

Keyword(s):

Abstract:

©

Feature Shaping for Linear SVM Classifiers

George Forman, Martin Scholz, Shyamsundar Rajaram

HP Laboratories
HPL-2009-31R1

text classification machine learning, feature weighting, feature scaling, SVM

Linear classifiers have been shown to be effective for many discrimination tasks. Irrespective of the
learning algorithm itself, the final classifier has a weight to multiply by each feature. This suggests that
ideally each input feature should be linearly correlated with the target variable (or anti-correlated), whereas
raw features may be highly non-linear. In this paper, we attempt to re-shape each input feature so that it is
appropriate to use with a linear weight and to scale the different features in proportion to their predictive
value. We demonstrate that this pre-processing is beneficial for linear SVM classifiers on a large
benchmark of text classification tasks as well as UCI datasets.

External Posting Date: May 6, 2009 [Fulltext] Approved for External Publication
Internal Posting Date: May 6, 2009 [Fulltext]

To published and presented at 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'09) Paris France,
June 28-July 1, 2009

Copyright The 15th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD'09), 2009

Feature Shaping for Linear SVM Classifiers

George Forman
Hewlett-Packard Labs

1501 Page Mill Rd.
Palo Alto, CA 94304 USA

ghforman@hpl.hp.com

Martin Scholz
Hewlett-Packard Labs

1501 Page Mill Rd.
Palo Alto, CA 94304 USA

scholz@hp.com

Shyamsundar Rajaram
Hewlett-Packard Labs

1501 Page Mill Rd.
Palo Alto, CA 94304 USA

shyam.rajaram@hp.com

ABSTRACT
Linear classifiers have been shown to be effective for many
discrimination tasks. Irrespective of the learning algorithm
itself, the final classifier has a weight to multiply by each fea-
ture. This suggests that ideally each input feature should be
linearly correlated with the target variable (or anti-correlated),
whereas raw features may be highly non-linear. In this pa-
per, we attempt to re-shape each input feature so that it
is appropriate to use with a linear weight and to scale the
different features in proportion to their predictive value. We
demonstrate that this pre-processing is beneficial for linear
SVM classifiers on a large benchmark of text classification
tasks as well as UCI datasets.

Categories and Subject Descriptors
I.5.2 [Pattern Recognition]: Design methodology—Fea-
ture evaluation and selection; H.2.8 [Database Manage-
ment]: Applications—Data mining ; H.3.3 [Information
Storage & Retrieval]: Information Search & Retrieval—
Information filtering

General Terms
Algorithms, Performance, Experimentation

Keywords
machine learning, feature weighting, feature scaling, linear
Support Vector Machine, SVM, text classification

1. INTRODUCTION
Linear classifiers are extremely popular for their simplic-

ity and proven effectiveness. The output of such a classifier
is a weighted average of the input feature vector. Yet, given
an arbitrary training set with binary class labels and nu-
meric features, does it not seem far fetched to expect that
the various features are each linearly correlated with the tar-
get concept? This is the presumption of a linear classifier:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$10.00.

a delta increase of any variable causes a linear effect on the
output, positive or negative. Of course, this is unsuitable
for many situations, for example, the maxim that a driver’s
risk of death in an accident doubles for each 10 mph over
50. Clearly with manual intervention and domain knowl-
edge, such a feature can be transformed to a more linearly
predictive input. But the field of machine learning is about
getting the computer to better handle any sort of input fea-
ture without careful, manual data preparation by an expen-
sive domain expert.

This paper is concerned with pre-conditioning each input
feature separately so as to improve the prediction ability
of a downstream linear classifier, such as a linear Support
Vector Machine (SVM). The SVM measures the distance be-
tween feature vectors via a simple dot-product in which all
features are treated equally. Raw input features are usually
not suited to be used with such a classification scheme. This
is a multi-faceted problem that covers (i) the inclusion of ir-
relevant features, (ii) the inappropriate scale of some feature
ranges, (iii) non-linear relationships between the feature and
the target concept, such as the driving speed example, and
even (iv) non-monotonic relationships with the target con-
cept, such as an increased risk of death for negative speeds
as well. While points (i) and (ii) are well known to compro-
mise the predictive power of SVMs and are widely addressed
via feature selection and scaling methods, this paper studies
techniques for resolving all four issues, in particular (iii) and
(iv). An ideal feature for linear classifiers should intuitively
be linearly correlated with the class label. We want to study
the effects of transforming features for this purpose.

As an example for all four issues above, let us look at a
feature like“blood pressure” in a hypothetical disease predic-
tion problem. We would expect this feature to show a con-
centration around the normal interval 60–120, mostly con-
taining patients labeled as “healthy,” and a few unhealthy
patients that have measurements spread out over a larger
range. The conditional distributions might look very dif-
ferent when conditioning on “healthy” and on “unhealthy,”
but say that (a) there is no linear dependency between la-
bel and feature, and (b) values above and below the normal
interval might tend to be labeled “unhealthy” with higher
probability. Finally, (c) the feature is represented in the
range of 50–230, so an SVM would spend far more atten-
tion to this feature than to, say, the blood glucose level that
happens to range from 3 and 8, regardless of which feature
is truly more predictive. The cookbook advice for this case
would be to make it much more complicated than a simple
linear kernel, e.g., to experiment with multiple polynomial

1

and radial-basis kernels, along with tuning each of their pa-
rameters, until one achieves good results. Most users would
routinely scale all feature to a common range, or to zero
mean and standard deviation of 1.0, in order to be sure the
distance computations are not dominated by a single feature
with an excessive range.

Yet, in most classification problems, some features are
more predictive than others. Even if one applies feature
selection to discard the weakest features, among those re-
maining, the strongest features deserve to have a greater
effect on the distance dot-product than the weaker features.
That is, the better features should be granted a wider dy-
namic range.

