
de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

J H Maindonald

Data Analysis, Graphics,
and Visualisation Using R

Copyright© 2014 J H Maindonald
Copies may be made for individual study and research. Other uses are prohibited.

June 2014

S has forever altered the way people analyze, visualize, and manipulate data... S is

an elegant, widely accepted, and enduring software system, with conceptual integrity,

thanks to the insight, taste, and effort of John Chambers.

From the citation for the 1998 Association for Computing Machinery Software award.

A big computer, a complex algorithm and a long time does not equal science.

Robert Gentleman

Contents

1 Preliminaries 11

2 An Overview of R 17

3 Enhancing the R Experience – RStudio 27

4 The R Working Environment 33

5 Practical Data Analysis – Examples 39

6 Data Objects and Functions 51

7 Data Input and Storage 73

8 Data Manipulation and Management 85

9 Graphics – Base, Lattice, Ggplot, . . . 99

10 Dynamic Interaction with Graphs 127

11 Regression with Linear Terms and Factors 133

4

12 A Miscellany of Models & Methods 163

13 Map Overlays and Spatial Modeling 187

14 Brief Notes on Text Mining 197

15 ⇤Leveraging R Language Abilities 201

A ⇤R System Configuration 209

B The R Commander Graphical User Interface 215

C Color Versions of Selected Graphs 217

Index of Functions 223

Introduction

CRAN is the primary R ‘repos-
itory’. Several additional pack-
age repositories supplement
what is available from CRAN.
Note in particular the Bio-
conductor repository (http:
//www.bioconductor.org),
with packages that cater for high
throughput genomic data.

Note the following web sites:
CRAN (Comprehensive R Archive Network):
http://cran.r-project.org

Obtain R and R packages from a CRAN mirror in the local region.
An Australian mirror (one of two) is: http://cran.csiro.au/
R homepage: http://www.r-project.org/
For various useful links click, from an R session that uses the GUI,
on the menu item R help. Then, on the browser window that pops
up, look under Resources

Commentary on R

General

R has extensive graphical abilities that are tightly linked with its R is free to download from a
CRAN site (see above). It runs
on all common types of system –
Windows, Mac, Unix and Linux.

analytic abilities. A new release of base R, on which everything else
is built appears every few months.

The major part of R’s abilities for statistical analysis and for
specialist graphics comes from the extensive enhancements that the
packages build on top of the base system. Its abilities are further
extended by an extensive range of interfaces into other systems1 1 These include Python, SQL

and other databases, parallel
computing using MPI, and Excel.

The main part of the R system – base R plus the recommended
packages – is under continuing development.

The R user base

Statistical and allied professionals who wish to develop or require The R Task Views web page
(http://cran.csiro.au/web/
views/) notes, for application
areas where R is widely used,
relevant packages.

access to cutting edge tools find R especially attractive. Additionally,
the R system is finding wide use among working scientists whose
data analysis requirements justify time spent gaining skills with R.
It is finding use, also, as an environment in which to embed applica-
tions whose primary focus is not data analysis or graphics.

6

Getting help

Note the web sites:
Wikipedia:
http://en.wikipedia.org/wiki/R_(programming_language)

R-downunder (low tra�c, friendly):
http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder

Stackoverflow
http://stackoverflow.com/questions/tagged/r.

The r-help mailing list serves, especially for users with a techni- Details of this and other lists
can be found at: http://www.
r-project.org. Be sure to
check the available documentation
before posting to r-help. List
archives can be searched for
previous questions and answers.

cal bent, as an informal support network. The R community expects
users to be serious about data analysis, to want more than a quick
cook-book fix! Ut expects a willingness to work at improving statis-
tical knowledge, in order to use R e↵ectively.

Novices will find the low tra�c R-downunder list more friendly
and helpful than the main R mailing list. It has among its subscribers
some highly expert individuals.

The origins and future of R

The R system implements a dialect of the S language that was de- Open source systems that might
have been the basis for an R-like
project include Scilab, Octave,
Gauss, Python and Lisp-Stat.

veloped at AT&T Bell Laboratories for use as a general purpose
scientific language, but with especial strengths in data manipulation,
graphical presentation and statistical analysis. The commercial S-
PLUS implementation of S popularized the S language, giving it a Novice users will notice small but

occasionally important di↵erences
between R and S-PLUS. Writers
of substantial functions and (es-
pecially) packages will find larger
di↵erences.

large user base of statistical professionals and skilled scientific users
into which R could tap.

Ross Ihaka and Robert Gentleman, both at that time from the
University of Auckland, developed the initial version of R, for use in
teaching tool. Since mid-1997, development has been overseen by
a ‘core team’ of about a dozen people, drawn from di↵erent institu-
tions worldwide.

With the release of version 1.0 in early 2000, R became a serious There are now more than 5000
packages available through the
CRAN (Comprehensive R Archive
Network) sites.

tool for professional use. Since that time, the pace of development
has been frenetic, with a new package appearing every week or two.
Books that were specifically devoted to R began to appear in 2002.

The R system uses a language model that dates from the 1980s. Luke Tierney, and several others
who had previously been involved
with the Lisp-Stat system, are
now actively involved with R. See
Tierney (2005), and other papers
in the same volume of the Journal
of Statistical Software

Although with a syntax that looks superficially like that of C, the R
interpreter uses a model that is based on the Scheme dialect of LISP.

Any change to a more modern language model is likely to be
evolutionary. Details of the underlying computer implementation
will inevitably change, perhaps at some point radically. Among
alternative roughly comparable language systems that might poten- Julia strongly outperforms R in

execution time comparisons that
appear on the Julia website.

tially provide R-like functionality, Julia (http://julialang.org),

7

still at a beta development stage, seems particularly interesting.

Interactive development environments – editors and more
Emacs, with the ESS (Emacs
Speaks Statistics) addon, is a
feature-rich environment that can
be daunting for novices. It runs on
Windows as well as Linux/Unix
and Mac. Note also, for Windows,
the Tinn-R editor (http://www.
sciviews.org/Tinn-R/).

RStudio (http://rstudio.org/) is a very attractive run-time
environment for R, available for Windows, Mac and Linux/Unix
systems. This has extensive abilities for managing projects, and for
working with code. It is a highly recommended alternative to the
GUIs that come with the Windows and Mac OS X binaries that are
available from CRAN sites.

Pervasive unifying ideas

Ideas that pervade R include: Note also:

Expressions can be:

evaluated (of course)
printed on a graph (come to
think of it, why not?)

There are many unifying com-
putational features, e.g.

Any ‘linear’ model (lm, lme,
etc) can use spline basis
functions to fit spline terms.
This extends to any other
system of basis functions.

Generic functions for common tasks – print, summary, plot, etc.
(the Object-oriented idea; do what that “class” of object requires)
Formulae, for specifying graphs, models and tables.
Language structures can be manipulated, just like any other object
(Manipulate formulae, expressions, argument lists for functions,
. . .)
Lattice (trellis) and ggplot graphics o↵er innovative features that
are widely used through R packages. They open up large oppor-
tunities for providing graphs that reflect important aspects of data
structure

Note however that these are not uniformly implemented through R.
This reflects the incremental manner in which R has developed.

