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Purpose and Range of Content

Data mining gathers up some of the ways in which a section of the computer scientist
community has sought to respond to the impact of computer technology on the col-
lection and use of data. The effects have spread across commerce, government and
society, as well as across science. The same or similar technology may be used across
these different areas of application.

Other responses, with much in common with data mining, have the names “machine
learning”, and ““analytics”. Machine learning has grown out of an engineering context,
while the name “analytics” is widely used in a business context. Other such names are
in use also, most of them with a focus on a specific area of application.

Data mining is sometimes presented as a collection of algorithms. Validation issues
are, largely, left to one side. My intention is to widen the scope, to describe an enter-
prise that builds on advances in data collection and data analysis technology in ways
that pay serious regard to model validation issues. In this account, statistical consider-
ations have a large role. Providing this is understood, the enterprise that is in mind can
suitably be described as “data mining”.

These notes elaborate to some limited extent on points that I plan to cover in my
talk, and extend into areas that will not be covered. Sections 1— 4 are important for the
talk. Remaining sections are for follow-up study.

1 Resampling and Other Computer Intensive Methods

Both for the talk and for the practical sessions, there are several methodologies that
will be important. These are:

Simulation: A model is proposed that generated the data. What are its statistical
properties? One answer is repeated simulations. Simple uses of this idea are:
o Simulate repeated sampling of values that follow a normal distribution.

e Simulate repeated sampling of values that follow a non-normal distribution, per-
haps an exponential distribution.

e Marks are placed on the circumference of a roulette wheel that divide it into three
perhaps unequal parts. Labeling the outcomes A, B and C, one can simulate, eg,
a result from 1000 spins.

In statistical learning contexts, theoretical accuracy assessments have limited use-
fulness. It is frequently necessary to rely on empirical methods. This is especially true
for classification models. Several important methods of this type will now be described.

Training/Test:
e Split data into training and test sets

e Train (NB: steps 1 & 2); use test data for assessment.

This is the most widely applicable methodology. The test data can in principle be taken
from the target population. If however data from the actual target is available when the
model is fitted, one would want to use this for model fitting. Thus, in practice, testing
on data from the actual target often has to be an “after-the-event” kind of check.
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Figure 1: Schematic, designed to show how cross-validation works. For present il-
lustrative purposes, data are split into four nearly equal parts, with n;, ny, n3, and ny
observations respectively. At the first iteration, the n; observations in the first part are
set aside for testing, with remaining observations used for training, and so on. The
split into a part that is used for testing, and the remaining observations that are used
for testing, has the name fold. Once calculations for all 4 folds are complete, predicted
values are available for all observations, in each case from a model that was trained
independently of those observations.

When there is very adequate data, a training/test split of the data achieves all that
is needed. It is not necessary to look for a method, such as will now be described, that
makes better use of the data.

Cross-validation Simple version: Train on subset 1, test on subset 2
Then; Train on subset 2, test on subset 1

More generally, data are split into k parts (eg, k = 10). Use each part in turn for testing,
with other data used to train.
Cross-Validation Steps are:

o Split data into k parts (in Figure 1, k=4)

o At the ith repeat or fold (i = 1,...k) use:
the ith part for zesting, the other k-1 parts for training.

e Combine the performance estimates from the k folds.

Bootstrap Sampling Bootstrap samples are with replacement samples, of the same
size as the initial sample.
Here are two bootstrap samples from the numbers 1 ... 10

136666638910 (56’s; omits 2,4,5,7)
2234688910 10 (2 2’s, 2 8’s, 2 10’s; omits 1,5,7)
1111334678 (41s, 2 3’s; omits 2,5,9,10)

Here is how bootstrap sampling can be used in practice:

o Take repeated (with replacement) random samples of the observations, of the
same size as the initial sample.
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e Repeat analysis on each new sample (NB: In the example above, repeat both
step 1 (selection) & 2 (analysis).

e Variability between samples indicates statistical variability.

e Combine separate analysis results into an an overall result.

