
de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

de
ns
ity

va
rio
us

lin
e

m
et
ho
ds

fit

po
int
s

call

pa
ck
ag
e

ou
tp
ut

fem
ale

wo
rk
sp
ac
e

clic
k

se
ss
ion

co
m
m
an
d

gr
ap
h

no
rm
al

da
tava

ria
ble
s

ar
gu
m
en
t

file
s

inp
ut

inst
alla

tion ax
is

m
od
els

to
ta
l

gr
ap
hs

lay
er

se
ar
ch

cla
ss
es

lan
gu
ag
e

co
m
m
on

cu
rv
e

cr
ea
te
d

tru
e

ba
se

ch
an
ge

ca
lls

eq
uiv
ale
nt

lis
ts

vo
lum

e

log

plot
s

se
t

ggp
lot

cla
ss

reg
ress

ion

su
m
m
ar
y

use
rs

fu
nc
tio
n

re
su
lts

sy
ste
m
ad
de
d

er
ro
r

effe
cts

dir
ec
to
ry

co
lor

qq
q

leve
ls

pa
ge

sp
ec
ify

inc
lud
e

m
at
ric
es

app
ly

ve
cto
rs

te
rm
s

ve
rs
ion

sc
at
te
rp
lot

us
ing

file

row

er
ro
rs

no
tic
e

lin
es

tim
e

sim
ple

resi
dua

ls

co
nt
ro
l

se
ttin
gs

co
rre
lat
ionfitt
ed

sav
e

au
str
ali
an

an
aly
sis

m
et
ho
d

co
lum

n

we
igh
t

colu
mns

sc
ale
s

m
od
el

pa
ra
m
et
er
s

co
ef
fic
ien
ts

star
t

valu
e

ro
ws

sto
re
d

tex
t

us
ef
ul

lin
ea
r

de
ta
ils

pa
ne
ls

vari
able

alt
er
na
tiv
e

dis
ta
nc
e

m
ale

he
re

fal
se

fac
to
r

web

sta
nd
ar
d

se
cti
on

fig
ur
e

fra
m
e

au
str
ali
a

m
od
eli
ng

us
er

ob
jec
tlat
tic
e

lab
els va
lue
s

for
m

cr
ea
te

inf
or
m
at
ion

smo
oth

ye
ar

gr
ap
hic
s

pr
oc
es
s

fu
nc
tio
ns

fol
low

ingva
ria
nc
e

av
ail
ab
le

ex
am
ple

wi
nd
ow

ad
d

abil
ities

lef
t

co
de

ch
an
ge
s

ch
ec
k

us
ed

pa
th

sc
ale

de
fau
lt

ra
nd
om

m
ea
n

ob
jec
ts

pr
int

plot
ting

re
su
lt

ve
cto
r

re
qu
ire
d

da
ag

ex
am
ple
s

lev
el

se
rie
s

tim
es

ra
ng
e

str
uc
tu
re

cho
ice

dis
ta
nc
es

plo
t

no
te

lis
t

ele
m
en
ts

siz
e

typ
e

ba
sis

sta
tis
tic
al

nu
m
er
ic

cra
n

gu
i

m
at
rix

th
us

se
lec
tio
n

im
ag
e

pac
kag

es

na
m
e

pa
ra
m
et
er

fac
to
rs

dis
pla
y

an
do
r

ta
ble

he
lp

m
ak
es

vis
ua
lis
at
ion

fra
m
es esti

mat
es

ch
ar
ac
te
r

pa
ne
l

wi
nd
ow
s

len
gt
h

na
m
es

J H Maindonald

Learning R: Open Source
(Free) Statistics System

Copyright© 2015 J H Maindonald
Copies may be made for individual study and research. Other uses are prohibited.

September 2015

S has forever altered the way people analyze, visualize, and manipulate data... S is

an elegant, widely accepted, and enduring software system, with conceptual integrity,

thanks to the insight, taste, and effort of John Chambers.

From the citation for the 1998 Association for Computing Machinery Software award.

A big computer, a complex algorithm and a long time does not equal science.

Robert Gentleman

Contents

1 Preliminaries 11

2 An Overview of R 17

3 Enhancing the R Experience – RStudio 27

4 The R Working Environment 33

5 Practical Data Analysis – Examples 41

6 Data Objects and Functions 53

7 Data Input and Storage 77

8 Data Manipulation and Management 89

9 Graphics – Base, Lattice, Ggplot, . . . 103

10 Dynamic Interaction with Graphs 133

11 Regression with Linear Terms and Factors 137

4

12 A Miscellany of Models & Methods 167

13 Map Overlays and Spatial Modeling 191

14 Brief Notes on Text Mining 201

15 ⇤Leveraging R Language Abilities 205

A ⇤R System Configuration 213

B The R Commander Graphical User Interface 219

C Color Versions of Selected Graphs 221

Index of Functions 227

Introduction

CRAN is the primary R ‘repos-
itory’. Several additional pack-
age repositories supplement
what is available from CRAN.
Note in particular the Bio-
conductor repository (http:
//www.bioconductor.org),
with packages that cater for high
throughput genomic data.

Note the following web sites:
CRAN (Comprehensive R Archive Network):
http://cran.r-project.org

Obtain R and R packages from a CRAN mirror in the local region.
An Australian mirror (one of two) is: http://cran.csiro.au/
R homepage: http://www.r-project.org/
For various useful links click, from an R session that uses the GUI,
on the menu item R help. Then, on the browser window that pops
up, look under Resources

Commentary on R

General

R has extensive graphical abilities that are tightly linked with its R is free to download from a
CRAN site (see above). It runs
on all common types of system –
Windows, Mac, Unix and Linux.

analytic abilities. A new release of base R, on which everything else
is built appears every few months.

The major part of R’s abilities for statistical analysis and for
specialist graphics comes from the extensive enhancements that the
packages build on top of the base system. Its abilities are further
extended by an extensive range of interfaces into other systems1 1 These include Python, SQL

and other databases, parallel
computing using MPI, and Excel.

The main part of the R system – base R plus the recommended
packages – is under continuing development.

The R user base

Statistical and allied professionals who wish to develop or require The R Task Views web page
(http://cran.csiro.au/web/
views/) notes, for application
areas where R is widely used,
relevant packages.

access to cutting edge tools find R especially attractive. Additionally,
the R system is finding wide use among working scientists whose
data analysis requirements justify time spent gaining skills with R.
It is finding use, also, as an environment in which to embed applica-
tions whose primary focus is not data analysis or graphics.

6

Getting help

Note the web sites:
Wikipedia:
http://en.wikipedia.org/wiki/R_(programming_language)

R-downunder (low tra�c, friendly):
http://www.stat.auckland.ac.nz/mailman/listinfo/r-downunder

Stackoverflow
http://stackoverflow.com/questions/tagged/r.

The r-help mailing list serves, especially for users with a techni- Details of this and other lists
can be found at: http://www.
r-project.org. Be sure to
check the available documentation
before posting to r-help. List
archives can be searched for
previous questions and answers.

cal bent, as an informal support network. The R community expects
users to be serious about data analysis, to want more than a quick
cook-book fix, and to show a willingness to work at improving sta-
tistical knowledge.

Novices will find the low tra�c R-downunder list more friendly
and helpful than the main R mailing list. It has among its subscribers
some highly expert individuals.

The origins and future of R

The R system implements a dialect of the S language that was de- Open source systems that might
have been the basis for an R-like
project include Scilab, Octave,
Gauss, Python, Lisp-Stat and now
Julia. None of these can match the
range and depth of R’s packages,
with new packages building on
what is already there. Julia’s
potential has still to be tested.

veloped at AT&T Bell Laboratories for use as a general purpose
scientific language, but with especial strengths in data manipulation,
graphical presentation and statistical analysis. The commercial S-
PLUS implementation of S popularized the S language, giving it a
large user base of statistical professionals and skilled scientific users
into which R could tap.