Data set size

R’s evolving technical design has allowed it, taking advantage of An important step was the move,
with the release of version 1.2, to a
dynamic memory model.

advances in computing hardware, to steadily improve its handling of
large data sets. The flexibility of R’s memory model does however
have a cost2 for some large computations, relative to systems that 2 The di↵erence in cost may be

small or non-existent for systems
that have a 64-bit address space.

process data from file to file.

Good planning, informed analysis and reliable software

While the R system is unique in the extent of close scrutiny that it Take particular care with newer or
little-used abilities in contributed
packages. These may not have
been much tested, unless by their
developers. The greatest risks arise
from inadequate understanding of
the statistical issues.

receives from highly expert users, the same warnings apply as to any
statistical system. The base system and the recommended packages
get unusually careful scrutiny.

The scientific context, which includes available statistical
methodology, has crucial implications for the experiments that it

8

is useful to do, and for the analyses that are meaningful. Addition-
ally, computing software and hardware bring their own constraints
and opportunities.

Statistics of data collection encompasses statistical experimental The same general issues arise in
field, industrial, medical, biolog-
ical and laboratory experimenta-
tion. The aim is always, is to get
maximum value from the use of
resources.

design, sampling design, and more besides. Planning will be most
e↵ective if based on sound knowledge of the materials and proce-
dures available to experimenters.

Once the data have been collected, the challenges are then those
of data analysis and of interpretation and presentation of results. For
this, software that is of high quality must be complemented with the
critical resources of well-trained and well-informed minds.

Documentation and Learning Aids

R podcasts: See for example http://www.r-podcast.org/

O�cial Documentation: Users who are working through these
notes on their own should have available for reference the document
“An Introduction to R”, written by the R Development Core Team.
To download an up-to-date copy, go to CRAN.

Web-based Documentation: Go to http://www.r-project.org NB also http://wiki.
r-project.org/rwiki/doku.
php

and look under Documentation. There are further useful links under
Other.

The R Journal (formerly R News): Successive issues are a mine of
useful information. These can be copied down from a CRAN site.

Books: See http://www.R-project.org/doc/bib/R.bib
for a list of R-related books that is updated regularly. Here, note
especially:
Maindonald, J. H. & Braun, J. H. 2010. Data Analysis & Graphics
Using R. An Example-Based Approach. 3rd edn, Cambridge Univer-
sity Press, Cambridge, UK, 2010.
http://www.maths.anu.edu.au/~johnm/r-book.html

9

Notes for Readers of this Text

Asterisked Sections or Subsections

Asterisks are used to identify material that is more technical or spe-
cialized, and that might be omitted at a first reading.

The DAAGviz package

This package, still in development and not yet on CRAN, is a com-
panion to these notes. Installation of this package gives access to:

More succinctly, use the function
getScript():
Place Ch 5 script in
working directory
getScript(5)

- Scripts that include all the code. To access these scripts do, e.g.

Check available scripts
dir(system.file('scripts', package='DAAGviz'))
Show chapter 5 script
script5 <- system.file('scripts/5data-code.R',

package='DAAGviz')
file.show(script5)

More succinctly, use the function
sourceFigFuns():
Load Ch 5 functions
into workspace
sourceFigFuns(5)

- Code files (scripts) for functions that can be used to reproduce
the graphs. To load into the workspace code for functions that
reproduce the graphs in the text, use commands of the form:

path2figs5 <- system.file('doc/figs5.R',
package='DAAGviz')

source(path2figs5)

- The datasets Nightingale (as from the package HistData) and
Crimean. The dataset Crimean holds the Crimean mortality data,
as reshaped in Section 8.3.2.

Additional Functions and Datasets

The web page http://www.maths.anu.edu.au/~johnm/ may in
a few cases be a convenient source for datasets that are referred to in
this text:

- Look in http://www.maths.anu.edu.au/~johnm/r/rda for
various image (.RData) files. Use the function load() to bring
any of these into R.

- Look in http://www.maths.anu.edu.au/~johnm/datasets/
text for the files bestTimes.txt, molclock.txt, and other such text
files.

= Look in http://www.maths.anu.edu.au/~johnm/datasets/
csv for several .csv files.

1
Preliminaries

1.1 Installation of R

Click as indicated in the successive panels to download R for Win-
dows from the web page http://cran.csiro.au:

Figure 1.1: This shows a se-
quence of clicks that will down-
load the R installation file from
cran.csiro.edu. At the time
of writing, the website will of-
fer R-3.0.3 rather than R-2.13.0.
The site cran.csiro.edu is
one of two Australian CRAN
(Comprehensive R Archive Net-
work) sites. The other is: http:
//cran.ms.unimelb.edu.au/

Figure 1.2: On 64-bit Windows
systems the default installation
process creates two icons, one
for 32-bit R and one for 64-bit R.
Additional icons can be created as
desired.

Click on the downloaded file to start installation. Most users will
want to accept the defaults. The e↵ect is to install the R base system,
plus recommended packages. Windows users will find that one or
more desktop R icons have been created as part of the installation
process.

12 data analysis, graphics, and visualisation using r

Depending on the intended tasks, it may be necessary to install
further packages. Section 1.3 describes alternative ways to install
packages.

An optional additional step is to install RStudio. RStudio has Clicking on the RStudio icon to
start a session will at the same
time start R. RStudio has its own
command line interface, where
users can type R commands.

abilities that help in managing workflow, in navigating between
projects, and in accessing R system information. See Chapter 3.

1.2 First steps
Readers who have RStudio run-
ning can type their commands in
the RStudio command line panel.

Click on an R icon to start an R session. This opens an R command
window, prints information about the installed version of R, and
gives a command prompt.

Figure 1.3: Windows command
window at startup. This shows the
default MDI (multiple display)
interface. For running R from the
R Commander, the alternative SDI
(single display) interface may be
required, or may be preferable.
The Mac GUI has a SDI type
interface; there is no other option.

The > prompt that appears on the final line is an invitation to start
typing R commands:

Thus, type 2+5 and press the Enter key. The display shows:

> 2+5

[1] 7

The result is 7. The output is immediately followed by the >

The [1] says, a little strangely,
“first requested element will
follow”. Here, there is just one
element.prompt, indicating that R is ready for another command.

Try also:

> result <- 2+5
> result

[1] 7

preliminaries 13

The object result is stored in the
workspace. This is a database
that holds objects that are under
direct user control. More details
are below.

Observe that typing result on the command line has printed the
value 7.

Type ls() to list the objects in the workspace, thus:
> ls()

[1] "result"

Starting from an empty workspace, result was the only object
stored.

Figure 1.4 shows, with annotations, the screen as it appears
following the above sequence of commands.

Figure 1.4: This shows the se-
quence of commands that are
demonstrated in the text, as they
appear on the screen, with added
annotation.