2 Key Motivations

2.1 Computing Technology is Transforming Science

Computing technology is clearly transforming science. The following is a summary of
the changes. All except the final item feature strongly in the data mining literature:

e Huge data sets! have become common. Often these hold new types of data — web
pages, medical images, expression arrays, genomic data, NMR spectroscopy, sky
maps, ...

o Sheer size brings challenges. In the first place, these are challenges for data
management. Challenges for data analysis are less simply described.

— A key question is whether there are many observations, or many variables,
or both.

— Where the number of observations is large, there is often a structure (eg,
changes in time) that requires attention.

e New algorithms; “algorithmic” models.

— Examples are trees, random forests, Support Vector Machines, .. .

— They are algorithmic in the sense that the motivation was algorithmic.
e Automation, especially for data collection

— There has been huge progress in automating many aspects of data analysis.

— Except however in limited areas of application, complete automation re-
mains a pipe dream. In those areas where it has proved effective, automa-
tion typically has a large setup and maintenance cost.

— Automation is most feasible in applications where mistakes can be toler-
ated, where it is not necessary to be consistently correct.

e Synergy: computing power with new theory. Much of the new development in
theoretical statistics is driven and facilitated by the demand to take advantage of
new computational power.

All the above, except the final item, get strong emphasis in the data mining liter-
ature. The literature emphasizes the synergy with new algorithmic development, but
pretty much ignores the synergy with new developments in statistical theory.

Tssues of data set size have generated some modest smount cf hype, as the frequent reference to Big
Data in Weiss and Indurkha (1997)
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2.2 Jargon — Mining, Learning and Training

Mining is used in two senses:

e Mining for data

e Mining to extract meaning is a scientific/statistical sense.

The pre-analysis data extraction & processing often relies heavily on computer technol-
ogy. Additionally, there are design of data collection issues that demand more attention
than has been common.

In mining to extract meaning, statistical considerations come to the fore. Computer
power does however provide a major part of the “how”.

Learning & Training

e The (computing) machine learns from data.

e Use fraining data to train the machine or software.

Modeling (or a machine?) that learns from the data

The reference is to modeling in which the data have a substantial role in determining
the form of model. The demand for such models arises, in part, from the size of the
data sets (many observations) that are now commonly available. Deviations from the
strict form of model that are described by theory are more readily detectable. Statisti-
cal learning approaches are then used to accommodate deviations from the theoretical
model. The plot of residuals in Figure 2 suggests that, for the data displayed there, a
statistical learning approach may be appropriate.
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Figure 2: Record times versus dis-
tances, both on logarithmic scales, for
track and road athletic races. With a
ratio of largest to smallest time that is
~3000, differences from the line have
to be large to be visually obvious. The
plot of residuals shows that, for the
longest race, the difference from the
line is >15%. (Differences on a scale
of natural logarithms, if small, are a
little less than fractional differences.)
There is a clear systematic pattern in
the residuals.

For classification models, theory rarely gives much help in deciding on the form of
model. A statistical learning approach is, to a greater or lesser extent, inherent in the
nature of the modeling problem.
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In the applications of statistical learning that are prominent in the data mining lit-
erature, the aim is usually prediction rather than the obtaining of interpretable model
parameters. Hence the name “predictive modeling”. Interpretation of model parame-
ters raises additional issues that will be the subject of brief comment in a later section.

2.3 Statistical Learning Example — Continuous Outcome

The first example (Figure 2) is for a continuous outcome variable. Data are world
record times for athletic track and road races, as at October 2006. The range of dis-
tances and times is huge, from 100m in 9.6sec to 292.2km in 24h.
We can fit a curve rather than a line, in what is a statistical learning approach. Here,
a curve will be fitted to the residuals — this corrects for the biases in the line.
Questions are:

o Will the pattern be the same in 20307

o [s it consistent across geographical regions?

e Does it partly reflect greater attention paid to some distances?
e So why/when the smooth, rather than the line?