Ross Ihaka and Robert Gentleman, both at that time from the
University of Auckland, developed the initial version of R, for use
in teaching. Since mid-1997, development has been overseen by a
‘core team’ of about a dozen people, drawn from di↵erent institu-
tions worldwide.

More than 6000 packages are now
available through the CRAN sites.

With the release of version 1.0 in early 2000, R became a serious
tool for professional use. Since that time, the pace of development
has been frenetic, with a new package appearing every week or two.

R code looks at first glance like C
code. The R interpreter is modeled
on the Scheme LISP dialect.

The R system uses a language model that dates from the 1980s.
Any change to a more modern language model is likely to be evo-
lutionary. Details of the underlying computer implementation will
inevitably change, perhaps at some point radically. Among more
recent language systems that have the potential to provide R-like Julia strongly outperforms R in

execution time comparisons that
appear on the Julia website.

functionality, Julia (http://julialang.org) seems particularly
interesting.

7

Interactive development environments – editors and more
Note also Emacs, with the ESS
(Emacs Speaks Statistics) addon.
is This is a feature-rich environ-
ment that can be daunting for
novices. It runs on Windows as
well as Linux/Unix and Mac. Note
also, for Windows, the Tinn-R
editor (http://www.sciviews.
org/Tinn-R/).

RStudio (http://rstudio.org/) is a very attractive run-time
environment for R, available for Windows, Mac and Linux/Unix
systems. This has extensive abilities for managing projects, and for
working with code. It is a highly recommended alternative to the
GUIs that come with the Windows and Mac OS X binaries that are
available from CRAN sites.

Pervasive unifying ideas

Ideas that pervade R include: Expressions can be:
evaluated (of course)
printed on a graph (come to
think of it, why not?)

There are many unifying compu-
tational features. Thus any ‘linear’
model (lm, lme, etc) can use spline
basis functions to fit spline terms.

Generic functions for common tasks – print, summary, plot, etc.
(the Object-oriented idea; do what that “class” of object requires)
Formulae, for specifying graphs, models and tables.
Language structures can be manipulated, just like any data object
(Manipulate formulae, expressions, function argument lists, . . .)
Lattice (trellis) and ggplot graphics o↵er innovative features that
are widely used in R packages. They aid the provision of graphs
that reflect important aspects of data structure.

Note however that these are not uniformly implemented through R.
This reflects the incremental manner in which R has developed.

Data set size

R’s evolving technical design has allowed it, taking advantage of An important step was the move,
with the release of version 1.2, to a
dynamic memory model.

advances in computing hardware, to steadily improve its handling of
large data sets. The flexibility of R’s memory model does however
have a cost2 for some large computations, relative to systems that 2 The di↵erence in cost may be

small or non-existent for systems
that have a 64-bit address space.

process data from file to file.

Good planning, informed analysis and reliable software

While the R system is unique in the extent of close scrutiny that it Take particular care with newer or
little-used abilities in contributed
packages. These may not have
been much tested, unless by their
developers. The greatest risks arise
from inadequate understanding of
the statistical issues.

receives from highly expert users, the same warnings apply as to any
statistical system. The base system and the recommended packages
get unusually careful scrutiny.

The scientific context, has crucial implications for the experi-
ments that it is useful to do, and for the analyses that are meaningful.
Available statistical methodology, and statistical and computing soft-
ware and hardware, bring their own constraints and opportunities.

Statistics of data collection encompasses statistical experimental The same general issues arise in
field, industrial, medical, biolog-
ical and laboratory experimenta-
tion. The aim is, always, is to get
maximum value from resources
used.

design, sampling design, and more besides. Planning will be most
e↵ective if based on sound knowledge of the materials and proce-
dures available to experimenters.

8

Once the data have been collected, the challenges are then those
of data analysis and of interpretation and presentation of results. For
this, software that is of high quality must be complemented with the
critical resources of well-trained and well-informed minds.

Documentation and Learning Aids

R podcasts: See for example http://www.r-podcast.org/

O�cial Documentation: Users who are working through these
notes on their own should have available for reference the document
“An Introduction to R”, written by the R Development Core Team.
To download an up-to-date copy, go to CRAN.

Web-based Documentation: Go to http://www.r-project.org Also http://wiki.r-project.
org/rwiki/doku.phpand look under Documentation. There are further useful links under

Other.

The R Journal (formerly R News): Successive issues are a mine of
useful information. These can be copied down from a CRAN site.

Books: See http://www.R-project.org/doc/bib/R.bib
for a list of R-related books that is updated regularly. Here, note
especially:
Maindonald, J. H. & Braun, J. H. 2010. Data Analysis & Graphics
Using R. An Example-Based Approach. 3rd edn, Cambridge Univer-
sity Press, Cambridge, UK, 2010.
http://www.maths.anu.edu.au/~johnm/r-book.html

9

Notes for Readers of this Text

Asterisked Sections or Subsections

Asterisks are used to identify material that is more technical or spe-
cialized, and that might be omitted at a first reading.

The DAAGviz package
Note that DAAGviz is not available
on CRAN. It collects scripts and
datasets together in a way that may
be useful to course participants.
Those materials are also available
separately.

This package is an optional companion to these notes. To down-
load installation files (Windows, Mac or Linux) go to the web page
https://www.acspri.org.au/springprogram2015, navi-
gate to the website for this course, and log in with your ACSPRI
user name and password. A link will appear at the bottom of the
page, under Files for this course. Alternatively, go the web address
https://www.acspri.org.au/node/1566 and log in.

Assuming that the DAAGviz pack-
age has been installed, it can be
attached thus:

library(DAAGviz)
Once attached, this package gives access to:

More succinctly, use the function
getScript():
Place Ch 5 script in
working directory
getScript(5)

- Scripts that include all the code. To access these scripts do, e.g.

Check available scripts
dir(system.file('scripts', package='DAAGviz'))
Show chapter 5 script
script5 <- system.file('scripts/5examples-code.R',

package='DAAGviz')
file.show(script5)

More succinctly, use the function
sourceFigFuns():
Load Ch 5 functions
into workspace
sourceFigFuns(5)

- Source files (also scripts) for functions that can be used to repro-
duce the graphs. These are available for Chapters 5 to 15 only.
To load the Chapter 5 functions into the workspace, use the com-
mand:

path2figs5 <- system.file('doc/figs5.R',
package='DAAGviz')

source(path2figs5)

- The datasets bronchit, eyeAmp, and Crimean, which feature
later in these notes.

At courses where these notes are used, the script files, the function
source files, and some data files, will be provided on a memory stick.

10

Alternative sources for some datasets
At courses where these notes are
used, these will be provided on a
memory stick.

The web page http://maths-people.anu.edu.au/~johnm/
may in a few cases be a convenient source for datasets that are re-
ferred to in this text:

- Look in http://maths-people.anu.edu.au/~johnm/r/rda
for various image (.RData) files.3 Use the function load() to 3 Image files hold copies of one or

more R objects, in a format that
facilitates rapid access from R.

bring any of these into R.
- Look in http://maths-people.anu.edu.au/~johnm/
datasets/text for the files bestTimes.txt, molclock.txt, and
other such text files.

= Look in http://maths-people.anu.edu.au/~johnm/
datasets/csv for several .csv files.

1
Preliminaries

1.1 Installation of R

Click as indicated in the successive panels to download R for Win-
dows from the web page http://cran.csiro.au:

Figure 1.1: This shows a se-
quence of clicks that will down-
load the R installation file from
cran.csiro.edu. At the time
of writing, the website will of-
fer R-3.2.2 rather than R-2.13.0.
The site cran.csiro.edu is
one of two Australian CRAN
(Comprehensive R Archive Net-
work) sites. The other is: http:
//cran.ms.unimelb.edu.au/

Figure 1.2: On 64-bit Windows
systems the default installation
process creates two icons, one
for 32-bit R and one for 64-bit R.
Additional icons can be created as
desired.