An R session is structured as a hierarchy of databases. Functions
that were used or referred to above — such as ls() – are from a
database or package that is part of the R system. Objects that the
user has created or input, or that were there at the start of the session
and not later removed, are stored in the workspace.

Technically, the R system refers to
the workspace as .Globalenv.

The workspace is the user’s own database for the duration of a
session. It is a volatile database, i.e., it will disappear if not explicitly
saved prior to or at the end of the session.

1.2.1 Points to note

Printing Typing the name of an object (and pressing Enter)
displays (prints) its contents.

Quitting To quit, type q()), (not q)

Case matters volume is di↵erent from Volume

Typing the name of an object (and pressing the Enter key) causes
the printing of its contents, as above when result was typed. This
applies to functions also. Thus type q() in order to quit, not q.1 One 1 Typing q lists the code for the

function.types q() because this causes the function q to spring into action.

14 data analysis, graphics, and visualisation using r

Upon typing q() and pressing the Enter key, a message will
ask whether to save the workspace image. Clicking Yes (usually
the safest option) will save the objects that remain in the workspace
– any that were there at the start of the session (unless removed or
overwritten) and any that have been added since. The workspace that
has been thus saved is automatically reloaded when an R session is
restarted in the working directory to which it was saved.

Figure 1.5: Note the use of the
special characters: ; to separate
multiple commands on the one
line, + (generated by the system)
to denote continuation from pre-
vious line, and # to introduce
comment that extends to end of
line.

Note that for names of R objects or commands, case is signifi-
cant. Thus Myr (millions of years, perhaps) di↵ers from myr. For file
names,2 the operating system conventions apply.

2 Under Windows, case does not
distinguish file names. Under
Unix (the Mac OS X version is a
partial exception), case does so
distinguish.

Commands may, as demonstrated in Figure 1.5, continue over
more than one line. By default, the continuation prompt is +. As
with the > prompt, this is generated by R, and appears on the left
margin. Including it when code is entered will give an error!

Here is a command that extends
over two lines:
> result <-
+ 2+5

1.2.2 Some further comments on functions in R

Above, we encountered the function q(), used to quit from an R
session. Functions are ubiquitous in R. R is a functional language.
Anytime that a command in typed, this causes a function to run.

Consider the function print(). One can explicitly invoke it to
print the number 2 thus:

print(2)

[1] 2

Objects on which the function will act are placed inside the round
brackets. Such quantities are known as arguments to the function.

An alternative to typing print(2) is to type 2 on the command
line. The function print() is then invoked implicitly:

2

[1] 2

preliminaries 15

Functions have a central role in the use of the R system. Com-
mon functions that R users should quickly get to know include
print(), plot() and help().

1.2.3 Help information

Included on the information that appeared on the screen when R
started up, and shown in Figures 1.4 and 1.5, were brief details on
how to access R’s built-in help information:

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

The shorthand ?plot is an alternative to typing help(plot).
Replace ‘?’ by ‘??’ for a wider search. This invokes the func-

tion help.search(), which looks for a partial match in the title or
concept fields as well as in the name.

Use of ??:
??Arithmetic
??base::Arith
Search base package onlyR has extensive built-in help information. Be sure to check it

out as necessary. Section 2.5 has further details on what is available,
beyond what you can get by using the help function.

1.2.4 The working directory

Associated with each session is a working directory where R will by Under Windows, if R is started by
clicking on an R icon, the working
directory is that specified in the
Start in directory specified in the
icon Preferences. Subsection A.1
has details on how to specify the
Start in directory for an icon.

default look for files. In particular:

• If a command inputs data from a file into the workspace and the
path is not specified, this is where R will look for the file.

• If a command outputs results to a file, and the path is not specified,
this is where R will place the file.

• Upon quitting a session, the “out of the box” setup will ask
whether you wish to save an “image” of the session. Answering
“Yes” has the result that the contents of the workspace are saved
into a file, in the working directory, that has the name .RData.
Next time a session is started in that working directory, the last
.RData file that was saved in that directory (if any) will be used to
restore the workspace.

For regular day to day use of R, it is advisable to have a sepa- RStudio users will be asked to
specify a working directory when
setting up a new “project”.

rate working directory for each di↵erent project.

16 data analysis, graphics, and visualisation using r

1.3 Installation of R Packages

A fresh install of R packages is
typically required when moving
to a new major release (e.g., from
a 3.0 series release to a 3.1 series
release).

Installation of R Packages (Windows &MacOS X)
Start R (e.g., click on the R icon). Then use the relevant menu item
to install packages via an internet connection. This is (usually) easier
than downloading, then installing.

For use of command line instructions to install packages, see below.

The GUIs, MacOS X and Win-
dows, both make package installa-
tion relatively straightforward.

Packages provide most of the functions that users will require
to get their work done. The packages that need to be installed, ad-
ditional to those that came with the initial ready-to-run system, are
likely to vary depending on individual user requirements.

Installation of packages from the command line

To install the R Commander from the command line, enter: By default, a CRAN mirror is
searched for the required package.
Subsection 4.3.1 notes available
repositories.

install.packages("Rcmdr", dependencies=TRUE)

Among the dependencies are the graphics packages rgl (3D dynamic
graphics), scatterplot3d, vcd (visualization of categorical data) and
colorspace (generation of color palettes, etc).

Installation of Bioconductor packages

For installation of Bioconduc-
tor packages from the GUI, see
Subsection A.4.

To set your system up for use of Bioconductor packages, type:

source("http://bioconductor.org/biocLite.R")
biocLite()

Additional packages can be installed thus:

biocLite(c("GenomicFeatures", "AnnotationDbi"))

See further http://www.bioconductor.org/install/.

1.4 Summary

One use of R is as a calculator, to evaluate arithmetic expressions.
Calculations can be carried out in parallel, across all elements of a
vector at once.

The R Commander GUI can be helpful in getting quickly into use
of R for many standard purposes. It may, depending on require-
ments, be limiting for serious use of R.

Use q() to quit from an R session. To retain objects in the
workspace, accept the o↵er to save the workspace.

2
An Overview of R

Column Objects
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1)

height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4)

(Read the symbol c as “concatenate”, or perhaps “column”.)

Data frame
A data frame is a list of column objects, all of the same length.
(For present purposes, the intuitive idea of a list will su�ce!)

widheight <- data.frame(
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),
height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4)

)

Also: Arithmetic operations; simple plots; input of data.

2.1 Practice with R commands
The R language has the standard
abilities for evaluating arithmetic
and logical expressions. There are
numerous functions that extend
these basic arithmetic and logical
abilities.