Our intuition suggests that a reasonable and much easier
first step could just look at the conditional distributions of
the feature and transform it into a feature that ranges from
“predictive for positive” to “predictive for negative,” even if
that involves non-monotone mappings.

We will refer to the relative positioning of data points
along each feature, with and without conditioning on the
class label, as the feature shape. In the spirit of compu-
tationally cheap feature selection and scaling, we want to
discuss methods that are of similar computational complex-
ity as the typical filter approach to feature selection, looking
at individual features one at a time. The goal is to help the
classifier induction step by transforming raw feature values
into a representation well suited for linear classifiers.

Our proposed methods will attempt to condition each in-
put feature independently so that (1) it is more linearly cor-
related with the target concept, and (2) the better features
have a wider range so that they have greater influence over
the kernel distance. In this work, we restrict our attention
to binary classification problems and demonstrate the ben-
efit of feature scaling on the performance of linear SVMs.
Such conditioning may also have benefits for other classi-
fiers that apply dot-products to the features. This includes
text classifiers that use cosine-similarity or k-Nearest Neigh-
bor classifiers that measure distance between cases taking all
features into account. For this paper, however, we limit our
study to performance benefits such conditioning provides to
a linear SVM classifier, which is already well established as
a leading technique in various domains, especially text clas-
sification.

2. RELATED WORK
The literature on selecting, scaling and transforming fea-

tures is deep and broad. Here we describe these areas to set
context and to establish how this work is different.

2.1 Feature Selection
It is widely accepted that an initial step of feature selec-

tion [7] can improve the predictive performance of classifiers,
including SVMs (see e.g., [4, 6]). There are different flavors
of feature selection: wrappers and filters, supervised and un-
supervised. For an extensive overview see [9] and [10]. Some
approaches are less practical for high dimensional datasets,
such as text or bioinformatics domains with tens of thou-
sands of features or millions. Wrapper approaches attempt
to search for a subset of features that obtains the best per-
formance in cross-validation, but it is completely impracti-
cal on high dimensional datasets, because its search space
is enormous and because it invokes the learning algorithm
many times to guide its search. In contrast, the typical filter

approach to feature selection requires just a single data scan
and treats each feature independently, yielding an efficient
computation, if myopic. Filter methods are very useful and
popular in practice. The approach in this paper is more
aligned with supervised filter approaches, in the way that
we shape each feature independently, and leave the feature-
interdependent analysis to the downstream classifier.

2.2 Feature Scaling
The result of feature selection is that it makes a hard

decision to either include or exclude each feature. This
idea can be generalized to weighting or scaling each feature
with respect to its predictiveness toward the class variable
[3, 12]. Empirical studies have shown that the additional
degree of freedom of weighting features can achieve even
stronger improvement than with feature selection alone. In
one approach, the range of each feature is normalized to
the range [0, x], where x is a statistical measure computed
from the corresponding feature column in the input data
set. Our past research found, in a study of 15 different
measures of predictiveness, that the best gain in text classi-
fication performance was seen by normalizing the range to
the Bi-Normal Separation (BNS) score of the feature, i.e.
x = |NormalCDF−1(tpr) − NormalCDF−1(fpr)|, where
tpr and fpr are the true positive rate and false positive rate
of the feature, respectively [5]. Subsequent unpublished re-
search found that Hellinger distance [1] produced very simi-
lar results to BNS, but still slightly inferior for text classifi-
cation. Using the tpr and fpr rate of a feature implies that
it addresses only binary features, such as whether a given
word occurs or not, and is especially appropriate for text.
Yet most datasets include real-valued features, and it is not
clear how to scale such features. In this work we leverage
the idea of scaling each feature to a range, and extend the
idea of BNS scaling to handle real-valued features.

Principle Component Analysis (PCA), Latent Semantic
Indexing (LSI), and other variants in the family transform
all the input features together into a new set of features
that are each linear combinations of existing features. This
in effect puts a weight on each feature and is loosely re-
lated to feature weighting. The contrast of these methods to
ours serves to distinguish them. First, PCA and many vari-
ants are unsupervised—discovering the strong correlations
between features, whether or not they have any pertinence
to the classification task at hand. Second, such algorithms
are generally heavyweight transformations that must deal
with the entire dataset together, rather than treating each
feature column independently, as we do. Finally, all such
transforms produce a linear weighted sum of the other fea-
tures, whereas our method reshapes the features in a way
that can be highly non-linear.

2.3 Feature Shaping vs. Kernelized SVMs
In this work, we study an even less constrained approach

than feature scaling: the transformation of individual fea-
tures using different functions that take as an input condi-
tional probability estimates of the class with respect to the
input feature, and output a new input feature value. We try
to generalize and combine ideas that have proven useful in
either feature scaling or feature selection.

Note that this approach is not restricted to monotone
transformations. Reordering data instances with respect
to their conditional distributions along each axis can hence

2

be considered an alternative to using kernels as part of the
learner, especially in cases where there is no good intuition
at hand about which kernel and which parameters to use.
The approach transforms the input features using informed
local guesses (one feature at a time). One way of justifying
this local strategy is to assume “mild” conditional indepen-
dence. For example, the success of Naive Bayes for textual
data proves that the violations of the conditional indepen-
dence assumptions for this kind of real-world data are usu-
ally not in an overly critical range. Another justification
is the success of feature selection and scaling, despite also
making decisions for each feature in isolation. The broader
concept of building global models (e.g., an SVM) on top of
local patterns (e.g., individual predictive features) has re-
cently gained some attention. See [11] for an overview.