Click on the downloaded file to start installation. Most users will
want to accept the defaults. The e↵ect is to install the R base system,
plus recommended packages, with a standard “o↵-the-shelf” setup.
Windows users will find that one or more desktop R icons have been
created as part of the installation process.

12 learning r: open source (free) statistics system

Depending on the intended tasks, it may be necessary to install
further packages. Section 1.3 describes alternative ways to install
packages.

An optional additional step is to install RStudio. RStudio has Clicking on the RStudio icon to
start a session will at the same
time start R. RStudio has its own
command line interface, where
users can type R commands.

abilities that help in managing workflow, in navigating between
projects, and in accessing R system information. See Chapter 3.

1.2 First steps
Readers who have RStudio run-
ning can type their commands in
the RStudio command line panel.

Click on an R icon to start an R session. This opens an R command
window, prints information about the installed version of R, and
gives a command prompt.

Figure 1.3: Windows command
window at startup. This shows the
default MDI (multiple display)
interface. For running R from the
R Commander, the alternative SDI
(single display) interface may be
required, or may be preferable.
The Mac GUI has a SDI type
interface; there is no other option.

The > prompt that appears on the final line is an invitation to start
typing R commands:

Thus, type 2+5 and press the Enter key. The display shows:

> 2+5

[1] 7

The result is 7. The output is immediately followed by the >

The [1] says, a little strangely,
“first requested element will
follow”. Here, there is just one
element.prompt, indicating that R is ready for another command.

Try also:

Typing result on the command
line has printed the value 7.

> result <- 2+5
> result

[1] 7

preliminaries 13

Technically, the workspace is one
of a number of databases where
objects may be stored.

The object result is stored in the workspace. The workspace
holds objects that the user has created or input, or that were there at
the start of the session and not later removed

Type ls() to list the objects in the workspace, thus:

> ls()

[1] "result"
The object result was added to a
previously empty workspace.

Figure 1.4 shows, with annotations, the screen as it appears
following the above sequence of commands.

Figure 1.4: This shows the se-
quence of commands that are
demonstrated in the text, as they
appear on the screen, with added
annotation.

An R session is structured as a hierarchy of databases. Functions
that were used or referred to above — such as ls() – are from a
database or package that is part of the R system. Objects that the
user has created or input, or that were there at the start of the session
and not later removed, are stored in the workspace.

Technically, the R system refers to
the workspace as .Globalenv.

The workspace is the user’s database for the duration of a ses-
sion. It is a volatile database, i.e., it will disappear if not explicitly
saved prior to or at the end of the session.

1.2.1 Points to note

Printing Typing the name of an object (and pressing Enter)
displays (prints) its contents.

Quitting To quit, type q()), (not q)

Case matters volume is di↵erent from Volume

Typing the name of an object (and pressing the Enter key) causes
the printing of its contents, as above when result was typed. This
applies to functions also. Thus type q() in order to quit, not q.1 One 1 Typing q lists the code for the

function.types q() because this causes the function q to spring into action.

14 learning r: open source (free) statistics system

Upon typing q() and pressing the Enter key, a message will
ask whether to save the workspace image.2 Clicking Yes (usually 2 Such an image allows reconstruc-

tion of the workspace of which it
forms an image!

the safest option) will save the objects that remain in the workspace
– any that were there at the start of the session (unless removed or
overwritten) and any that have been added since. The workspace that
has been thus saved is automatically reloaded when an R session is
restarted in the working directory to which it was saved.

Figure 1.5: Note the use of the
special characters: ; to separate
multiple commands on the one
line, + (generated by the system)
to denote continuation from pre-
vious line, and # to introduce
comment that extends to end of
line.

Note that for names of R objects or commands, case is signifi-
cant. Thus Myr (millions of years, perhaps) di↵ers from myr. For file
names,3 the operating system conventions apply.

3 Under Windows case is ignored.
For Unix case does distinguish.
(Mac OS X Unix is a partial ex-
ception.)Commands may, as demonstrated in Figure 1.5, continue over

more than one line. By default, the continuation prompt is +. As
with the > prompt, this is generated by R, and appears on the left
margin. Including it when code is entered will give an error!

Here is a command that extends
over two lines:
> result <-
+ 2+5

1.2.2 Some further comments on functions in R
R is a functional language. When-
ever a command is entered, this
causes a function to run. Addition
is implemented as a function, as
are other such operations.

Common functions that users should quickly get to know include
print(), plot() and help(). Above, we noted the function q(), used
to quit from an R session.

Consider the function print(). One can explicitly invoke it to
print the number 2 thus:

print(2)

[1] 2

Objects on which the function will act are placed inside the round
brackets. Such quantities are known as arguments to the function.

An alternative to typing print(2) is to type 2 on the command
line. The function print() is then invoked implicitly:

2

[1] 2

preliminaries 15

1.2.3 Help information
Included on the information that appeared on the screen when R
started up, and shown in Figures 1.4 and 1.5, were brief details on
how to access R’s built-in help information:

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.

The shorthand ?plot is an alternative to typing help(plot).
Replace ‘?’ by ‘??’ for a wider search. This invokes the func-

tion help.search(), which looks for a partial match in the title or
concept fields as well as in the name.

Examples of use of ??:
??Arithmetic
??base::Arith
Search base R onlyR has extensive built-in help information. Be sure to check it

out as necessary. Section 2.5 has further details on what is available,
beyond what you can get by using the help function.

1.2.4 The working directory

Associated with each session is a working directory where R will by Under Windows, if R is started by
clicking on an R icon, the working
directory is that specified in the
Start in directory specified in the
icon Preferences. Subsection A.1
has details on how to specify the
Start in directory for an icon.

default look for files. In particular:

• If a command inputs data from a file into the workspace and the
path is not specified, this is where R will look for the file.

• If a command outputs results to a file, and the path is not specified,
this is where R will place the file.

• Upon quitting a session, the “o↵-the-shelf” setup will ask whether
to save an “image” of the session. Answering “Yes” has the result When R finds a .RData file in the

working directory at startup, that
file will, in an o↵-the-shelf setup,
be used to restore the workspace.

that the contents of the workspace are saved into a file, in the
working directory, that has the name .RData.

For regular day to day use of R, it is advisable to have a sep-
arate working directory for each di↵erent project. RStudio users
will be asked to specify a working directory when setting up a new
“project”.

1.3 Installation of R Packages

A fresh install of R packages is
typically required when moving
to a new major release (e.g., from
a 3.0 series release to a 3.1 series
release).

Installation of R Packages (Windows &MacOS X)
Start R (e.g., click on the R icon). Then use the relevant menu item
to install packages via an internet connection. This is (usually) easier
than downloading, then installing.

For command line instructions to install packages, see below.

The functions that R provides are organised into packages. The
packages that need to be installed, additional to those that come with

16 learning r: open source (free) statistics system

the initial ready-to-run system, will vary depending on individual
user requirements. The GUIs — MacOS X, Windows or Linux —
make package installation relatively straightforward.

Installation of packages from the command line

To install the R Commander from the command line, enter: By default, a CRAN mirror is
searched for the required package.
Refer back to the introduction
for brief comments on CRAN.
Subsection 4.3.1 gives details
of alternatives to CRAN. Note
in particular the Bioconductor
repository.

install.packages("Rcmdr", dependencies=TRUE)

The R Commander has a number of dependencies, i.e., packages
that need to be installed for the R Commander to run. Graphics
packages that are dependencies include rgl (3D dynamic graphics),
scatterplot3d, vcd (visualization of categorical data) and colorspace
(generation of color palettes, etc).

Installation of Bioconductor packages

For installation of Bioconduc-
tor packages from the GUI, see
Subsection A.4.

To set your system up for use of Bioconductor packages, type:

source("http://bioconductor.org/biocLite.R")
biocLite()

Additional packages can be installed thus:

biocLite(c("GenomicFeatures", "AnnotationDbi"))

See further http://www.bioconductor.org/install/.

1.4 Summary

One use of R is as a calculator, to evaluate arithmetic expressions.
Calculations can be carried out in parallel, across all elements of a
vector at once.