Try the following

2+3 # Simple arithmetic

[1] 5

1:5 # The numbers 1, 2, 3, 4, 5

[1] 1 2 3 4 5

mean(1:5)

[1] 3

sum(1:5) # Sum the numbers 1, 2, 3, 4, 5

[1] 15

18 data analysis, graphics, and visualisation using r

(2:4)^9 # 2^9 (2 to the power of 9), 3^9, 4^9

[1] 512 19683 262144

In addition to log(), note log2() and log10(): A change by a factor of 2 is a one
unit change on a log2 scale. A
change by a factor of 10 is a one
unit change on a log10 scale.

log2(c(0.5, 1, 2, 4, 8))

[1] -1 0 1 2 3

log10(c(0.1, 1, 10, 100, 1000))

[1] -1 0 1 2 3

It turns out, surprisingly often, that logarithmic scales are apprapri-
ate for one or other type of graph. Logarithmic scales focus on rela-
tive change — by what factor has the value changed?

The following uses the relational operator >: Other relational operators are
< >= < <= == ! =

(1:5) > 2 # Returns FALSE FALSE TRUE TRUE TRUE

[1] FALSE FALSE TRUE TRUE TRUE

Demonstrations

Demonstrations can be highly helpful in learning to use R’s func-
tions. The following are some of demonstrations that are available
for graphics functions:

Images and perspective plots:

demo(image)
demo(persp)

demo(graphics) # Type <Enter> for each new graph
library(lattice)
demo(lattice) For the following, the vcd package

must be installed:

library(vcd)
demo(mosaic)

Especially for demo(lattice), it pays to stretch the graphics
window to cover a substantial part of the screen. Place the cursor on
the lower right corner of the graphics window, hold down the left
mouse button, and pull.

The following lists available demonstrations:

List demonstrations in attached packages
demo()
List demonstrations in all installed packages
demo(package = .packages(all.available = TRUE))

2.2 A Short R Session

We will work with the data set shown in Table 2.1:

an overview of r 19

thickness width height weight volume type
Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide

Moon’s Australia handbook 3.90 13.10 18.70 840 955 Guide
Explore Australia Road Atlas 1.20 20.00 27.60 550 662 Roadmaps

Australian Motoring Guide 2.00 21.10 28.50 1360 1203 Roadmaps
Penguin Touring Atlas 0.60 25.80 36.00 640 557 Roadmaps
Canberra - The Guide 1.50 13.10 23.40 420 460 Guide

Table 2.1: Weights and volumes,
for six Australian travel books.Entry of columns of data from the command line

Data may be entered from the command line, thus: Read c as “concatenate”, or per-
haps as “column”. It joins ele-
ments together into a vector, here
numeric vectors.

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)

Now store details about the books in the character vector
description: The end result is that objects

volume, weight and description
are stored in the workspace.description <- c("Aird's Guide to Sydney",

"Moon's Australia handbook",
"Explore Australia Road Atlas",
"Australian Motoring Guide",
"Penguin Touring Atlas", "Canberra - The Guide")

Listing the workspace contents

Use ls() to examine the current contents of the workspace.

ls()

[1] "description" "oldopt" "volume"
"weight"

Note also:

ls(pattern="^des")
begins with ' des '

ls(pattern="ion$")
ends with ' ion '

Use the argument pattern to specify a search pattern:

ls(pattern="ume") # Names that include "ume"

[1] "volume"

Operations with vectors

Here are the values of volume

volume

[1] 351 955 662 1203 557 460

To extract the final element of volume, do:

volume[6]

[1] 460

20 data analysis, graphics, and visualisation using r

For the ratio of weight to volume, i.e., the density, we can do:

weight/volume

[1] 0.7123 0.8796 0.8308 1.1305 1.1490 0.9130

A note on functions

For the weight/volume calculation, two decimal places in the out-
put is more than adequate accuracy. The following uses the function
round() to round to two decimal places:

More simply, type:

round(weight/volume, 2)

Providing the arguments are in the
defined order, they can as here be
omitted from the function call.

round(x=weight/volume, digits=2)

[1] 0.71 0.88 0.83 1.13 1.15 0.91

Many functions, among them
plot() that is used for Figure 2.1,
accept unnamed as well as named
arguments. The symbol ‘...’ is
used to denote the possibility of
unnamed arguments.

Functions take arguments — these supply data on which they
operate. For round() the arguments are ‘x’ which is the quantity
that is to be rounded, and ‘digits’ which is the number of decimal
places that should remain after rounding.

sIf a ‘...’ appears, indicating that
there can be unnamed arguments,
check the help page for details.

Use the function args() to get details of the named arguments:

args(round)

function (x, digits = 0)
NULL

A simple plot

Figure 2.1 plots weight against volume, for the six Australian travel
books. Note the use of the graphics formula weight ~ volume
to specify the x� and y�variables. It takes a similar from to the
“formulae” that are used in specifying models, and in the functions
xtabs() and unstack().

●

●

●

●

●

●

400 600 800 1000 1200

40
0

60
0

80
0

12
00

volume

we
ig
ht

Figure 2.1: Weight versus volume,
for six Australian travel books.

Code for Figure 2.1 is:

Code
plot(weight ~ volume, pch=16, cex=1.5)
pch=16: use solid blob as plot symbol
cex=1.5: point size is 1.5 times default

Alternative
plot(volume, weight, pch=16, cex=1.5)

The axes can be labeled:

plot(weight ~ volume, pch=16, cex=1.5,
xlab="Volume (cubic mm)", ylab="Weight (g)")

Interactive labeling of points (e.g., with species names) can be Use text() for non-interactive
labeling of points.done interactively, using identify():

identify(weight ~ volume, labels=description)

an overview of r 21

Then click the left mouse button above or below a point, or on the
left or right, depending on where you wish the label to appear. Re-
peat for as many points as required.

On most systems, the labeling can be terminated by clicking the
right mouse button. On the Windows GUI, an alternative is to click
on the word “Stop” that appears at the top left of the screen, just
under “Rgui” on the left of the blue panel header of the R window.
Then click on “Stop locator”.

Formatting and layout of plots

There are extensive abilities that may be used to control the format-
ting and layout of plots, and to add features such as special symbols,
fitted lines and curves, annotation (including mathematical annota-
tion), colors and so on.

2.3 Data frames – Grouping columns of data
Data frames are pervasive in R.
Most datasets that are included
with R packages are supplied as
data frames.

Data frames Store data that have a cases by columns layout.

Creating Enter from the command line (small datasets)
data frames Or: Use read.table() to input from a file.

Columns of travelbooks$weight or travelbooks[, 4]
data frames or travelbooks[, "weight"]

The following code groups the several columns of Table 2.1
together, under the name travelbooks. It is tidier to have matched
columns of data grouped together into a data frame, rather than
separate objects in the workspace.

The vectors weight, volume and
description were entered earlier,
and (unless subsequently removed)
need not be re-entered.

Group columns together into a data frame
travelbooks <- data.frame(
thickness = c(1.3, 3.9, 1.2, 2, 0.6, 1.5),
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),
height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4),
weight = weight, # Use values entered earlier
volume = volume, # Use values entered earlier
type = c("Guide", "Guide", "Roadmaps", "Roadmaps",

"Roadmaps", "Guide"),
row.names = description

)
Remove objects that are not now needed.
rm(volume, weight, description)

It is a matter of convenience whether the description information
is used to label the rows, or alternatively placed in a column of
the data frame. Vectors of character, such as type, are by default While there are many contexts

where factors and character vec-
tors are interchangeable, there are
important exceptions.

stored as factors. In the data as stored, "Guide" is replaced by 1 and

22 data analysis, graphics, and visualisation using r

"Roadmaps" by 2. Stored with the factor is the information that 1 is
"Guide" and 2 is "Roadmaps".