Clearly, linear SVMs are able to optimize with respect to
feature interactions, but they require the labels to be lin-
early separable (for the most part) in a space the user has
to provide a mapping into in the first place. For making the
decision which space is appropriate, most users rely on ex-
perimentation and manual beam search in parameter space.
In contrast, our technique takes advantage of observing the
conditional class distributions along each feature axis inde-
pendently, so in the case of “mild independence” it trans-
forms the data to be linearly separable. A linear SVM will
usually still be able to handle violations of this assumption,
but benefit from a feature landscape that is more of a linear
nature than the raw data.

2.4 Kernel Learning
The field of kernel learning provides a very powerful alter-

native to the cumbersome process of manually selecting and
fine-tuning kernels. This active field of research has recently
attracted much attention, e.g., [2].

The general idea is to learn the kernel matrix (or the
similarity between examples) along with the final classifier.
There are different approaches towards this goal, that share
the burden of complex computations. In fact, kernel learn-
ing techniques are at the outer end of the spectrum when it
comes to computational costs, so we consider them promis-
ing and theoretically valuable, yet impractical in most set-
tings.

The general idea either involves user-provided candidate
or basis kernels, from which the kernel learning method will
compute an optimal combination (see e.g. [13, 16]), or so
called hyper-kernels [14]. Kernel learning leads to expensive
optimization problems, most prominently in the framework
of semi-definite programming. The main qualitative differ-
ence between our approach and kernel learning is that we
aim at improving classifiers via cheap local optimizations,
while kernel learning aims at computing an optimal global
kernel matrix.

3. FEATURE SHAPING
Our goal in this work is to precondition each individual

feature in isolation in a way that fosters its utility for linear
classification. Let us formalize the framework before going
into details.

3.1 Formal Background
Our algorithms work on sets of labeled examples E =
{〈x(1), y(1)〉, . . . 〈x(m), y(m)〉}, where each x(i) ∈ X is a d-
dimensional vector consisting of continuous, integer, and/or

binary attributes, while y(i) ∈ Y = {+1,−1} is a binary
class label. Nominal attributes can easily be transformed
into binary attributes and are hence supported. Examples in
training and testing are assumed to be sampled i.i.d. from an
unknown underlying distribution. The goal is to pick a func-
tion c : X → [0, 1] based on the sampled training data that
gives us (in expectation) a good estimate of P (y = +1|x)
on subsequently sampled test examples 〈x, y〉. Maximum-
margin methods are dominant in linear classification, so we
will focus on linear SVMs as our underlying classification
scheme.

Soft margin SVMs solve the optimization problem

min
w,b,ξ

wTw + C

m∑
i=1

ξi (1)

s.t. wTx+ b ≥ 1− ξi, i = 1, . . . ,m
ξi ≥ 0, i = 1, . . . ,m

The decision function of SVMs does not natively provide
well calibrated soft classifications in the range [0, 1], but can
be calibrated in a post-processing step to do so [15].

We decided to consider soft classifiers in this work, be-
cause tuning those covers both the ranking and standard
classification tasks.

Before looking into changing feature shapes, we want to
discuss which kind of transformations matter:

• Linear SVMs depend on both the order and distance
of examples along each feature axis, so any transfor-
mation – monotone and even more so non-monotone –
will usually have an effect on the optimal hyperplane.

• As discussed in Section 2.2, the range of features (scale)
determines the importance. This can be seen from
(i) the objective function (eqn. (1)), since a feature
xi with a larger scale requires less of the regularized
weight wi to achieve the same effect, but also (ii) by
simply considering the effect on distances in the Eu-
clidean space the SVM operates in. Note that scaling
all features by a common factor just has the same ef-
fect as changing the parameter C, so the important
aspect is to scale features relative to each other.

• The only kind of transformations that will not affect an
SVM are affine transformations xi → xi+c, i.e., adding
a constant c to the values of any feature xi; the offset
b in the decision functions of SVMs is not regularized,
so if wTx + b is the SVMs decision function before
this transformation, then the optimal decision function
f ′(x) afterward is known to be f ′(x) = wTx+ b+ c.

The whole process of feature reshaping can be broken down
into coherent data processing blocks that form a pipeline.
The next subsections will describe those blocks in natural
sequential order.

3.2 Estimating local conditional distributions
The goal of reshaping is to transform each feature xi based

on the label information given in the training set. More
precisely, we want to achieve a linear correlation between
attribute and class label, as motivated in Section 1. To
this end, we start with a step of estimating the conditionals
P (y = +1 | xi) with respect to the true underlying distribu-
tion, based on our (often small) training sample.

3

Attributes might be of type integer, real-valued, or nom-
inal. For nominal attributes, conditional class probabilities
can be estimated in a straighforward way by computing the
fraction of positives seen for each attribute value. The case
of continuous attributes requires more attention. Contin-
uous features might be concentrated in a small region or
spread out over a large range, and may present themselves
in any arbitrary shape. Since we are – by design – not intro-
ducing any further assumptions, we use a broadly applicable
local probability estimator at this point: For each threshold
xi = v of interest, we compute the fraction of positives in
up to n neighboring examples from above, and n from be-
low after projecting our example set to feature xi. We use
fewer examples whenever fewer than n examples are avail-
able on either side at any point. For our experiments, we
fixed n so that we averaged over a total of (up to) 30 neigh-
boring examples, the rationale being that 30 gives us “near
normal” behavior.1 To prevent extreme estimates that some
subsequent techniques are not able to handle well, we used
standard Laplace correction.

Note that it is important to use the same amount of neigh-
bors from above and below rather than just 2n nearest neigh-
bors based on distance, because by balancing, one avoids the
assumption that absolute distance corresponds to similarity,
and therefore that xi and the class label are already nicely
correlated.