The R Commander GUI can be helpful in getting quickly into use
of R for many standard purposes. It may, depending on require-
ments, be limiting for serious use of R.

Use q() to quit from an R session. To retain objects in the
workspace, accept the o↵er to save the workspace.

2
An Overview of R

Read c as “concatenate”, or per-
haps as “column”.

Lists are widely used in R. A data
frame is a special type of list, used
to collect together column objects
under one name.

Column Objects
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1)

height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4)

Data frame
A data frame is a list of column objects, all of the same length.

widheight <- data.frame(
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),
height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4)

)

Also: Arithmetic operations; simple plots; input of data.

2.1 Practice with R commands
The R language has the standard
abilities for evaluating arithmetic
and logical expressions. There are
numerous functions that extend
these basic arithmetic and logical
abilities.

Try the following

2+3 # Simple arithmetic

[1] 5

1:5 # The numbers 1, 2, 3, 4, 5

[1] 1 2 3 4 5

mean(1:5) # Average of 1, 2, 3, 4, 5

[1] 3

sum(1:5) # Sum of 1, 2, 3, 4, 5

[1] 15

(8:10)^2 # 8^2 (8 to the power of 2), 9^2, 10^2

[1] 64 81 100

18 learning r: open source (free) statistics system

In addition to log(), note log2() and log10(): A change by a factor of 2 is a one
unit change on a log2 scale. A
change by a factor of 10 is a one
unit change on a log10 scale.

log2(c(0.5, 1, 2, 4, 8))

[1] -1 0 1 2 3

log10(c(0.1, 1, 10, 100, 1000))

[1] -1 0 1 2 3

It turns out, surprisingly often, that logarithmic scales are appro-
priate for one or other type of graph. Logarithmic scales focus on
relative change — by what factor has the value changed?

The following uses the relational operator >: Other relational operators are
< >= < <= == ! =

(1:5) > 2 # Returns FALSE FALSE TRUE TRUE TRUE

[1] FALSE FALSE TRUE TRUE TRUE

Demonstrations

Demonstrations can be highly helpful in learning to use R’s func-
tions. The following are some of demonstrations that are available
for graphics functions:

Images and perspective plots:

demo(image)
demo(persp)

demo(graphics) # Type <Enter> for each new graph
library(lattice)
demo(lattice)

For the following, the vcd package
must be installed:

library(vcd)
demo(mosaic)

Especially for demo(lattice), it pays to stretch the graphics
window to cover a substantial part of the screen. Place the cursor on
the lower right corner of the graphics window, hold down the left
mouse button, and pull.

The following lists available demonstrations:

List demonstrations in attached packages
demo()
List demonstrations in all installed packages
demo(package = .packages(all.available = TRUE))

2.2 A Short R Session

We will work with the data set shown in Table 2.1:

Entry of columns of data from the command line

The following enters data as numeric vectors: Read c as “concatenate”, or per-
haps as “column”. It joins ele-
ments together into a vector, here
numeric vectors.

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)

an overview of r 19

thickness width height weight volume type
Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide

Moon’s Australia handbook 3.90 13.10 18.70 840 955 Guide
Explore Australia Road Atlas 1.20 20.00 27.60 550 662 Roadmaps

Australian Motoring Guide 2.00 21.10 28.50 1360 1203 Roadmaps
Penguin Touring Atlas 0.60 25.80 36.00 640 557 Roadmaps
Canberra - The Guide 1.50 13.10 23.40 420 460 Guide

Table 2.1: Weights and volumes,
for six Australian travel books.

Now store details of the books in the character vector
description: The end result is that objects

volume, weight and description
are stored in the workspace.description <- c("Aird's Guide to Sydney",

"Moon's Australia handbook",
"Explore Australia Road Atlas",
"Australian Motoring Guide",
"Penguin Touring Atlas", "Canberra - The Guide")

Listing the workspace contents

Use ls() to examine the current contents of the workspace.

ls()

[1] "description" "volume" "weight"

Use the argument pattern to specify a search pattern: Note also:
ls(pattern="^des")
begins with ' des '

ls(pattern="ion$")
ends with ' ion '

ls(pattern="ume") # Names that include "ume"

[1] "volume"

Operations with numeric vectors

Here are the values of volume

volume

[1] 351 955 662 1203 557 460

To extract the final element of volume, do:

volume[6]

[1] 460

For the ratio of weight to volume, i.e., the density, we can do:

weight/volume

[1] 0.7123 0.8796 0.8308 1.1305 1.1490 0.9130

20 learning r: open source (free) statistics system

A note on functions

For the weight/volume calculation, two decimal places in the out-
put is more than adequate accuracy. The following uses the function
round() to round to two decimal places:

More simply, type:

round(weight/volume, 2)

Providing the arguments are in the
defined order, they can as here be
omitted from the function call.

round(x=weight/volume, digits=2)

[1] 0.71 0.88 0.83 1.13 1.15 0.91

Many functions, among them
plot() that is used for Figure 2.1,
accept unnamed as well as named
arguments. The symbol ‘...’ is
used to denote the possibility of
unnamed arguments.

Functions take arguments — these supply data on which they
operate. For round() the arguments are ‘x’ which is the quantity
that is to be rounded, and ‘digits’ which is the number of decimal
places that should remain after rounding.

sIf a ‘...’ appears, indicating that
there can be unnamed arguments,
check the help page for details.

Use the function args() to get details of the named arguments:

args(round)

function (x, digits = 0)
NULL

A simple plot

Figure 2.1 plots weight against volume, for the six Australian travel
books. Note the use of the graphics formula weight ~ volume
to specify the x� and y�variables. It takes a similar from to the
“formulae” that are used in specifying models, and in the functions
xtabs() and unstack().

●

●

●

●

●

●

400 600 800 1000 1200

40
0

60
0

80
0

12
00

volume

we
ig
ht

Figure 2.1: Weight versus volume,
for six Australian travel books.

Code for Figure 2.1 is:

Code
plot(weight ~ volume, pch=16, cex=1.5)
pch=16: use solid blob as plot symbol
cex=1.5: point size is 1.5 times default

Alternative
plot(volume, weight, pch=16, cex=1.5)

The axes can be labeled:

plot(weight ~ volume, pch=16, cex=1.5,
xlab="Volume (cubic mm)", ylab="Weight (g)")

Interactive labeling of points (e.g., with species names) can be Use text() for non-interactive
labeling of points.done interactively, using identify():

identify(weight ~ volume, labels=description)

Then click the left mouse button above or below a point, or on the
left or right, depending on where you wish the label to appear. Re-
peat for as many points as required.

On most systems, the labeling can be terminated by clicking the
right mouse button. On the Windows GUI, an alternative is to click
on the word “Stop” that appears at the top left of the screen, just

an overview of r 21

under “Rgui” on the left of the blue panel header of the R window.
Then click on “Stop locator”.

Formatting and layout of plots

There are extensive abilities that may be used to control the format-
ting and layout of plots, and to add features such as special symbols,
fitted lines and curves, annotation (including mathematical annota-
tion), colors, . . .

2.3 Data frames – Grouping columns of data
Data frames are pervasive in R.
Most datasets that are included
with R packages are supplied as
data frames.

Data frames Store data that have a cases by columns layout.

Creating Enter from the command line (small datasets)
data frames Or: Use read.table() to input from a file.

Columns of travelbooks$weight or travelbooks[, 4]
data frames or travelbooks[, "weight"]

The following code groups the several columns of Table 2.1
together, under the name travelbooks. It is tidier to have matched
columns of data grouped together into a data frame, rather than
separate objects in the workspace.

The vectors weight, volume and
description were entered earlier,
and (unless subsequently removed)
can be copied directly into the data
frame.