Accessing the columns of data frames
The following are alternative ways to extract the column weight
from the data frame:
travelbooks[, 4]
travelbooks[, "weight"]
travelbooks$weight
travelbooks[["weight"]] # Reference as a list.

There are several mechanisms that avoid repeated reference to
the name of the data frame. The following are alternative ways to
plot weight against volume:

1. Use the parameter data, where available, in the function call Most modeling functions and
many plotting functions accept a
data argument.

plot(weight ~ volume, data=travelbooks)

2. Use with(): Take columns from specified data frame
Take columns from the specified data frame
with(travelbooks , plot(weight ~ volume))

With both of these mechanisms, columns of the data frame are taken
in preference to any object of the same name that may happen to be
in the workspace.

Attachment of a data frame:

attach(travelbooks)
plot(weight ~ volume)
detach(travelbooks)
Detach when no longer
required.

A third option, usually best avoided, is to use attach() to add
the data frame to the search list. In this case, names in the workspace
take precedence over column names in the attached data frame – not
usually what is wanted if there are names in common.

Subsection 4.3.2 will discuss the attaching of packages and
image files.

2.4 Input of Data from a File

The function read.table() is designed for input from a rectangu-
lar file into a data frame. There are several variants on this function
— notably read.csv() and read.delim().

This use of datafile(), avoiding
use of the mouse to copy the file
and the associated need to navigate
the file system, is a convenience
for teaching purposes.

First use the function datafile() (DAAG) to copy from the
DAAG package and into the working directory a data file that will be
used for demonstration purposes.

Place the file in the working directory
NB: DAAG must be installed
library(DAAG) # Attach the DAAG package
datafile("travelbooks")

Data written to file: travelbooks.txt

an overview of r 23

Use dir() to check that the file is indeed in the working directory:

dir() # List files in working directory

The first two lines hold the column headings and first row, thus:

thickness width height weight volume type
Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide

. . .

Observe that column 1, which has the row names, has no name.
The following reads the file into an R data frame: Row 1 has column names.

Column 1 has row names.
Input the file to the data frame travelbooks
travelbooks <- read.table("travelbooks.txt",

header=TRUE, row.names=1)

The assignment places the data frame in the workspace, with the
name travelbooks. The first seven columns are numeric. The
character data in the final column is by default stored as a factor.

Data input – points to note:

- Alternatives to command line input include the R Commmander
menu and the RStudio menu. These make it easy to check that
data are being correctly entered.

- If the first row of input gives column names, specify
heading=TRUE. If the first row of input is the first row of data,
specify heading=FALSE.

- See help(read.table) for details of parameter settings that may
need changing to match the data format.

Section 7.1 discusses common
types of input errors.

- Character vectors that are included as columns in data frames
become, by default, factors.

Character vectors and factors can
often, but by no means always, be
treated as equivalent.

2.5 Sources of Help

Note also:
help.search()
apropos()
help.start()
RSiteSearch()

help() # Help for the help function
help(plot) # Show the help page for plot
?plot # Shorthand for help(plot)
example(plot) # Run examples from help(plot)
demo() # List available demonstrations
vignette() # Get information on vignettes

NB also browseVignettes()

This section enlarges on the very brief details in Subsection 1.2.3

24 data analysis, graphics, and visualisation using r

Access to help resources from a browser screen

Type help.start() to display a screen that gives a
browser interface to R’s help resources. Note especially O�cial R manuals include

An Introduction to R, a manual
on Writing R Extensions, and so
on.

Frequently Asked Questions and Packages. Under Packages, click
on base to get information on base R functions. Standard elemen-
tary statistics functions are likely to be found under stats, and base
graphics functions under graphics.

Also available, after clicking on a package name, is a link
User guides, package vignettes and other documentation. Click to
get details of any documentation that is additional to the help pages.

Searching for key words or strings

Use help.search() to look for functions that include a specific
word or part of word in their alias or title. For example, to look for a
function for bar plots, try

help.search("bar")
??bar # Shorthand: help.search("bar")
??graphics::bar # Search graphics package only

This draws attention to the function barplot(). Type in
help(barplot) to see the help page, and/or example(barplot)
to run the examples.

Functions for operating on character strings are likely to have By default, all installed packages
are searched. Limiting the search,
here to package="base", will
often give more manageable and
useful output.

“str” or “char” in their name. Try

help.search("str", package="base")
help.search("char", package="base")

The function RSiteSearch() searches web-based resources,
including R mailing lists, for the text that is given as argument.

Examples that are included on help pages

All functions have help pages. Most help pages include examples, To work through the code for an
example, look on the screen for
the code that was used, and copy
or type it following the command
line prompt. Or get the code from
the help page.

which can be run using the function example(). Be warned that,
even for relatively simple functions, some of the examples may
illustrate non-trivial technical detail.

Vignettes

Vignettes are created from a Mark-
down or HTML or LaTeX source
document in which R code is em-
bedded, surrounded by markup
that controls what is to be done
with the code and with any output
generated. See Chapter 3.

Many packages have vignettes; these are typically pdf or
(with version geq 3.0.0 of R) HTML files that give informa-
tion on the package or on specific aspects of the package.
To get details of vignettes that are available for one or other
package, call browseVignettes() with the package name
(in character string form) as argument. Thus, to get details

an overview of r 25

of the vignettes that are available for the knitr package, enter
browseVignettes(package="knitr").

The browser window that appears will list the vignettes, with the
option to click on links that, in most cases, o↵er a choice of one of
PDF and HTML, source, and R code.

Searching for Packages

A good first place to look, for information on packages that realte to
one or other area of knowledge, is the R Task Views web page, at:
http://cran.r-project.org/web/views/. See also the website
http://crantastic.org/, where you can follow details on what
packages are popular, and what users think of them.

2.6 Summary and Exercises

2.6.1 Summary

- Useful help functions are help() (for getting information on a NB also: Use apropos() to search
for functions that include a stated
text string as part of their name.

known function) and help.search() (for searching for a word
that is used in the header for the help file).

- The function help.start(), starts a browser window from
which R help information can be accessed.

- Use read.table(), or an alias such as read.csv(), to input
rectangular files. As an alternative, consider use of the RStudio
GUI or the R Commander GUI.

- Data frames collect together under one name columns that all
have the same length. Columns of a data frame can be any mix of,
among other possibilities: logical, numeric, character, or factor.

- The function with() attaches a data frame temporarily, for the Use with() in preference to the
attach() / detach() combination.duration of the call to with().

- For simple forms of scatterplot, use plot() and associated func-
tions, or perhaps the lattice function xyplot().

