Yet

another term is Event History Analysis. The focus is on time to any event of interest, not necessarily
failure. It is an elegant methodology that is too little known outside of medicine and industrial
reliability testing.

Applications include:

• the failure time distributions of industrial machine components, electronic equipment, auto-
mobile components, kitchen toasters, light bulbs, businesses, etc. (failure time analysis, or
reliability),

• the waiting time to germination of seeds, to marriage, to pregnancy, or to getting a first job,

• the waiting time to recurrence of an illness or other medical condition.

The outcomes are survival times, but with a twist. The methodology is able to handle data where
failure (or another event of interest) has, for a proportion of the subjects, not occurred at the time
of termination of the study. It is not necessary to wait till all subjects have died, or all items have
failed, before undertaking the analysis! Censoring implies that information about the outcome is
incomplete in some respect, but not completely missing. For example, while the exact point of failure
of a component may not be known, it may be known that it did not survive more than 720 hours (=
30 days). In a clinical trial, there may for some subjects be a final time up to which they survived,
but no subsequent information. Such observations are said to be right censored.

Thus, for each observation there are two items of information: a time, and censoring information.
Commonly the censoring information indicates either right censoring denoted by 0, or failure denoted
by 1.

Many of the same issues arise as in more classical forms of regression analysis. One important set
of issues has to do with the diagnostics used to check on assumptions. Here there have been large
advances in recent years. A related set of issues has to do with model choice and variable selection.
There are close connections with variable selection in classical regression. Yet another set of issues
has to do with the incomplete information that is available when there is censoring.

Yang & Letourneau (2005) is an interesting example of a data mining paper where survival
methods could and should have been used. The methodology may be regarded as an unsatisfactory
attempt to reinvent survival methods! Their methodology is tortuous and does not make the most
effective use of the data.
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Part VIII

Technical Mathematical Results

16 Least Squares Estimates

16.1 The mean is a least squares estimator

The lm() function uses the method of least square to find estimates. The following is the simplest
possible example. Given sample values

y1, y2, . . . , yn

what choice of µ will minimize
∑n

i=1(xi − µ)2? Observe that

n∑
i=1

(xi − µ)2 =

n∑
i=1

[(xi − x̄) + (x̄ − µ)]2

=

n∑
i=1

[(xi − x̄)2 + 2(xi − x̄)(x̄ − µ) + (x̄ − µ)2]

=

n∑
i=1

(xi − x̄)2 + 2(x̄ − µ)
n∑

i=1

(xi − x̄) + n(x̄ − µ)2

As
n∑

i=1

(xi − x̄ =

n∑
i=1

xi − nx̄ = 0

this equals
n∑

i=1

(xi − x̄)2 + n(x̄ − µ)2

Then n(x̄ − µ)2 >= 0, with equality for µ = µ̂ = x̄.
Because x̄ is the least squares estimator of µ, it is possible to use a linear model to calculate the

mean. For this, a model is specified in which the only term is the constant term. Thus, for the female
Adelaide statistics students:

library(MASS)
y <- na.omit(survey[survey$Sex=="Female", "Height"])
lm(y ~ 1)

16.2 Least squares estimates for linear models

Given the model
y = Xβ + ε

the least squares estimate b of β is obtained by solving the normal equation

X′X β = X′y

In practice it is usually best not to solve this equation directly, but to work from the QR orthogonal
decomposition of X. For details, see the references that appear on the help page for R’s function qr().

16.3 Beyond Least Squares – Maximum Likelihood

Least squares may not work very well for non-normal data. Typically, statisticians then appeal to the
maximum likelihood principle. For normal data, with independent and identically distributed errors,
maximum likelihood gives the same parameter estimates as least squares. Section 8 has brief notes
on two types of model where it really is necessary to work with maximum likelihood estimates.
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17 Variances of Sums and Differences

The needed results are most easily derived using expectation algebra. For present purposes, it will be
adequate to define

E[g(X)] =

∫
g(x)f(x)dx

if X is a continuous random variable with density f (x) at the point x, and

E[g(X)] =
∑

g(x)Pr(X = x)

where the integral or sum is taken over the support of X. The key result from expectation algebra
is that, for any two random variables X and Y, E[c1X + c2X] = c1E[X] + c2E[Y]. The proof, for two
special cases noted above, is left as an exercise.

The variance of a random variable X with mean µ = E[X] is E(y − µ)2. Then

var[X1 + X2] = var[X1] + var[X2] + 2cov[X1,X2]

which equals var[X1] + var[X2] if and only if

cov[X1,X2] = E[(X1 − E[X1])(X2 − E[X2])] = 0

A very similar argument shows that var[X1 − X2] = var[X1] + var[X2] if and only if cov[X1,X2] = 0.
A sufficient condition for cov[X1,X2] = 0 is that X1 and X2 are independent.
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