
Math3349 – Data Mining: Assignment 1
August 22, 2012

Marks will be given for layout and for clarity of exposition. Please email
your results, in the form of a pdf file, to john.maindonald@anu.edu.au, by
5pm on Monday Sept 10.

This assignment will work with the data, on heavy metal concentrations
in the vicinity of the river Meuse, that was considered in Subsection 4.4.1 of
the notes. The termplots in that section suggested nonlinear effects for both
elev and dist.

Here, we will in due course use smooth curves to model their effects. Run
the code:

library(sp)

data(meuse)

meuse$ffreq <- factor(meuse$ffreq)

meuse$soil <- factor(meuse$soil)

Exercises

1. Given the model
y = X β + ε (1)

where the elements εi of ε are independent with variance σ2, it can be
shown that if X has p linearly independent columns, then:

E[(ŷ − µ)T (ŷ − µ)] = p σ2

Now suppose training and test data sets, each of n observations, are
drawn from the same population. Thus we have:

Training : X(1) and y(1); estimate β(1) of β

Test : X(2) and y(2); prediction ŷte from training data

(i) Explain why the elements of y(2) are independent of ŷte

(ii) The error mean square when the model that is derived using the
training data is applied to the test data is:

(y(2) − ŷte)T (y(2) − ŷte) / n

Show that this has expected value (n+ p)σ2
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[Write

y(2) − ŷte = y(2) − µ(2) − (ŷte − µ(2))

]
[Thus, the mse for the test data is an inflated estimate of σ2]

2. In the following, we simulate 1000 sets of observations from a specified
model that has main effects only, and compare the model fit for main
effects only (the ’true’ model) with the model that fits a surface.

library(mgcv)

deltaDf <- F <- pval <- scale1 <- scale2 <- numeric(1000)

zSim <- with(meuse, 5 - 2*elev -3.3*dist + 1.6*dist^2 +

rnorm(nrow(meuse), sd=sqrt(0.16)))

zed.lm <- lm(zSim ~ elev + poly(dist,2) , data=meuse)

simY <- simulate(zed.lm, nsim=1000)

for(i in 1:1000){

if((i%%250)==1)cat("\n")

if((i%%20)==0)cat(i, " ")

z <- simY[,i]

z.gam <- gam(z ~ s(elev) + s(dist) , data=meuse, method="ML")

z2.gam <- gam(z ~ s(elev, dist), data=meuse, method="ML")

scale1[i] <- z.gam$sig2

scale2[i] <- z2.gam$sig2

aovtest <- anova(z.gam, z2.gam, test="F")

deltaDf[i] <- aovtest[2, "Df"]

F[i] <- aovtest[2, "Df"]

pval[i] <- aovtest[2, "Pr(>F)"]

}

cat("\n")

sum(!is/na(pval))

plot(pval ~ deltaDf, log="xy")

Notes:

a. A desirable preliminary step is to start by running a small number
of simulations. For example, run the code with for(i in 1:1000)

replaced by for(i in 1:20). This will allow an estimate of the time
that 1000 simulations are likely to take on your system.

b. Note that the analysis of variance comparison yields meaningless re-
sults when the difference in degrees of freedom for the two model fits is
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very small. The uncertainty in the degrees of freedom is then of com-
parable magnitude, or larger, than the degrees of freedom estimate.
The F-statistic is meaningless.

(ii) Annotate the code, explaining briefly what each line does.

(ii) Which is closest to the null model – z.gam or z2.gam?

(iii) Plot pval against deltaDf, using a logarithmic scale for both axes
(specify log="xy"). The points in the graph are likely to separate
into two clusters. Which are the points for which the p-value is
meaningful? What does the graph suggest might be a reasonable
cut-off value for deltaDf to be meaningful? Draw a line or lines
across the graph to mark off the points that correspond to a p-
value that should be regarded as significant at the 5% level.

3. Now move to work with the outcome values in the meuse dataset:

(i) Examine fits to the outcome values in the meuse dataset. Fit and
compare the following models:

m.gam <- gam(log(lead) ~ s(elev) + s(dist) + ffreq + soil,

data=meuse, method="ML")

mx.gam <- gam(log(lead) ~ s(elev, dist) + ffreq + soil,

data=meuse, method="ML")

mxx.gam <- gam(log(lead) ~ s(elev, dist, by=ffreq) + ffreq + soil,

data=meuse, method="ML")

(aovcomp <- anova(m.gam, mx.gam, mxx.gam, test=’F’))

obsF <- aovcomp["F"][2,]

## Compares mx.gam with m.gam, and mxx.gam with mx.gam

Do you notice a problem for the comparison between mxx.gam
and mx.gam?

(ii) Now do a simulation to check the comparison between the mx.gam
model when errors are iid normal.

hat <- predict(m.gam)

simY <- simulate(m.gam, nsim=1000)

scale1 <- scale2 <- f1000 <- p1000 <- deltaDf <- numeric(1000)

for(i in 1:1000){

if(i%%20==0)cat(i)

ms.gam <- gam(simY[,i] ~ s(elev) + s(dist) + ffreq + soil,

data=meuse, method="ML")

mxs.gam <- gam(simY[,i] ~ s(elev, dist) + ffreq + soil,
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data=meuse, method="ML")

aovcomp <- anova(ms.gam, mxs.gam, test="F")

f1000[i] <- aovcomp["F"][2,]

p1000[i] <- aovcomp["Pr(>F)"][2,]

deltaDf[i] <- aovcomp[2, "Df"]

scale1[i] <- m.gam$sig2

scale2[i] <- mx.gam$sig2

}

## Now refer the observed F to this null sampling distribution

## NAs will mostly indicate no real difference:

## a -ve deviance change or a -ve df change

plot(p1000 ~ deltaDf, log="xy")

## Modify the following to require some minimum value for \texttt{deltaDf}

## print(sum(!is.na(f1000) & f1000>obsF)/1000)

From the plot, decide on a reasonable cutoff value for deltaDf.

(iii) Compare also mean(scale1) and mean(scale2) with the scale
estimate from m.gam. What does this suggest?

4. Another approach is to get cross-validation estimates of the mean square
error for each of the two models, and compare these estimates. We can
use the function CVgam() from the package modregR for this purpose.
The same set of cross-validation folds should be used for the two models,
in order to get an accurate comparison:

library(modregR)

foldnum <- sample(1:10, size=nrow(meuse), replace=TRUE)

CVgam(log(lead) ~ s(elev) + s(dist) + ffreq + soil, data=meuse,

method="ML", cvparts=foldnum)

CVgam(log(lead) ~ s(elev, dist) + ffreq + soil, data=meuse,

method="ML", cvparts=foldnum)

Repeat this comparison several times. Comment on the comparison
between the scale estimates from the GAM model. Do the simulation
results in Exercise 3(i) (the means of the respective scale parameter
estimates) have useful light to shed on what you observe here? Do
these results from cross-validation seem broadly consistent with the
simulation results?

Note: Include the R code that you have used in an appendix to your as-
signment. Be careful to identify the question for which the code has been
used.
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