2.6.2 Exercises

1. Use the function datafile() (DAAG or DAAG), with the argu-
ment file="bestTimes", to place the file bestTimes.txt into the
working directory.1

1 Alternatively, copy it from
the web page http://www.
maths.anu.edu.au/~johnm/
datasets/text/ and place it in
the working directory.(a) Examine the file. (Include the path if the file is not in the work-

ing directory.)
Input from file that is in working directory
datafile("bestTimes")
file.show("bestTimes.txt")
bestTimes <- read.table("bestTimes.txt")

26 data analysis, graphics, and visualisation using r

(b) The bestTimes file has separate columns that show hours,
minutes and seconds. Use the following to add the new column
Time, then omitting the individual columns as redundant
bestTimes$Time <- with(bestTimes ,

h*60 + min + sec/60)
Time in minutes

names(bestTimes)[2:4] # Check column names

[1] "h" "min" "sec"

bestTimes <- bestTimes[, -(2:4)]
omit columns 2:4

(c) Here are alternative ways to plot the data
plot(Time ~ Distance , data=bestTimes)
Now use a log scale
plot(log(Time) ~ log(Distance), data=bestTimes)
plot(Time ~ Distance , data=bestTimes , log="xy")

(d) Now save the data into an image file in the working directory
save(bestTimes , file="bestTimes.RData")

For further explanation of the function save(), see the next
chapter.

2. Re-enter the data frame travelbooks.2 Add a column that has 2 If necessary, refer back to Section
2.3 for details.the density (weight/volume) of each book.

3. The functions summary() and str() both give summary informa-
tion on the columns of a data frames Comment on the di↵erences
in the information provided, when applied to the following data
frames from the DAAG package:

(a) nihills;
(b) tomato.

4. Examine the results from entering:
(a) ?minimum
(b) ??minimum
(c) ??base::minimum
(d) ??base::min Note that base is R’s base pack-

age, which has functions that are
regarded as basic for all use of R.

For finding a function to calculate the minimum of a numeric
vector, which of the above gives the most useful information?

5. For each of the following tasks, applied to a numeric vector (nu-
meric column object), find a suitable function. Test each of the
functions that you find on the vector volume in Section 2.2:

(a) Reverse the order of the elements in a column object;
(b) Calculate length, mean, median, minimum maximum, range;
(c) Find the di↵erences between successive values.

3
Enhancing the R Experience – RStudio

The screenshots here are for ver-
sion 0.98.501 of RStudio.The url for RStudio is http://www.rstudio.com/. Click on the

icon for the downloaded installation file to install it. An RStudio
icon will appear. Click on the icon to start RStudio. RStudio should
find any installed version of R, and if necessary start R. Figure 3.1
shows an RStudio display, immediately after starting up and enter-
ing, very unimaginatively, 1+1.

Figure 3.1: Here is shown the
RStudio interface, after starting up
and entering 1+1.

28 data analysis, graphics, and visualisation using r

Techncally, RStudio o↵ers an Interactive Development Environ- Extensive and careful RStudio
documentation can be accessed,
assuming an internet connection,
from the Help drop-down menu.
The notes included here are de-
signed to draw attention to some
of the more important RStudio
abilities and features.

ment. It provides, from a graphical user interface, a range of abilities
that are helpful for organizing and managing work with R. Helpful
features of RStudio include:

• The organisation of work into projects.

• The recording of files that have been accessed from RStudio, of
help pages accessed, and of plots. The record of files is maintained
from one session of a project to the next.

• By default, a miniature is displayed of any graph that is plotted. A
single click expands the miniature to a full graphics window.

• The editing, maintenance and display of code files.

• Abilities that assist reproducible reporting. Markup text sur- Alternative available types of
markup are R Markdown or R
HTML or Sweave with LaTeX.

rounds R code that is incorporated into a document, with option
settings used to control the inclusion of code and/or computer out-
put in the final document. Output may include tables and graphs.

• Abilities that help in the creation of packages.

3.1 The RStudio file menu

Figure 3.2: The RStudio File
drop-down menu. The New File
submenu has been further ex-
panded.

enhancing the r experience – rstudio 29

For now, the RStudio drop-down menus that are of most im-
mediate importance are File and Help. Here (Figure 3.2) is the File
menu, with the New File submenu also shown.

Here, note the possibility of opening a new R script file, and
entering code into that file. Or, to open an existing R code file, click
on the Open File... submenu.

The key combination <CTRL><ENTER> can be used to send Here, <CTRL> is the control key
and <ENTER> is the Enter key.code to the command line. Code that has been selected will be sent

to the command line. Or if no code has been selected, the line on
which the cursor is placed will be sent to the command line.

3.1.1 Compile a code notebook

Figure 3.3 shows a script file in the upper left panel. The code has
been sent to the command line, so that it also appears in the code
history panel on the upper right.

Figure 3.3: Code from the script
window has been sent to the com-
mand line.

In Figure 3.3, take particular note of the icon on which you can
click to create an R notebook. Upon clicking this icon, the system
will ask for a name for the file. It will then create an HTML file
that has, along with the code and comment, the compluter output.
For the code that is shown, the file will include the output from

30 data analysis, graphics, and visualisation using r

summary(cars) and the graph from plot(cars). An alternative to
clicking on the icon is to click on the File drop-down menu, and then
on Compile Notebook... .

3.2 Abilities for reproducible reporting

There are several di↵erent types of document where markup code
can be used to control how text and other document features will
appear after they have been processed for printing. Perhaps the
simplest of these languages is Markdown. With the ability added to
include R code and ouput in the final document, RStudio gives it the
name R Markdown.

3.2.1 R Markdown

Click on File | New File | R Markdown to display a simple skeleton
R Markdown document. Here is the text that starts the skeleton
document, demonstrating simple text formatting: The e↵ect of the line of ’=’ sym-

bols is that after processing, ’Title’
will appear as a title, in large bold
type. The e↵ect of the two sets of
’**’ symbols in ’**Help**’, is that
’Help’ will be printed in bold.

Title
==

This is an R Markdown document. Markdown is a
simple formatting syntax for authoring web pages
(click the **Help** toolbar button for more
details on using R Markdown).

Ordinarily, one would edit out the text and R code and replace
it with one’s own text and R code chunks. For present purposes,
the file can be used as it stands. Or the user can add further text, or
modify the code, or add further code chunks. Click the Knit HTML
button to start the process of generating the HTML file. You will be
asked to enter a name for the file. An HTML file will be generated
and displayed in a browser.

What is R Markdown?

R Markdown, as implemented in RStudio, extends standard Mark-
down to allow the inclusion of markup that embeds R code. Included
with the markup are instructions on what to do with R code and/or
any output, including tables and graphs. Should code be executed,
should it be echoed, and what output should appear in the final docu-
ment?

Here is an example of code with surrounding markup,
ready for insertion into an R Markdown document:

enhancing the r experience – rstudio 31

```{r plotgph, fig.width=7, fig.height=6,
out.width="600px"}

plot(cars)
```

Giving the code chunk a name, here plotgph, is optional. The Other settings include:
echo=FALSE (do not show code), &
eval=FALSE (do not evaluate).

fig.width and fig.height settings control the size of the output
plot, before it is scaled to fit within the available line width. The
out.width setting controls the width in the final HTML document.