Group columns together into a data frame
travelbooks <- data.frame(
thickness = c(1.3, 3.9, 1.2, 2, 0.6, 1.5),
width = c(11.3, 13.1, 20, 21.1, 25.8, 13.1),
height = c(23.9, 18.7, 27.6, 28.5, 36, 23.4),
weight = weight, # Use values entered earlier
volume = volume, # Use values entered earlier
type = c("Guide", "Guide", "Roadmaps", "Roadmaps",

"Roadmaps", "Guide"),
row.names = description

)
Remove objects that are not now needed.
rm(volume, weight, description)

It is a matter of convenience whether the description information is
used to label the rows, or alternatively placed in a column of the data
frame.

The storage of character data as factors
While in most contexts factors
and character vectors are inter-
changeable, there are important
exceptions.

Vectors of character, such as type, are by default stored in the
data frame as factors. In the data as stored, "Guide" is 1 and
"Roadmaps" is 2. Stored with the factor is an attribute table that
interprets 1 as "Guide" and 2 as "Roadmaps".

22 learning r: open source (free) statistics system

Accessing the columns of data frames

For a matrix or array, users
are restricted to the first and
second of these alternatives.
With a matrix travelmat
use, e.g., travelmat[,4] or
travelmat[,"weight"].

The following are alternative ways to extract the column weight
from the data frame:
travelbooks[, 4]
travelbooks[, "weight"]
travelbooks$weight
travelbooks[["weight"]] # Reference as a list.

There are several mechanisms that avoid repeated reference to
the name of the data frame. The following are alternative ways to
plot weight against volume:

1. Use the parameter data, where available, in the function call Most modeling functions and
many plotting functions accept a
data argument.

plot(weight ~ volume, data=travelbooks)

2. Use with(): Take columns from specified data frame
Take columns from the specified data frame
with(travelbooks , plot(weight ~ volume))

With both of these mechanisms, columns of the data frame are taken
in preference to any object of the same name that may happen to be
in the workspace.

Attachment of a data frame:

attach(travelbooks)
plot(weight ~ volume)
detach(travelbooks)
Detach when no longer
required.

A third option, usually best avoided, is to use attach() to add
the data frame to the search list. In this case, names in the workspace
take precedence over column names in the attached data frame – not
usually what is wanted if there are names in common.

Subsection 4.3.2 will discuss the attaching of packages and
image files.

2.4 Input of Data from a File

The function read.table() is designed for input from a rectangu-
lar file into a data frame. There are several variants on this function
— notably read.csv() and read.delim().

This use of datafile(), avoiding
use of the mouse to copy the file
and the associated need to navigate
the file system, is a convenience
for teaching purposes.

First use the function datafile() (DAAG) to copy from the
DAAG package and into the working directory a data file that will be
used for demonstration purposes.

Place the file in the working directory
NB: DAAG must be installed
library(DAAG) # Attach the DAAG package
datafile("travelbooks")

Data written to file: travelbooks.txt

Use dir() to check that the file is indeed in the working directory:

dir() # List files in working directory

an overview of r 23

The first two lines hold the column headings and first row, thus:

thickness width height weight volume type
Aird’s Guide to Sydney 1.30 11.30 23.90 250 351 Guide

. . .

Observe that column 1, which has the row names, has no name.
The following reads the file into an R data frame: Row 1 has column names.

Column 1 has row names.
Input the file to the data frame travelbooks
travelbooks <- read.table("travelbooks.txt",

header=TRUE, row.names=1)

The assignment places the data frame in the workspace, with the
name travelbooks. The first seven columns are numeric. The
character data in the final column is by default stored as a factor.

Data input – points to note:

- Alternatives to command line input include the R Commmander
menu and the RStudio menu. These make it easy to check that
data are being correctly entered.

- If the first row of input gives column names, specify
heading=TRUE. If the first row of input is the first row of data,
specify heading=FALSE.

- See help(read.table) for details of parameter settings that may
need changing to match the data format.

Section 7.1 discusses common
types of input errors.

- Character vectors that are included as columns in data frames
become, by default, factors.

Character vectors and factors can
often, but by no means always, be
treated as equivalent.

2.5 Sources of Help

Note also:
help.search()
apropos()
help.start()
RSiteSearch()

help() # Help for the help function
help(plot) # Show the help page for plot
?plot # Shorthand for help(plot)
example(plot) # Run examples from help(plot)
demo() # List available demonstrations
vignette() # Get information on vignettes

NB also browseVignettes()

This section enlarges on the very brief details in Subsection 1.2.3

Access to help resources from a browser screen

Type help.start() to display a screen that gives a
browser interface to R’s help resources. Note especially O�cial R manuals include

An Introduction to R, a manual
on Writing R Extensions, and so
on.

Frequently Asked Questions and Packages. Under Packages, click

24 learning r: open source (free) statistics system

on base to get information on base R functions. Standard elemen-
tary statistics functions are likely to be found under stats, and base
graphics functions under graphics.

Also available, after clicking on a package name, is a link
User guides, package vignettes and other documentation. Click to
get details of any documentation that is additional to the help pages.

Searching for key words or strings

Use help.search() to look for functions that include a specific
word or part of word in their alias or title. For example, to look for a
function for bar plots, try

help.search("bar")
??bar # Shorthand: help.search("bar")
??graphics::bar # Search graphics package only

This draws attention to the function barplot(). Type in
help(barplot) to see the help page, and/or example(barplot)
to run the examples.

Functions for operating on character strings are likely to have By default, all installed packages
are searched. Limiting the search,
here to package="base", will
often give more manageable and
useful output.

“str” or “char” in their name. Try

help.search("str", package="base")
help.search("char", package="base")

The function RSiteSearch() searches web-based resources,
including R mailing lists, for the text that is given as argument.

Examples that are included on help pages

All functions have help pages. Most help pages include examples, To work through the code for an
example, look on the screen for
the code that was used, and copy
or type it following the command
line prompt. Or get the code from
the help page.

which can be run using the function example(). Be warned that,
even for relatively simple functions, some of the examples may
illustrate non-trivial technical detail.

Vignettes

Vignettes are created from a Mark-
down or HTML or LaTeX source
document in which R code is em-
bedded, surrounded by markup
that controls what is to be done
with the code and with any output
generated. See Chapter 3.

Many packages have vignettes; these are typically pdf or
(with version geq 3.0.0 of R) HTML files that give informa-
tion on the package or on specific aspects of the package.
To get details of vignettes that are available for one or other
package, call browseVignettes() with the package name
(in character string form) as argument. Thus, to get details
of the vignettes that are available for the knitr package, enter
browseVignettes(package="knitr").

The browser window that appears will list the vignettes, with the
option to click on links that, in most cases, o↵er a choice of one of
PDF and HTML, source, and R code.

an overview of r 25

Searching for Packages

A good first place to look, for information on packages that relate to
one or other area of knowledge, is the R Task Views web page, at:
http://cran.r-project.org/web/views/. See also the website
http://crantastic.org/, which has details on what packages
are popular, and what users think of them.

2.6 Summary and Exercises

2.6.1 Summary

- Useful help functions are help() (for getting information on a NB also: Use apropos() to search
for functions that include a stated
text string as part of their name.

known function) and help.search() (for searching for a word
that is used in the header for the help file).

- The function help.start() starts a browser window from which
R help information can be accessed.

Aliases of read.table() include
read.csv() and read.delim()

- Use the GUI interface in RStudio or R Commander to input rect-
angular files. Or, use read.table() or one of its aliases.

- Data frames collect together under one name columns that all
have the same length. Columns of a data frame can be any mix of,
among other possibilities: logical, numeric, character, or factor.

- The function with() attaches a data frame temporarily, for the Use with() in preference to the
attach() / detach() combination.duration of the call to with().

- For simple forms of scatterplot, use plot() and associated func-
tions, or perhaps the lattice function xyplot().

2.6.2 Exercises

1. Copy the file bestTimes.txt or from a supplied memory stick
or from the web page http://maths-people.anu.edu.au/
~johnm/datasets/text/ and place it in the working directory.1

1 Alternatively, use the code:
library(DAAG)
datafile(“bestTimes”)

to place the file in the working
directory.(a) Examine the file, perhaps using the function file.show().