We used the balanced nearest neighbor approach during
training with the set of xi training values, and computed
estimates p̃i(v) ≈ P (y = +1 | xi = v) for each of these
thresholds. On the test set, we identified the closest values
vl < v < vu for any given threshold v, and defined p̃i(v)
by linearly interpolating p̃i(vl) and p̃i(vu). For values above
the maximum and below the minimum observed in training
we just substitute the values for maximum and minimum,
respectively. The resulting function p̃i is the output of this
phase.

Clearly, instead of using a general purpose estimator, we
might instead utilize any available domain knowledge for
picking and fine-tuning a parametric model, a kernel density
estimator etc. We abstained from complex techniques in this
phase, in order to enable a broad, general study, but expect
that better techniques would only improve our subsequently
reported results if a user is willing to spend time on this
issue. In practice, this might often still be easier than to
directly adapt the kernel function of an SVM.

3.3 Reshaping Features
For any given feature xi, this phase starts from a func-

tion p̃i : R → [0, 1] that yields estimates of the conditional
probability P (y = +1|xi = v) for any v ∈ R. The goal is to
transform the input feature xi towards a linear dependency
on the class label. This suggests to use transformations T
that map each value v ∈ R of attribute xi to a new value
v′ ∈ R by referring to p̃i ∈ [0, 1] and ignoring the value
v itself. In this case, T would be a function of the form
T : [0, 1]→ R and usually describe a non-monotonic feature
transformation.

To achieve linearity, the most straightforward choice for
T is the identity function. We will use the term local prob-
ability shaper (LP) for this method. More precisely, with
LP we will refer to the method that estimates p̃i using the

1We did not try to optimize n, but rather treated it as a
parameter-free estimator.

balanced nearest neighbor approach (cf. Sec. 3.2) and then
replaces each feature value v by p̃i(v). Despite its simplic-
ity and non-monotonicity, it consistently gave good results
in our experiments, so we will include this method into the
experimental part of this work.

There are many other reasonable choices for T , like the
log odds function, which we have seen to work even a bit
better in some cases. However, none of these methods per-
formed consistently well on a large subset of our benchmark
datasets, so we will just discuss the stable LP shaper in sub-
sequent sections.

Besides trying different functions that operate on p̃i only,
we also experimented with monotone feature transforma-
tions, mostly based on ROC analysis. We did not see any
substantial improvements over the baseline with any of these
methods.

3.4 Feature Scaling
Some of the reshaping options discussed in the last sub-

section scale features in a way that indicates their predictive
power. Other reshapers have a fixed range though, in par-
ticular the LP shaper we are mostly looking at. Those fixed
range shapers might benefit from subsequently applying one
of the feature scaling techniques discussed in Section 2.2. In
those cases, we included the option of scaling after reshaping
in our pool of experiments.

Some of the previously discussed scaling techniques do
not directly apply though, because shaping usually yields
continuous features. Scaling presupposes binary features.
We resolved this issue by trying all thresholds for binarizing,
and by picking the best scaling score for each feature that
we have seen for any threshold.

We found BNS scaling to perform very similar or better
than the alternatives on all data sets, so we will focus on
this scaling technique in the experimental section.

3.5 Additional Options
The previous subsections discussed the major building

blocks of feature shaping. We identified a few other options
that we believe to be essential.

We start with the set of additional options we used for
text. First of all, we noticed that the value of zero deserves
some special treatment. Feature shaping up to this point
and without any further post-processing would destroy the
sparsity of documents: In the raw format the vast majority
of words counts for each document are zero, and do not
have to be stored explicitly, but after shaping the value of
zero usually gets mapped to a different value. This has an
adverse effect of the runtime and memory consumption. As
a counter-measure, we keep track of the value that zero gets
mapped to, and subtract it after shaping. The effect is that
the value of zero gets mapped to itself and does not have to
be stored explicitly. Please recall from Section 3.1 that the
SVM is not affected by this kind of affine transformation.

In this context we noticed that word counts of zero behave
quite differently, so we put them into a separate bin that
never gets mixed with non-zero values when estimating local
conditional probabilities, see Section 3.3.

We included a further option from the standard catalog of
text mining techniques, that gets applied last in the pipeline:
We tried L2 normalization to project document vectors on
the unit hyperball, which has the effect that dot products

4

Table 1: Summary of Benchmark Datasets.

Dataset Cases Classes Min–Max Features

Text:
la1s 3204 6 8.5–29.4% 13195
la2s 3075 6 8.1–29.4% 12432
oh0 1003 10 5.1–19.3% 3182
oh10 1050 10 5.0–15.7% 3238
oh15 913 10 5.8–17.2% 3100
oh5 918 10 6.4–16.2% 3012
ohscal 11162 10 6.4–14.5% 11465
re0 1504 13 0.7–40.4% 2886
re1 1657 25 0.6–22.4% 3758
tr11 414 9 1.4–31.9% 6429
tr12 313 8 2.9–29.7% 5804
tr21 336 6 1.2–68.8% 7902
tr23 204 6 2.9–44.6% 5832
tr41 878 10 1.0–27.7% 7454
tr45 690 10 2.0–23.2% 8261
wap 1560 20 0.3–21.9% 8460

UCI:
credit-g 1000 2 30.0–70.0% 20
diabetes 768 2 34.9–65.1% 8
ecoli 336 8 0.6–42.6% 7
glass 214 6 4.2–35.5% 9
iris 150 3 33.3–33.3% 4
letter 20000 26 3.7– 4.1% 16
optdigits 5620 10 9.9–10.2% 64
sonar 208 2 46.6–53.4% 60
vehicle 846 4 23.5–25.8% 18
vowel 990 11 9.1– 9.1% 13
wine 178 3 27.0–39.9% 13

used by the SVM reflect cosine similarities between docu-
ments. We also evaluated L1 normalization.