R users are strongly encouraged, unless they are currently work- The knitr function pandoc() can
be used to convert R Markdown
documents into other formats,
including Microsoft Word and
LaTeX.

ing with Sweave or an equivalent, to use R Markdown for docu-
menting any work that is more than trivial. Markdown uses a very
simple type of document formatting, which novices should be able
to master very quickly for their own use. Those who have the skills
needed to work with more sophisticated markdown languages may
still, for some types of work, find benefit in the simplicity and speed
of working with R markdown.

Note also that HTML markup can be included in R Markdown
documents. This can be useful, e.g., for including image files. Thus,
use the following code to include the image file pic.png:

The image position can if necessary be adjusted thus:

<IMG SRC="pic.png" alt="Sorry, cannot display" STYLE="position:absolute;
TOP:-25px; LEFT:40px; WIDTH:800px; HEIGHT:500px"/>

R Presentation

Note the R Presentation. variant of R Markdown. Click os follows to
display a simple skeleton R Presentation document:

File | New File | R Presentation

An R Presentation document is a special type of R Markdown docu-
ment that is formatted to provide slides that can be displayed using a
browser.

Click on Knit HTML to process the document, either just as it
stands or after replacing the sample text and code with one’s own
text and code.

3.2.2 ⇤Other markup types – HTML, LaTeX, . . .

R HTML

Click on File | New File | R HTML to display an HTML document
that has embedded R code:

32 data analysis, graphics, and visualisation using r

<!--begin.rcode fig.width=7, fig.height=6, out.width="600px"
plot(cars)
end.rcode-->

Again, the document that appears can be processed just as it
stands – click on Knit HTML.

R Sweave:

Click on File | New File | R Sweave to display a template for a La-
TeX file. The web page http://maths-people.anu.edu.au/
~johnm/r-book/knitr/ has files that demonstrate the use of knitr
Sweave type markup.

reStructuredText (reST)

This is an extended and accordingly more complicated variant of
R Markdown. For reST conventions, see http://docutils.
sourceforge.net/rst.html.

3.2.3 RStudio documentation – markup and other

Very extensive documentation for RStudio is provided online.
Click on Help | RStudio Docs to go to the relevant web page. For
R Markdown and R Presentation, note the documentation files for
Using R Markdown. LATeX users should note the Sweave and
knitr documentation files.

3.2.4 A strategy for RStudio project management

RStudio is well designed to assist good project management prac-
tices, using a strategy similar to the following:

For each new project, set up a new project in its own working
directory.

For each project, maintain one or more script files that holds your
code. Script files can be compiled into "notebooks" for purposes
of keeping a paper record.

Script files are readily expanded into R Markdown documents – a
simple form of "reproducible reporting" document. Such files are
readily expanded into a draft for a paper.

As noted above, the knitr function pandoc() can be used to convert
R Markdown documents into other formats, including Microsoft
Word and LaTeX. The quality of the conversion should be good
enough for a working draft.

4
The R Working Environment

Important R technical terms in-
clude object, workspace, working
directory, image file, package,
library, database and search list.

Object Objects can be data objects, function objects,
formula objects, expression objects, . . .
Use ls() to list contents of current workspace.

Workspace User’s “database”, where the user can make
additions or changes or deletions.

Working Default directory for reading or writing files.
directory Use a new working directories for a new project.

Image files Use to store R objects, e.g., workspace contents.
(The expected file extension is .RData or .rda)

Search list search() lists ‘databases’ that R will search.
library() adds packages to the search list

Use the relevant menu. or enter
save.image() on the command
line, to store or back up workspace
contents. During a long R session,
do frequent saves!

4.1 The Working Directory and the Workspace

Each R session has a working directory and a workspace. By default
R looks in the working directory for files, and saves files that are
output to it.

The workspace is, in R technical language, a “database” that The workspace is at the base of
a list of “databases”, called the
search list, that controls access
to packages, objects in other
directories, etc.

holds all the objects that are under direct user control. It holds ob-
jects that the user has created or input, or that were there at the start
of the session and not later removed.

The workspace changes as objects are added or deleted or
modified. Upon quitting from R (type q(), or use the relevant
menu item), users are asked whether they wish to save the current
workspace. If saved, it is stored in the file .RData, in the current
working directory. When an R session is next started in that working
directory, R looks for a workspace .RData, and if found reloads it.

34 data analysis, graphics, and visualisation using r

Setting the Working Directory

When a session is started by clicking on a Windows icon, the icon’s
Properties specify the Start In directory.1 Type getwd() to identify 1 When a Unix or Linux command

starts a session, the default is to
use the current directory.

the current working directory.
It is good practice to use a separate working directory, and as-

sociated workspace or workspaces, for each di↵erent project. On
Windows systems, copy an existing R icon, rename it as desired,
and change the Start In directory to the new working directory. The
working directory can be changed2 once a session has started, either 2 To make a complete change to

a new workspace, first save the
existing workspace, and type
rm(list=ls(all=TRUE) to empty
its contents. Then change the
working directory and load the
new workspace.

from the menu (if available) or from the command line. Changing
the working directory from within a session requires a clear head; it
is usually best to save one’s work, quit, and start a new session.

4.2 Work and Data Maintenance

4.2.1 Maintenance of R scripts

Note again RStudio’s abilities for
managing and keeping R scripts.

It is good practice to maintain a transcript from which work done
during the session, including data input and manipulation, can as
necessary be reproduced. Where calculations are quickly completed,
this can be re-executed when a new session is started, to get to the
point where the previous session left o↵.

4.2.2 Saving and retrieving R objects

Where computations are time-consuming, users will be advised to
save (back up) the current workspace image from time to time. The Or from a GUI interface. click on

the relevant menu item.command save.image()) saves everything in the workspace, by
default into a file named .RData in the working directory.

Before making major changes in the workspace, it may be sensi-
ble to archive the contents of the current workspace, e.g., into a file
with the name archive.RData. Specify

In place of archive, it might be
better to use, e.g.,the date when
the file was created, e.g.:

fnam <- "2014Feb1.RData"
save.image(file=fnam)save.image(file="archive.RData")

Before saving the workspace, consider use of rm() to remove
objects that are no longer required. Saving the workspace image will
then save everything that remains.

Use save() to save one or more named objects into an image The function save.image() calls
save(), in order to do its task.file. Use load() to reload the image file contents back into the

workspace. The following demonstrate the explicit use of save()
and load() commands: Subsection 4.3.2 will describe the

use of attach("books.RData")
as an alternative to
load("books.RData").

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)
save(volume, weight, file="books.RData")
Can save many objects in the same file

the r working environment 35

rm(volume, weight) # Remove volume and weight
load("books.RData") # Recover the saved objects

Two further possibilities are:

- Use dump() to save one or more objects in a text format. For
example:
volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)
dump(c("volume", "weight"), file="volwt.R")
rm(volume, weight)
source("volwt.R") # Retrieve volume & weight

- Use write.table() to write a data frame to a text file.