Read the file into the workspace, with the name bestTimes.

file.show("bestTimes.txt")
bestTimes <- read.table("bestTimes.txt")

(b) The bestTimes file has separate columns that show hours,
minutes and seconds. Use the following to add the new column
Time, then omitting the individual columns as redundant

Exercise 1b
bestTimes$Time <- with(bestTimes ,

h*60 + min + sec/60)
Time in minutes

names(bestTimes)[2:4] # Check column names

[1] "h" "min" "sec"

26 learning r: open source (free) statistics system

bestTimes <- bestTimes[, -(2:4)]
omit columns 2:4

(c) Here are alternative ways to plot the data

plot(Time ~ Distance , data=bestTimes)
Now use a log scale
plot(log(Time) ~ log(Distance), data=bestTimes)
plot(Time ~ Distance , data=bestTimes , log="xy")

(d) Now save the data into an image file in the working directory Subsection 4.2.2 discusses the use
of the function save().

save(bestTimes , file="bestTimes.RData")

2. Re-enter the data frame travelbooks.2 Add a column that has 2 If necessary, refer back to Section
2.3 for details.the density (weight/volume) of each book.

3. The functions summary() and str() both give summary informa-
tion on the columns of a data frames Comment on the di↵erences
in the information provided, when applied to the following data
frames from the DAAG package:

(a) nihills;

(b) tomato.

4. Examine the results from entering:

(a) ?minimum

(b) ??minimum

(c) ??base::minimum
The notation base::minimum
tells the help function to look in
R’s base package.(d) ??base::min

For finding a function to calculate the minimum of a numeric
vector, which of the above gives the most useful information?

5. For each of the following tasks, applied to a numeric vector (nu-
meric column object), find a suitable function. Test each of the
functions that you find on the vector volume in Section 2.2:

(a) Reverse the order of the elements in a column object;

(b) Calculate length, mean, median, minimum maximum, range;

(c) Find the di↵erences between successive values.

3
Enhancing the R Experience – RStudio

The screenshots here are for ver-
sion 0.98.501 of RStudio.The url for RStudio is http://www.rstudio.com/. Click on the

icon for the downloaded installation file to install it. An RStudio
icon will appear. Click on the icon to start RStudio. RStudio should
find any installed version of R, and if necessary start R. Figure 3.1
shows an RStudio display, immediately after starting up and enter-
ing, very unimaginatively, 1+1.

Figure 3.1: Here is shown the
RStudio interface, after starting up
and entering 1+1.

28 learning r: open source (free) statistics system

Techncally, RStudio o↵ers an Interactive Development Environ- Extensive and careful RStudio
documentation can be accessed,
assuming an internet connection,
from the Help drop-down menu.
The notes included here are de-
signed to draw attention to some
of the more important RStudio
abilities and features.

ment. It provides, from a graphical user interface, a range of abilities
that are helpful for organizing and managing work with R. Helpful
features of RStudio include:

• The organisation of work into projects.

• The recording of files that have been accessed from RStudio, of
help pages accessed, and of plots. The record of files is maintained
from one session of a project to the next.

• By default, a miniature is displayed of any graph that is plotted. A
single click expands the miniature to a full graphics window.

• The editing, maintenance and display of code files.

• Abilities that assist reproducible reporting. Markup text sur- Alternative available types of
markup are R Markdown or R
HTML or Sweave with LaTeX.

rounds R code that is incorporated into a document, with option
settings used to control the inclusion of code and/or computer out-
put in the final document. Output may include tables and graphs.

• Abilities that help in the creation of packages.

3.1 The RStudio file menu

Figure 3.2: The RStudio File
drop-down menu. The New File
submenu has been further ex-
panded.

enhancing the r experience – rstudio 29

For now, the RStudio drop-down menus that are of most im-
mediate importance are File and Help. Here (Figure 3.2) is the File
menu, with the New File submenu also shown.

Here, note the possibility of opening a new R script file, and
entering code into that file. Or, to open an existing R code file, click
on the Open File... submenu.

The key combination <CTRL><ENTER> can be used to send Here, <CTRL> is the control key
and <ENTER> is the Enter key.code to the command line. Code that has been selected will be sent

to the command line. Or if no code has been selected, the line on
which the cursor is placed will be sent to the command line.

3.1.1 Compile a code notebook

Figure 3.3 shows a script file in the upper left panel. The code has
been sent to the command line, so that it also appears in the code
history panel on the upper right.

Figure 3.3: Code from the script
window has been sent to the com-
mand line.

In Figure 3.3, take particular note of the icon on which you can
click to create an R notebook. Upon clicking this icon, the system
will ask for a name for the file. It will then create an HTML file that
has, along with the code and comment, the compluter output. An For the code that is shown, the

HTML file that results will include
the output from summary(cars)
and the graph from plot(cars).

alternative to clicking on the icon is to click on the File drop-down
menu, and then on Compile Notebook... .

30 learning r: open source (free) statistics system

3.2 Abilities for reproducible reporting

Markdown editors use simple markup conventions to control how
text and other document features will appear. For example:

Help or __Help__ will be rendered as Help

Help or _Help_ will be rendered as Help.

3.2.1 R Markdown
R Markdown, as available under
RStudio, is an enhanced version
of Markdown. It adds the ability
to include R code, surrounded by
markup that controls what code
and/or output will appear in the
final document.

R users are strongly encouraged
to use R Markdown, or another
such markup system that allows
embedded R code, for document-
ing any work that is more than
trivial. Those who are familiar
with more sophisticated mark-
down languages may still, for
some types of work, find bene-
fit in the simplicity and speed of
working with R markdown.

Click on File | New File | R Markdown.... Clicking on HTML (alter-
natives are PDF, Word), on Document (alternatives are Presentation,
Shiny, From Template) and then on OK displays a simple skeleton R
Markdown document thus:

title: "Untitled"
output: html_document

This is an R Markdown document. Markdown is a simple
formatting syntax for authoring HTML, PDF, and MS
Word documents. For more details on using R Markdown
see <http://rmarkdown.rstudio.com>.

When you click the **Knit** button a document will
be generated that includes both content as well as
the output of any embedded R code chunks within the
document. You can embed an R code chunk like this:

```{r}
summary(cars)
```

You can also embed plots, for example:

```{r, echo=FALSE}
plot(cars)
```

Note that the `echo = FALSE` parameter was added
to the code chunk to prevent printing of the R
code that generated the plot.

Ordinarily, one would edit out the text and R code and replace
it with one’s own text and R code chunks. For present purposes,
the file can be used as it stands. Or the user can add further text, or
modify the code, or add further code chunks. Click the Knit HTML
button to start the process of generating the HTML file. You will be
asked to enter a name for the file. An HTML file will be generated
and displayed in a browser.

enhancing the r experience – rstudio 31

R Markdown code chunk options

The markup that surrounds R code can include instructions on what
to do with R code and/or any output, including tables and graphs.
Should code be executed, should it be echoed, and what output text
and/or tables and/or graphs should appear in the final document?

Here is an example of code with surrounding markup, with
the code chunk options fig.width and fig.height giving
the width and height of the initial figure, and out.width giv-
ing the width to which it should be scaled in the final document:

```{r plotgph, fig.width=7, fig.height=6, out.width="600px"}
plot(cars)
```

Giving the code chunk a name, here plotgph, is optional. The Other possible settings include:
echo=FALSE (do not show code), &
eval=FALSE (do not evaluate).

fig.width and fig.height settings control the size of the output
plot, before it is scaled to fit within the available line width. The
out.width setting controls the width in the final HTML document.

⇤Inclusion of HTML in R Markdown documents

Note also that HTML markup can be included in R Markdown doc-
uments. This can be useful, e.g., for including image files. Thus, use
the following code to include the image file pic.png:

The image position can if necessary be adjusted thus:

<IMG SRC="pic.png" alt="Sorry, cannot display" STYLE="position:absolute;
TOP:-25px; LEFT:40px; WIDTH:800px; HEIGHT:500px"/>

R Presentation

Note the R Presentation. variant of R Markdown. To display a sim-
ple skeleton document, click on:

File | New File | R Presentation

An R Presentation document is a special type of R Markdown docu-
ment that is formatted to provide slides that can be displayed using a
browser.