For the non-textual datasets that we included in our study,
attributes include all kinds of continuous features, so any
special treatment of zero is unmotivated. We deactivated the
corresponding option described above. We still evaluated L2
normalization, since it is applied in more general settings.

4. EXPERIMENTS
We conducted an extensive suite of experiments to evalu-

ate the proposed methods, both on text classification datasets,
as well as UCI datasets. Table 1 lists the datasets and some
of their characteristics, including the number of classes de-
fined with an indication of their class distribution. The
text classification datasets come from a variety of sources:
Reuters, Los Angeles Times, OHSUMED abstracts, TREC
challenges, and Web data [8]; we have previously made their
pre-processed feature vectors of word counts available for
download at the Weka site.2 The subset of publicly avail-
able UCI datasets was selected for having nominal class la-
bels and numerical attributes.

For each multi-class dataset, we consider the binary tasks
of classifying each ‘positive’ class vs. all others, avoiding any
tasks that have fewer than 50 positives. For UCI datasets

2http://www.cs.waikato.ac.nz/ml/weka/

that were already binary, we selected the minority class as
the positive class. This yields 104 binary text tasks and
64 UCI tasks, which we analyze in separate groups in the
following subsections.

We measure performance via Accuracy, the Area Under
the ROC curve (AUC), the Precision@20 (percentage of pos-
itives among the twenty test cases the classifier scores high-
est) and F-measure (the harmonic average of precision and
recall). Accuracy and F-measure both depend on the clas-
sifier to make a good choice of threshold, whereas AUC and
Precision@20 do not. The latter measure is especially im-
portant for search applications, where we desire the greatest
number of ‘hits’ in our top few search results. For each task
and setting, we perform 10-fold cross-validation using con-
sistent random split seeds. Note that to correctly evaluate
AUC with cross-validation, we compute the AUC for each
fold and then average, since the scores output by the clas-
sifier under different folds are not necessarily comparable.
(As of v3.6.0, beware that Weka’s Evaluation class sorts the
scores from all the different folds together.)

During our preliminary software development and experi-
mentation, we were using 4-fold cross-validation in order to
reduce computation time. Surprisingly, when we prepared
the final measurements for this paper using 10-fold cross-
validation, we saw our margin of improvement diminish sig-
nificantly. The primary difference being that with 4-folds
75% of the dataset is used for training, whereas with 10-
folds 90% is used for training. Given the additional training
cases, all methods were getting very good accuracy; classi-
fication problems that are already easily learnable with the
raw features provide little possibility to improve the feature
space by shaping. We then conducted a suite of learning
curve experiments to systematically reduce the training set.
This gives us a much broader picture of the performance
benefits and yields additional insight beyond a typical K-
fold cross-validation study. It also shows that the superior
performance of our method is robust across a wide range of
training set sizes and does not collapse when training data is
scarce—a real-world concern for our intended applications.

We generate the learning curves as follows: for each of the
ten folds, we first produce the test and train datasets, then
we sub-sample only the training set. In this way, the perfor-
mance measurements are comparable to traditional 10-fold
cross-validation, since the test set is identical with 10-fold
cross-validation at each data point. We are careful to ensure
that each successive point on the learning curve includes a
superset of the previous training cases, rather than just a
larger independent sample. This helps to reduce experimen-
tal variance.

Except where otherwise stated, we used as the base classi-
fier the Weka v3.6 SMO implementation of a linear SVM [17].
We used its default options, except that we had to disable its
internal feature range normalization (-N 2), and we needed
to enable logistic scaling in order to obtain probability scores
for evaluation, rather than just hard binary classifications
(-M -V 2). In addition, we tuned the SVM complexity pa-
rameter C by selecting the apparent best value from the set
of values {0.01,0.1,1,10,100}, determined via 5-fold cross-
validation on the sub-sampled training set only. That is, for
each of the training sets of the ten folds, we perform an ad-
ditional, smaller cross-validation to tune the parameter for
each measurement. The chosen value is then used to train
an SVM on the entire sub-sampled training set. Note that

5

 70

 75

 80

 85

 0 20 40 60 80 100

F
-m

ea
su

re

% of whole dataset used for training

shaping
scaling

baseline

Figure 1: F-measure learning curves, each point av-
eraged over 104 binary text classification problems.

the implementation of the logistic scaling within the SMO
code performs an additional 2-fold cross-validation to cali-
brate its output scores. It is partly because of this nested
folding that a minimum of 50 positives was the criterion for
selecting binary tasks. Though this nested complexity seems
undesirable, tuning C and delivering calibrated SVM scores
are worthwhile objectives to ensure that this research is con-
ducted with highly competitive classifiers; there have been
too many papers about improvements to Rocchio. Fortu-
nately we have available to us a large batch cluster of HP
BL460 blade servers on which to compute the millions of
inductions that were required for a study of this scale and
complexity.

4.1 Text datasets
We begin with the analysis of the text benchmark. Since

text datasets are very sparse, we enable the special treat-
ment of zero values, as explained in the methods section.
Without it, the ‘ohscal’ dataset, for example, expands from
5MB to nearly a gigabyte.

During our preliminary studies, we experimented to de-
termine the strongest baseline against which to compare
our work. We found that using binary word features with
L2-normalized feature vector lengths gave a stronger base-
line than variations without L2-normalization or with using
word count features or discretized word counts. This will
be referred to as ‘baseline’ in this section. Likewise, we de-
termined that LP method benefited substantially from BNS
scaling and L2-normalization (e.g., a ten point drop in F-
measure without them). Thus, for the ‘shaping’ method
used on the text datasets, we refer to reshaping the raw
word counts via LP, followed by BNS scaling, followed by L2-
normalization. It would be far too cumbersome to present
all the variations; many of them are so poor, that the pa-
rameterization choice is clear.