4.3 Packages and System Setup
For download or installation
of R or CRAN packages, use
for preference a local mirror. In
Australia http://cran.csiro.au is a
good choice. The mirror can be set
from the Windows or Mac GUI.
Alternatively (on any system),
type chooseCRANmirror() and
choose from the list that pops up.

Packages Packages are structured collections of R
functions and/or data and/or other objects.

Installation Most users will install R from CRAN binaries.
of packages Binaries include ’recommended’ packages.

Install other packages, as required,

library() Use to attach a package, e.g., library(DAAG)
Once attached, a package is added to the list of
“databases” that R searches for objects.

attach() Attach data frames or image files.

An R installation is structured as a library of packages.

• All installations should have the base packages (one of them is
called base). These provide the infrastructure for other packages.

• Binaries that are available from CRAN sites include, also, all the
recommended packages.

• Other packages can be installed as required, from a CRAN mirror
site, or from another repository.

To discover which packages are
attached, enter one of:

search()
sessionInfo()

Use sessionInfo() to get more
detailed information.

A number of packages are by default attached at the start of a
session. To attach other packages, use library() as required.

4.3.1 Installation of R packages

Section 1.3 described the installation of packages from the internet.
Note also the use of update.packages() or its equivalent from the
GUI menu. This identifies packages for which updates are available,
o↵ering the user the option to proceed with the update.

Arguments are a vector of package
names and a destination directory
destdir where the latest file
versions will be saved as .zip or
(MacOS X) .tar.gz files.

The function download.packages() allows the downloading
of packages for later installation. The menu, or install.packages(),

36 data analysis, graphics, and visualisation using r

can then be used to install the packages from the local directory. For
command line installation of packages that are in a local directory,
call install.packages() with pkgs giving the files (with path, if
necessary), and with the argument repos=NULL.

On Unix and Linux systems,
gzipped tar files can be installed
using the shell command:

R CMD INSTALL xx.tar.gz
(replace xx.tar.gz by the file
name.)

If for example the binary DAAG_1.11.zip has been downloaded
to D:\tmp\, it can be installed thus

install.packages(pkgs="D:/DAAG_1.11.zip",
repos=NULL)

On the R command line, be sure to replace the usual Windows back-
slashes by forward slashes.

Use .path.package() to get the path of a currently attached
package (by default for all attached packages).

4.3.2 The search path: library() and attach()

The R system maintains a search path (or list) that determines, at
any time in a session, where and in what order to look for objects.
The search path determinines the sequence of databases where R
looks for objects (functions or data) that may be required.

To get a snapshot of the search path, here taken after starting up Packages other than MASS were
attached at startup.and entering library(MASS), type:

If the process runs from RStudio,
"tools:rstudio" will appear in
place of "tools:RGUI".
Technically, these are “databases”.
Database 1, where R looks first,
is the user workspace, called
".GlobalEnv". If the object is not
in database 1, it looks in database
2, and so on.

search()

[1] ".GlobalEnv" "package:MASS"
[3] "tools:RGUI" "package:stats"
[5] "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets"
[9] "package:methods" "Autoloads"
[11] "package:base"

For more detailed information that has version numbers of any
packages that are additional to base packages, type:

sessionInfo()

Attachment of image files
Objects that are attached, whether
data frames or workspaces or
packages (using library()), are
added to the search list.

Section 2.3 described the attaching of a data frame (or list object).
It is also possible to attach an R image file, thus:

attach("books.RData")

The session then has access to objects in the file books.RData. Note Technically, the file becomes a
further “database” on the search
list, separate from the workspace.

that if the object is modified, the modified copy becomes part of the
workspace.

In order to detach such a database, proceed thus: Alternatively type search(), note
the number that gives the position
of the database on the search list,
and supply that number as an
argument to detach().

detach("file:books.RData")

the r working environment 37

4.3.3 ⇤Where does the R system keep its files?
Note that R expects (and dis-
plays) either a single forward slash
or double backslashes, where
Windows would show a single
backslash.

Type R.home() to see where the R system has stored its files.

R.home()

[1] "/Library/Frameworks/R.framework/Resources"

Notice that the path appears in abbreviated form. Type
normalizePath(R.home()) to get the more intelligible result
[1] "C:\\Program Files\\R\\R-2.15.2"
By default, the command system.file() gives the path to the

base package. For other packages, type, e.g.

system.file(package="DAAG")

[1] "/Library/Frameworks/R.framework/Versions/3.1/Resources/library/DAAG"

To get the path to a file viewtemps.RData that is stored with the
DAAG package in the misc subdirectory, type:

system.file("misc/viewtemps.RData", package="DAAG")

4.3.4 Option Settings
To display the setting for the line

width (in characters), type:

options()$width

[1] 54

Type help(options) to get full details of option settings. There are a
large number. To change to 60 the number of characters that will be
printed on the command line, before wrapping, do:

options(width=60)

The printed result of calculations will, unless the default is
changed (as has been done for most of the output in this document)
often show more significant digits of output than are useful. The
following demonstrates a global (until further notice) change: Use signif() to a↵ect one state-

ment only. For example
signif(sqrt(10),2)

NB also the function round().

sqrt(10)

[1] 3.162

opt <- options(digits=2) # Change until further notice,
or until end of session.

sqrt(10)

[1] 3.2

options(opt) # Return to earlier setting

Note that options(digits=2) expresses a wish, which R will not
always obey!

38 data analysis, graphics, and visualisation using r

Rounding will sometimes introduce small inconsistencies!

For example:

round(sqrt(85/7), 2)

[1] 3.48

round(c(sqrt(85/7)*9, 3.48*9), 2)

[1] 31.36 31.32

4.4 Summary and Exercises

4.4.1 Summary

Each R session has a working directory, where R will by default
look for files or store files that are external to R.

User-created R objects are added to the workspace, which is at the
base of a search list, i.e., a list of “databases” that R will search
when it looks for objects.

It is good practice to keep a separate workspace and associated
working directory for each major project. Use script files to keep a
record of work. Before making big changes to the

workspace, it may be wise to save
the existing workspace under a
name (e.g., Aug27.RData) di↵erent
from the default .RData.

At the end of a session an image of the workspace will typically
(respond “y” when asked) be saved into the working directory.
The search path determines the order of search for objects that are
accessed from the command line, or that a function requires and
are not in the functions environment.
Note also the use of attach() to give access to objects in an im-
age (.RData or .rda) file. Include the name of the file (optionally
preceded by a path) in quotes.
R has an extensive help system. Use it!

4.4.2 Exercises

1. Read the data that is stored in the file molclock1.txt into the data
frame molclock.3. Use the function save() to save the data into 3 With the package DAAG attached,

typing datafile("molclock1")
will store molclock1.txt in the
working directory

an R image file. Delete the data frame molclock, and check that
you can recover the data by loading the image file.