Click on Knit HTML to process the document, either just as it
stands or after replacing the sample text and code with one’s own
text and code.

32 learning r: open source (free) statistics system

3.2.2 ⇤Other markup types – HTML, LaTeX, . . .

R HTML
Also available is reStructuredText
(reST), which is an extended
variant of R Markdown.

Click on File | New File | R HTML to display an HTML document
that has embedded R code:

<!--begin.rcode fig.width=7, fig.height=6, out.width="600px"
plot(cars)
end.rcode-->

Again, the document that appears can be processed just as it
stands – click on Knit HTML.

R Sweave:

Click on File | New File | R Sweave to display a template for a La-
TeX file. The web page http://maths-people.anu.edu.au/
~johnm/r-book/knitr/ has files that demonstrate the use of knitr
Sweave type markup.

3.2.3 RStudio documentation – markup and other

Very extensive documentation for RStudio is provided online.
Click on Help | RStudio Docs to go to the relevant web page. For
R Markdown and R Presentation, note the documentation files for
Using R Markdown. LATeX users should note the Sweave and
knitr documentation files.

3.2.4 A strategy for RStudio project management

RStudio is well designed to assist good project management prac-
tices, using a strategy similar to the following:

Set up each new project in its own working directory.

For each project, maintain one or more script files that holds the
code. Script files can be compiled into "notebooks" for purposes
of keeping a paper record.

Script files are readily expanded into R Markdown documents –
a simple form of "reproducible reporting" document. They can as
required be expanded into a draft for a paper.

4
The R Working Environment

Important R technical terms in-
clude object, workspace, working
directory, image file, package,
library, database and search list.

Object Objects can be data objects, function objects,
formula objects, expression objects, . . .
Use ls() to list contents of current workspace.

Workspace User’s “database”, where the user can make
additions or changes or deletions.

Working Default directory for reading or writing files.
directory Use a new working directories for a new project.

Image files Use to store R objects, e.g., workspace contents.
(The expected file extension is .RData or .rda)

Search list search() lists ‘databases’ that R will search.
library() adds packages to the search list

Use the relevant menu. or enter
save.image() on the command
line, to store or back up workspace
contents. During a long R session,
do frequent saves!

4.1 The Working Directory and the Workspace

Each R session has a working directory and a workspace. If not
otherwise instructed, R looks in the working directory for files, and
saves files that are output to it.

The workspace is a volatile
database that, unless saved, will
disappear at the end of the session.

The workspace is at the base of a list of search locations, known
as databases, where R will as needed search for objects. It holds
objects that the user has created or input, or that were there at the
start of the session and not later removed.

The workspace changes as objects are added or deleted or
modified. Upon quitting from R (type q(), or use the relevant
menu item), users are asked whether they wish to save the current
workspace. If saved, it is stored in the file .RData, in the current The file .RData has the name

image file. From it the workspace
can, as and when required, be
reconstructed.

working directory. When an R session is next started in that working
directory, the o↵-the-shelf action is to look for a file named .RData,
and if found to reload it.

34 learning r: open source (free) statistics system

Setting the Working Directory

When a session is started by clicking on a Windows icon, the icon’s
Properties specify the Start In directory.1 Type getwd() to identify 1 When a Unix or Linux command

starts a session, the default is to
use the current directory.

the current working directory.
It is good practice to use a separate working directory, and as-

sociated workspace or workspaces, for each di↵erent project. On
Windows systems, copy an existing R icon, rename it as desired,
and change the Start In directory to the new working directory. The
working directory can be changed2 once a session has started, either 2 To make a complete change to

a new workspace, first save the
existing workspace, and type
rm(list=ls(all=TRUE) to empty
its contents. Then change the
working directory and load the
new workspace.

from the menu (if available) or from the command line. Changing
the working directory from within a session requires a clear head; it
is usually best to save one’s work, quit, and start a new session.

4.2 Work and Data Maintenance

4.2.1 Maintenance of R scripts

Note again RStudio’s abilities for
managing and keeping R scripts.

It is good practice to maintain a transcript from which work done
during the session, including data input and manipulation, can as
necessary be reproduced. Where calculations are quickly completed,
this can be re-executed when a new session is started, to get to the
point where the previous session left o↵.

4.2.2 Saving and retrieving R objects

Where computations are time-consuming, users will be advised to
save (back up) the current workspace image from time to time. The Or from a GUI interface. click on

the relevant menu item.command save.image()) saves everything in the workspace, by
default into a file named .RData in the working directory.

Before making major changes in the workspace, it may be sensi-
ble to archive the contents of the current workspace, e.g., into a file
with the name archive.RData. Specify

In place of archive, it might be
better to use, e.g.,the date when
the file was created, e.g.:

fnam <- "2014Feb1.RData"
save.image(file=fnam)save.image(file="archive.RData")

Before saving the workspace, consider use of rm() to remove
objects that are no longer required. Saving the workspace image will
then save everything that remains.

Use save() to save one or more named objects into an image The function save.image() calls
save(), in order to do its task.file. Use load() to reload the image file contents back into the

workspace. The following demonstrate the explicit use of save()
and load() commands:

volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)
save(volume, weight, file="books.RData")
Can save many objects in the same file

the r working environment 35

rm(volume, weight) # Remove volume and weight
load("books.RData") # Recover the saved objects

See Subsection 4.3.2 for use of
attach("books.RData") in place
of load("books.RData").

Two further possibilities are:

- Use dump() to save one or more objects in a text format. For
example:
volume <- c(351, 955, 662, 1203, 557, 460)
weight <- c(250, 840, 550, 1360, 640, 420)
dump(c("volume", "weight"), file="volwt.R")
rm(volume, weight)
source("volwt.R") # Retrieve volume & weight

- Use write.table() to write a data frame to a text file.

4.3 Packages and System Setup
For download or installation
of R or CRAN packages, use
for preference a local mirror. In
Australia http://cran.csiro.au is a
good choice. The mirror can be set
from the Windows or Mac GUI.
Alternatively (on any system),
type chooseCRANmirror() and
choose from the list that pops up.

Packages Packages are structured collections of R
functions and/or data and/or other objects.

Installation R Binaries include ’recommended’ packages.
of packages Install other packages, as required,

library() Use to attach a package, e.g., library(DAAG)
Once attached, a package is added to the list of
“databases” that R searches for objects.

An R installation is structured as a library of packages.

• All installations should have the base packages (one of them is
called base). These provide the infrastructure for other packages.

• Binaries that are available from CRAN sites include, also, all the
recommended packages.

• Other packages can be installed as required, from a CRAN mirror
site, or from another repository.

To discover which packages are
attached, enter one of:

search()
sessionInfo()

Use sessionInfo() to get more
detailed information.

A number of packages are by default attached at the start of a
session. To attach other packages, use library() as required.

4.3.1 Installation of R packages

Section 1.3 described the installation of packages from the internet.
Note also the use of update.packages() or its equivalent from the
GUI menu. This identifies packages for which updates are available,
o↵ering the user the option to proceed with the update.

Arguments are a vector of package
names and a destination directory
destdir where the latest file
versions will be saved as .zip or
(MacOS X) .tar.gz files.

The function download.packages() allows the downloading
of packages for later installation. The menu, or install.packages(),
can then be used to install the packages from the local directory. For
command line installation of packages that are in a local directory,

36 learning r: open source (free) statistics system

call install.packages() with pkgs giving the files (with path, if
necessary), and with the argument repos=NULL.

On Unix and Linux systems,
gzipped tar files can be installed
using the shell command:

R CMD INSTALL xx.tar.gz
(replace xx.tar.gz by the file
name.)