Figure 1 shows the learning curves for F-measure, which
is the accepted metric used for text evaluation studies, be-
cause of their typically high class imbalance. Every point
represents a (macro-)average performance over all 104 bi-
nary tasks. The x-axis shows the percentage of the whole
dataset that was used for training; naturally, for 10-fold
cross-validation, 90% is the maximum possible— no sub-
sampling.

 94

 95

 96

 97

 0 20 40 60 80 100

A
cc

ur
ac

y

% of whole dataset used for training

shaping
scaling

baseline

Figure 2: Accuracy learning curves for the text
benchmark.

As we expect, we see the performance drop significantly
as the size of the training set is reduced to the left. There
are two findings in this graph. One is that reshaping the
features produces a benefit for the linear classifier, and the
other is that the performance gap widens towards the left
as the task becomes very difficult to learn. In terms of rel-
ative improvement, at the leftmost the benefit exceeds 5%,
while at the rightmost there is no worthwhile benefit for this
benchmark. The difference in performance between the LP
method and the baseline method is statistically significant
at 50% training—a paired T-test yields p=0.01. The signif-
icance increases to the left and decreases to the right.

Consider the ‘devil’s advocate’ hypothesis that all of the
benefit is due to the BNS scaling, and not to the feature
reshaping. To evaluate this, we compared these results with
an augmented baseline that includes BNS scaling without
reshaping. It uses binary word features with BNS scaling
(shown previously to be a stronger combination than a wide
variety of other representations [5]), with the addition of L2-
normalization and tuning of the SVM C parameter, both of
which tend to improve performance. We see that this curve,
labeled ‘scaling,’ gets part of the benefit of reshaping, but
not all of it. Thus, we conclude that the reshaping is indeed
beneficial for a wide variety of text classification problems,
especially when there is a paucity of training data. We spec-
ulate that it may also be helpful even for text classification
tasks that have ample training data, but are fundamentally
difficult. For the record, we examined the subset of tasks
that got less than 80% F-measure to see if these benefited
more from shaping, but a significance test refuted the idea.

An analysis of the AUC performance showed very simi-
lar findings, and Precision@20 showed no appreciable gain.
These graphs are included in the additional graphs section
in the appendix. We do, however, include here the learning
curve for Accuracy, as it shows a slightly different aspect. In
Figure 2 we see that the marginal benefit of feature shaping
was retained across the entire spectrum of training set sizes.
A paired T-test does not rule out the null hypothesis at the
rightmost point (p=.20), but we note that the AUC of the
baseline method averaged 0.984 AUC and exceed 0.990 in 45
of the 104 tasks. Thus, these datasets leave little margin for
significant improvement, and our enthusiasm is undaunted
by cautious null hypothesis tests, partly because of the re-
sults that follow.

6

 84

 88

 92

 96

 0 20 40 60 80 100

A
U

C

% of whole dataset used for training

shaping
scaling

baseline

Figure 3: AUC performance across the learning
curve, each point averaged over 64 binary UCI clas-
sification tasks.

4.2 UCI datasets
Next we turn to the UCI datasets. Since these datasets

have only comparatively few features and are not sparse, we
did not use the special treatment of zero values. Again, we
began with a preliminary study to determine a strong pa-
rameterization for the baseline classifier. We found that for
these datasets, L2-normalization significantly hurt its per-
formance, so we did not use it. Further, using no normal-
ization of the input features causes the SVM solver to run
inordinately slow, e.g. over 24 hours for some individual data
points. Therefore, we re-enabled the default Weka option to
normalize all features to the range [0.0, 1.0] for the baseline;
for all other methods it was disabled, and the feature reshap-
ing provided the necessary variable conditioning to make the
SVM solve quickly.

Figure 3 shows the learning curves for AUC, averaged
over the 64 one-vs.-others discrimination tasks on the UCI
datasets. Here we see the benefit of feature reshaping more
strongly. The curve labeled ‘shaping’ uses LP reshaping,
BNS scaling, and finishes with L2-normalization of the fea-
ture vector lengths. Here we find that the substantial benefit
extends all the way to the right, i.e. regular 10-fold cross-
validation.

Again we ask whether the benefit could be almost entirely
due to the BNS scaling, and not the shaping. To answer this
question, we performed another lesion study: we removed
the reshaping component and used only the BNS scaling
with the L2-normalization. These results are labeled ‘scal-
ing.’ We find by its middling performance that the scaling
explains only a portion of the benefit. We also performed
the opposite lesion, where we removed the BNS scaling from
the ‘shaping’ method, and we found similarly middling re-
sults. (Not shown to reduce clutter.) Thus we conclude that
the benefit of conditioning the variables derives both from
reshaping the features to be more correlated with the posi-
tive class, and from scaling each feature in proportion to its
predictive value.

The AUC results reflect an ability to improve the overall
ranking; this is also reflected in the Precision@20 measure,
which is shown in Figure 4. The only significant difference
is that the performance benefit continues all the way to the
left. In absolute terms, this improvement is quite large and

 60

 65

 70

 75

 0 20 40 60 80 100

P
re

ci
si

on
 @

 2
0

% of whole dataset used for training

shaping
scaling

baseline

Figure 4: Precision@20 learning curves for UCI.

 90

 92

 94

 0 20 40 60 80 100

A
cc

ur
ac

y

% of whole dataset used for training

shaping
scaling

baseline

Figure 5: Accuracy learning curves for UCI.

is significant at p=0.002 in a paired T-test. The results for
F-measure show an outstanding improvement of 18% from
0.6 to over 0.7 F-measure, but we include it only in the
online appendix, as this is not a customary measure for UCI
datasets.