Clearly the smooth curve (line, with ‘corrections’ from the line) would be useful to race
organizers who wished to estimate the time at which a race winner could be expected
to appear.

10n-1 1070 107 1072
__ 015
E o010
S 005 .
S 000 Figure 3: Here a smooth curve has
o ! . .
@ 005 been fitted to the residuals, using a
< -0.10 . .
routine that does the job pretty much
015 | ' ' N automatically. Itis assumed that resid-
x owor . T uals from the curve are independent.
005 o . . . .
z ° This assumption is especially crucial
8 0.00 Fo °° o 9® g0 8 °oswg°% 00 o o p : ) p y ;
& o005 L ° 08 % o, for the 95% pointwise confidence lim-
-0.10 ) ) L its about the curve. The lower panel
10-1 1000 100 102 shows residuals from the smooth.
Distance

This is a very simple example of the use of the methodology. It generalizes, al-
lowing the fitting of curves and surfaces, in principle in an arbitrary number of dimen-
sions.? The ability to fit such curves and surfaces automatically is remarkable, relative
to what was available a decade ago.

2.4 Statistical Learning Example — Categorical Outcome

The example relates to glass fragments that were collected in the course of forensic
work. Glass was of the following types. Numbers of pieces of glass of each of the

2Note in particular the abilities in the R package mgcv, documented in detail in Wood (2006).



3 PURPOSE AND SOURCE/TARGET ISSUES 7

WinF Veh Tabl
WinNF @ Con Head
4 _I ! ! ! ! ! -
Figure 4: Visual representation of
2 7 . i a classification rule, derived using
0 .& ‘. L linear.discriminant an.alys.is, fo.r the
o | o [ 2 I forensic glass dat?l. A six-dimensional
ES : ® pattern of separation between the cate-
-4 ° - gories has been collapsed down to two
dimensions. Some categories may
° i therefore be better distinguished than
-8 - is evident from this figure.

different types are given:

Window float (70) Window non-float (76)  Vehicle window (17)
Containers (13) Tableware (9) Headlamps (29)

Variables are %’s of Na, Mg, ..., plus refractive index. In all there are 214 rows of
data (observations) X 10 columns (variables).

The aim is to find a rule that predicts the type of any new piece of glass. Figure
4 is a visual summary of the result from the use of a simple form of classification
methodology, with the name linear discriminant analysis.

Points to note are:

e The methodology is implemented within a Bayesian framework. By default, the
prior probabilities for the various categories are taken to be the relative frequen-
cies for those categories. The classification rule changes if the frequencies are
changed from the default.

e For any given classification rule, the overall accuracy (proportion correctly clas-
sified) changes if the prior probabilities are changed.

o For estimating the accuracy for a given target population, the prior probabilities
should be the proportions in that population, not the proportions in the sample.

Note that these data date from 1987. Changes since then in glass mamufacturing
may well mean that they have limited relevance to current circumstances. It would be
hazardous to use a prediction rule derived from these data for predictions for recently
collected glass fragments.

3 Purpose and Source/Target Issues

A data mining style of analysis, if it is done properly, offers exactly the same range of
challenges as data analysis more generally. As with any data analysis, key considera-
tions are:
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Al: What is (are) the intended purpose(s) of the analysis?

A2: Is predictive accracy the main consideration? Or is the aim scientific of other
insight, perhaps based on values of parameter estimates.

A3: How widely is it hoped that results will apply?

The answers may have strong implications for the any decision on how to handle the
data. Data mining exercises typically are mainly interested in predictive accuracy.
Questions of what interpretation can be placed on model parameters do however of-
ten arise, often as an afterthought to the main analysis. It is therefore important to
understand the potential for misinterpretation.

Questions on which the analysis may help shed light are:

B1: Is a repeat of the analysis with a new set of data likely to turn up comparable
results?