If for example the binary DAAG_1.22.zip has been downloaded
to D:\tmp\, it can be installed thus

install.packages(pkgs="D:/DAAG_1.22.zip",
repos=NULL)

On the R command line, be sure to replace the usual Windows back-
slashes by forward slashes.

Use .path.package() to get the path of a currently attached
package (by default for all attached packages).

4.3.2 The search path: library() and attach()

The R system maintains a search path (a list of databases) that de-
termines, unless otherwise specified, where and in what order to
look for objects. The search list includes the workspace, attached Database 1, where R looks first,

is the user workspace, called
".GlobalEnv".

packages, and a so-called Autoloads database. It may include other
items also.

To get a snapshot of the search path, here taken after starting up Packages other than MASS were
attached at startup.and entering library(MASS), type:

If the process runs from RStudio,
"tools:rstudio" will appear in
place of "tools:RGUI".

search()

[1] ".GlobalEnv" "package:MASS"
[3] "tools:RGUI" "package:stats"
[5] "package:graphics" "package:grDevices"
[7] "package:utils" "package:datasets"
[9] "package:methods" "Autoloads"
[11] "package:base"

For more detailed information that has version numbers of any
packages that are additional to base packages, type:

sessionInfo()

The ’::’ notation

Use notation such as base::print() to specify the package where
a function or other object is to be found. This avoids any risk of
ambiguity when two or more objects with the same name can be
found in the search path.

In Subsection 9.2.9. the notation latticeExtra::layer()
will be used to indicate that the function layer() from the lat-
ticeExtra package is required, distinguishing it from the func-
tion layer() in the ggplot2 package. Use of the notation It is necessary that the latticeExtra

package has been installed!latticeExtra::layer() makes unnecessary prior use of
library(latticeExtra) or its equivalent.

the r working environment 37

Attachment of image files
Objects that are attached, whether
workspaces or packages (using
library()) or other entities, are
added to the search list.

The following adds the image file books.RData to the search list:

attach("books.RData")

The session then has access to objects in the file books.RData. Note The file becomes a further
“database” on the search list,
separate from the workspace.

that if an object from the image file is modified, the modified copy
becomes part of the workspace.

In order to detach books.RData, proceed thus: Alternatively, supply the numeric
position of books.RData on the
search list (if in position 2, then 2)
as an argument to detach().

detach("file:books.RData")

4.3.3 ⇤Where does the R system keep its files?
Note that R expects (and dis-
plays) either a single forward slash
or double backslashes, where
Windows would show a single
backslash.

Type R.home() to see where the R system has stored its files.

R.home()

[1] "/Library/Frameworks/R.framework/Resources"

Notice that the path appears in abbreviated form. Type
normalizePath(R.home()) to get the more intelligible result
[1] "C:\\Program Files\\R\\R-2.15.2"
By default, the command system.file() gives the path to the

base package. For other packages, type, e.g.

system.file(package="DAAG")

[1] "/Users/johnm1/Library/R/3.2/library/DAAG"

To get the path to a file viewtemps.RData that is stored with the
DAAG package in the misc subdirectory, type:

system.file("misc/viewtemps.RData", package="DAAG")

4.3.4 Option Settings
To display the setting for the line

width (in characters), type:

options()$width

[1] 54

Type help(options) to get full details of option settings. There are a
large number. To change to 60 the number of characters that will be
printed on the command line, before wrapping, do:

options(width=60)

The printed result of calculations will, unless the default is
changed (as has been done for most of the output in this document)
often show more significant digits of output than are useful. The
following demonstrates a global (until further notice) change: Use signif() to a↵ect one state-

ment only. For example
signif(sqrt(10),2)

NB also the function round().

sqrt(10)

[1] 3.162

38 learning r: open source (free) statistics system

opt <- options(digits=2) # Change until further notice,
or until end of session.

sqrt(10)

[1] 3.2

options(opt) # Return to earlier setting

Note that options(digits=2) expresses a wish, which R will not
always obey!

Rounding will sometimes introduce small inconsistencies!

For example:

round(sqrt(85/7), 2)

[1] 3.48

round(c(sqrt(85/7)*9, 3.48*9), 2)

[1] 31.36 31.32

4.4 Summary and Exercises

4.4.1 Summary

Each R session has a working directory, where R will by default
look for files or store files that are external to R. From within functions, R will look

first in the functions environment,
and then if necessary look within
the search list.

User-created R objects are added to the workspace, which is at the
base of a search list, i.e., a list of “databases” that R will search
when it looks for objects.
It is good practice to keep a separate workspace and associated
working directory for each major project. Use script files to keep a
record of work. Before making big changes to the

workspace, it may be wise to save
the existing workspace under a
name (e.g., Aug27.RData) di↵erent
from the default .RData.

At the end of a session an image of the workspace will typically
(respond “y” when asked) be saved into the working directory.
Note also the use of attach() to give access to objects in an
image (.RData or .rda) file.3 3 Include the name of the file

(optionally preceded by a path) in
quotes.

R has an extensive help system. Use it!

4.4.2 Exercises
The function DAAG::datafile()
is able to place in the working
directory any of the files: fuel.txt
molclock1.txt, molclock2.txt,
travelbooks.txt. Specify, e.g.
datafile(file="fuel")

Data files used in these exercises are available from the web page
http://www.maths.anu.edu.au/~johnm/datasets/text/.

1. Place the file fuel.txt to your working directory.

the r working environment 39

2. Use file.show() to examine the file, or click on the RStudio
Files menu and then on the file name to display it. Check carefully
whether there is a header line. Use the RStudio menu to input
the data into R, with the name fuel. Then, as an alternative, use
read.table() directly. (If necessary use the code generated by
RStudio as a crib.) In each case, display the data frame and check
that data have been input correctly.

A shortcut for placing these files in
the working directory is:
datafile(file=c("molclock1",

"molclock2"))

3. Place the files molclock1.txt and molclock2.txt in a directory
from which you can read them into R. As in Exercise 1, use the
RStudio menu to input each of these, then using read.table()
directly to achieve the same result, inputting the data to the data
frame molclock. Check, in each case, that data have been input
correctly.

Use the function save() to save molclock1, into an R image
file. Delete the data frame molclock1, and check that you can
recover the data by loading the image file.

4. The following counts, for each species, the number of missing val-
ues for the column root of the data frame DAAG::rainforest:

library(DAAG)
with(rainforest , table(complete.cases(root), species))

For each species, how many rows are “complete”, i.e., have no
values that are missing?

5. For each column of the data frame MASS::Pima.tr2, determine
the number of missing values.

6. The function dim() returns the dimensions (a vector that has the
number of rows, then number of columns) of data frames and
matrices. Use this function to find the number of rows in the data
frames tinting, possum and possumsites (all in the DAAG
package).

7. Use mean() and range() to find the mean and range of:

(a) the numbers 1, 2, . . . , 21

(b) the sample of 50 random normal values, that can be generated
from a normaL distribution with mean 0 and variance 1 using
the assignment y <- rnorm(50). The datasets package that has the

data frame women is by default
attached when R is started.

(c) the columns height and weight in the data frame women.

Repeat (b) several times, on each occasion generating a nwe set of
50 random numbers.

8. Repeat exercise 6, now applying the functions median() and
sum().

9. Extract the following subsets from the data frame DAAG::ais

(a) Extract the data for the rowers.

40 learning r: open source (free) statistics system

(b) Extract the data for the rowers, the netballers and the tennis
players.

(c) Extract the data for the female basketballers and rowers.

10. Use head() to check the names of the columns, and the first
few rows of data, in the data frame DAAG::rainforest. Use
table(rainforest$species) to check the names and numbers
of each species that are present in the data. The following extracts
the rows for the species Acmena smithii

Acmena <- subset(rainforest , species=="Acmena smithii")

The following extracts the rows for the species Acacia
mabellae and Acmena smithii:

AcSpecies <- subset(rainforest , species %in% c("Acacia mabellae",
"Acmena smithii"))

Now extract the rows for all species except C. fraseri.