Next, we examine the Accuracy learning curves shown in
Figure 5, which tell a somewhat different story. For the
larger training sets, feature shaping produced no significant
benefit. But for the smaller training sets, feature shaping
hurt accuracy substantially, unlike all the other learning
curves in this paper. The ‘scaling’ lesion variant does not
show such a performance drop, so the reshaping itself must
be at fault. After deeper analysis on particular datasets,
we found that the reshaping is overfitting local regions. We
leave it to future work to determine the extent and develop
effective safeguards.

Clearly no single method can be expected to be best for
all classification tasks. We illustrate this variation in Fig-
ure 6, which shows the 10-fold cross-validation AUC per-
formance for the 64 binary classification tasks derived from
the UCI data. The tasks are sorted by difficulty, accord-
ing to the baseline method. This view makes it clear that
the change of representation can provide great performance
improvements for many tasks, but not all. For the tasks
at the far right, there is no headroom to improve learning,
since the baseline linear classifier nearly achieves perfection.

7

 0.5

 0.6

 0.7

 0.8

 0.9

 1
A

U
C

binary tasks (sorted)

shaped
baseline

Figure 6: AUC for each of the 64 binary UCI tasks.

The take-home message is that while the proposed shaping
method improved performance on average over a wide vari-
ety of problems, it certainly is not a panacea. In particular,
feature shaping may only be needed for particular features,
but in this study we simply apply the same shaping method
to all features. We leave it to future work to determine
policies for applying shaping more selectively.

4.3 Lesion Study
One way to determine the relative importance of the var-

ious stages of a method is to systematically disable one at
a time and measure performance under each variant. We
performed such a lesion study on the ‘shaping’ method that
appears in the previous figures. Recall that its processing
stages are (1) reshaping the input feature via LP, which out-
puts local probability estimates, (2) scaling the output to
the range [0.0,BNS], where BNS is the maximum Bi-Normal
Separation score over all decision thresholds on the reshaped
training data, and (3) normalizing each feature vector row
so that its total L2-length is 1.0. This transformed dataset
is then given to the SVM for learning.

We performed the lesion study via 10-fold cross-validation
for all 64 binary classification tasks from the UCI datasets,
and then we averaged the results separately for each lesion
variant. Figure 7 shows the results for all four performance
measurements, with the lesion variants sorted along the x-
axis by their AUC score. They are in order as follows:

L1-norm: The change that caused the largest loss in perfor-
mance was using an L1-norm in place of the L2-norm.
This normalizes each feature vector so that the sum of
its feature values is 1.0, rather than normalizing the
Euclidean length of the vector to 1.0.

no shaping: The second most damaging change was to re-
move the shaping step altogether. This is the variant
labeled ‘scaling’ in the previous figures.

Log Odds: This variant on shaping returns the log odds
ratio (log p̃−log(1−p̃)) of the local probability estimate
p̃.

no scaling: This variant simply eliminates the BNS scal-
ing step. Note that without it, the minimum value
may not be zero, and hence sparse text datasets would
balloon in memory.

0.88

0.90

0.92

0.94

L
1-

no
rm

no
 s

ha
pi

ng

L
og

 O
dd

s

no
 s

ca
lin

g

P
la

tt
 -

 C
V

fu
ll

AUC
Accuracy

0.50

0.60

0.70

L
1-

no
rm

no
 s

ha
pi

ng

L
og

 O
dd

s

no
 s

ca
lin

g

P
la

tt
 -

 C
V

fu
ll

Pr@20
F-measure

Figure 7: Lesion study on UCI datasets, using 10-
fold cross-validation.

Platt - CV: Weka’s SVM provides an option for whether
or not to use cross-validation when training the final
stage of logistic regression, due to Platt [15]. For this
stage, we use 2-fold CV throughout this paper. That
is, the SVM output scores that are given as input to
the logistic regression are generated by two separate
invocations of the SMO so that the scores that are
given for training are not overly optimistic. This vari-
ant eliminates the cross-cross validation, so that only a
single SVM training step is performed instead of three
(2CV plus the final training on the whole training set).
Looking at the upper graph in Figure 7, we see that
the Accuracy actually benefited slightly from having
this cross-validation step eliminated. It had no visible
effect on AUC or Precision@20, and a slight loss for
F-measure. Depending on one’s goals and the relative
importance of computational load, it may be worth
turning off this extra cross-validation step.

To summarize, the results of the lesion study confirm that
the importance of shaping for the UCI datasets is one of the
most substantial contributors to the performance of the full
method. This supports the hypothesis in this paper that
independently reshaping each feature may lead to valuable
performance gains for the downstream linear classifier.

8

5. DISCUSSION / FUTURE WORK
We set out with an intuition that reshaping each input

feature independently could bring performance benefits to a
downstream classifier. The experiments bear this hypothesis
out, and by studying learning curves and multiple objective
functions, we gain additional perspective on when shaping
is most beneficial. In particular, the shaping method con-
tinued to work well even in the early parts of the learning
curve. Depending on the objective, this benefit sometimes
diminished when the training set was sufficiently large. It
is perhaps surprising that feature shaping does benefit text
classification at all. By our design, the many zero entries
are mapped to zero in order to keep the dataset sparse.
Thus, shaping can only have an effect on a sparse minority of
the feature values, and yet the difference can be substantial
viewed through the eyes of an SVM.

Our approach of reshaping each feature independently of
the others affords both disadvantages and advantages. It
is well known that the ‘XOR-problem’ cannot be solved by
looking at features independently, yet we might ask how of-
ten this problem arises in practice. Advantages include sim-
plicity, computational tractability, and the opportunity for
parallel computation—of growing importance with the long
heralded arrival of many-core computers, on which sequen-
tial programs will no longer speed up with Moore’s Law.

The current limitations of the methods described here are
plenty. The encouraging results of these experiments open
the doors to other types of reshaping and to relax current
restrictions. Future avenues for work includes multi-class re-
shaping, treating missing values, semi-supervised feature re-
shaping, processing other types of features, and experimen-
tation with various other linear and non-linear classifiers.
And most profoundly, different features in general datasets
may call for different sorts of techniques—future research
should explore automated policies for deciding what may
be best to be done with each feature. This emulates a la-
bor intensive process today, where an expert examines the
raw data and proposes useful, domain-specific transforms to
provide high quality, or at least worthwhile, features for the
classifier.

A caveat is in store for researchers heading down this path.
There are many, high-dimensional design decisions that ul-
timately depend, not on reason or theorems, but on their
practical ability to be helpful on many ‘typical’ datasets. Of
course, this requires performing one’s research over many re-
alistic datasets in order to hill-climb in one’s research to the
most useful ideas, as opposed to local optima for one or two
datasets. But with this comes the threat of overfitting one’s
research to the available benchmarks. To safeguard against
this, one must insist on studying many datasets in various
domains, and on having very strong baselines. This in turn
requires a concurrent search for very strong baseline results,
which can itself be a daunting, high-dimensional search.

6. REFERENCES
[1] D. A. Cieslak and N. V. Chawla. Learning decision

trees for unbalanced data. In European Conference on
Machine Learning / Principles and Practice of
Knowledge Discovery in Databases
(ECML/PKDD’08). Springer, 2008.

[2] C. Cortes, A. Gretton, G. Lackriet, M. Mohri, and
A. Rostamizadeh, editors. NIPS Kernel Learning
Workshop. 2008. http://www.cs.nyu.edu/learning_kernels/.

[3] F. Debole and F. Sebastiani. Supervised term
weighting for automated text categorization. In SAC
’03: Proceedings of the 2003 ACM symposium on
Applied computing, pages 784–788, New York, NY,
USA, 2003. ACM.

[4] G. Forman. An extensive empirical study of feature
selection metrics for text classification. Journal of
Machine Learning Research, 3:1289–1305, 2003.

[5] G. Forman. BNS feature scaling: an improved
representation over TF-IDF for SVM text
classification. In Proceedings of the 17th ACM
Conference on Information and Knowledge
Management (CIKM), pages 263–270, NY, 2008.

[6] E. Gabrilovich and S. Markovitch. Text categorization
with many redundant features: Using aggressive
feature selection to make SVMs competitive with
C4.5. In Proc. of International Conference on Machine
Learning (ICML’04), pages 321–328, 2004.

[7] I. Guyon and A. Elisseeff. An introduction to variable
and feature selection. Journal of Machine Learning
Research, 3:1157–1182, 2003.

[8] E. Han and G. Karypis. Centroid-based document
classification: Analysis and experimental results. In
Proc. of the 4th European Conference on the
Principles of Data Mining and Knowledge Discovery,
pages 424–431, 2000.

[9] H. M. Huan Liu. Feature Selection for Knowledge
Discovery and Data Mining. Kluwer Academic
Publishers, Norwell, MA, USA, 1998.

[10] H. M. Huan Liu. Computational Methods of Feature
Selection. Chapman & Hall/CRC, New York, NY,
USA, 2008.

[11] A. Knobbe, B. Cremilleux, J. Fürnkranz, and
M. Scholz. From local patterns to global models: The
LeGo approach to data mining. In Proc. of
ECML/PKDD-08 Workshop: From Local Patterns to
Global Models (LeGo’08), 2008.
http://www.ke.informatik.tu-darmstadt.de/events/LeGo-08/.

[12] M. Lan, C. L. Tan, J. Su, and Y. Lu. Supervised and
traditional term weighting methods for automatic text
categorization. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 99(2), 2008.

[13] G. Lanckriet, N. Cristianini, P. Bartlett, L. Ghaoui,
and M. Jordan. Learning the kernel matrix with
semidefinite programming. Journal of Machine
Learning Research, 5:27–72, 2004.

[14] C. S. Ong and A. J. Smola. Machine learning with
hyperkernels. In Proc. of International Conference on
Machine Learning (ICML’03), pages 568–575, 2003.

[15] J. Platt. Probabilistic outputs for support vector
machines and comparisons to regularized likelihood
methods. In Advances in Large Margin Classifiers,
pages 61–74. MIT Press, 1999.

[16] M. Szafranski, Y. Grandvalet, and
A. Rakotomamonjy. Composite kernel learning. In
Proc. of International Conference on Machine
Learning (ICML’08), pages 1040–1047, 2008.

[17] I. H. Witten and E. Frank. Data Mining: Practical
Machine Learning Tools and Techniques. Morgan
Kaufmann, 2nd edition, June 2005.

9

APPENDIX

 94

 95

 96

 97

 98

 0 20 40 60 80 100

A
U

C

% of whole dataset used for training

shaping
scaling

baseline

Figure 8: AUC learning curves, each point averaged
over 104 binary text classification problems.

 56

 57

 58

 59

 60

 61

 0 20 40 60 80 100

P
re

ci
si

on
 @

 2
0

% of whole dataset used for training

shaping
scaling

baseline

Figure 9: Precision@20 learning curves, each point
averaged over 104 binary text classification prob-
lems.

 50

 55

 60

 65

 70

 75

 0 20 40 60 80 100

F
-m

ea
su

re

% of whole dataset used for training

shaping
scaling

baseline

Figure 10: F-measure learning curves for the UCI
benchmark.

10