B2: How widely applicable is whatever can be learned from the data? (Will it apply
to a city that is different from those that generated the sample data? Will it apply
to a different time — next year, or two years’ time?)

Question B2 is the really crucial question. It asks those who analyze or use the data
to think about how the target population may relate to the source population? At the
extremes:

T1: Source and target may be quite different. The notion that the data can be used to
make statements that apply to the target is, at the very least, hopeful!

T2: Source and target may be closely identical.

Experiments, if properly designed, should ensure that source is closely identical with a
target. This is not a guarantee that source will be closely identical with the target that
is of main interest. Experiments with one or other strain of mice may or may not give
results that generalize to other strains. Results may or may not have relevance, or some
limited relevance, to humans.

Source/target issues have particular pertinence for data mining type applications,
where data are not commonly experimental.

4 Analysis Types and Tools

The favoured methodologies come, mostly, under the broad heading of “regression”.
There is some use of regression methods with a continuous outcome variable. The data
mining literature is however strongly focused on methodologies where the outcome is
classification into one of two or more categories.

4.1 Methodologies

For work with classification data, there is some use of classical statistical tools. Such
tools include logistic and multinomial logistic regression, and the closely related lin-
ear and quadratic discriminant analysis approaches. Theoretical accuracy assesments,
making the usual independence assumptions, are asymptotic, and may or may not be
useful in practice. Commonly, accuracy is estimated using the same approaches as are
used for the newer “data mining” methodologies.
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Prominent among the newer “data mining” methodologies that have found favour
in the data mining and machine learning communities are:

e Classification trees and various extensions of trees:

— Random forests and related “bagging methods”;

— “Boosting” methods, notably Adaboost
e Support Vector Machines

e Neural networks (these turn out, however, to have close connections with logistic
regression).

4.2 Accuracy assessment

Primarily, the accuracy assessment methods that are discussed here assume that the
target population is essentially the same as the source population from which the data
have been obtained. Even for this limited purpose, there is serious scope for getting
answers that can be grossly optimistic.

Accuracy assessment is important for its own sake. It is helpful to know what the
finally fitted model has been able to achieve. Unless however there is effective accuracy
assessment, it will not be possible to fit a good model:

e Many methods work by starting with an initial model, which is successively
refinement. Too much refinement (over-fitting) will lead to a model with reduced
predictive power. It is necessary to know when to stop.

e Good accuracy assessments are required so that a model fitted using one method-
ology can be compared with a model fitted using another methodology.

4.2.1 Key Methodologies for Empirical Accuracy Assessment

In statistical learning contexts, theoretical accuracy assessments have limited useful-
ness. It is frequently necessary to rely on empirical methods. This is especially true for
classification models. Section 1 described the methods that will be important here.

Continuous outcome data: For regression with a continuous outcome, normal the-
ory accuracy estimates can, if the independent normal error assumptions are not too
badly wrong, work quite well. Note however that:

e If the model is selected from a wide class of models, or if there is extensive
variable selection (e.g., select the best 3 explanatory variables out of 10), the
accuracy estimates may be grossly optimistic.

o If observations are not independent, accuracy estimates may again be wrong,
usually optimistic. Note however that that the situation can in special cases be
rescued by choosing a more realistic model for the “error”. Some of the possi-
bilities are:

— For data that are collected over time, models are available that can account
for the likely sequential correlation.
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— Variation is often multi-layered — variation between different countries,
variation between humans in an individual country, variation between clin-
ical assessment made on the same human, and so on. Again modeling
approaches are available that can account for such different sources of vari-
ation.

— Spatial models are another possibility.

Empirical methods for accuracy assessment can in principal be adapted for use where
there is a complex error structure. This does however require a clear understanding of
the theoretical issues, and is not straightforward.

Categorical outcome data: Here, the theoretical accuracy estimates that are avail-
able for certain of the methods rely on asymptotic approximations. For ‘algorithmic’
methods, including tree-based methods and random forests, theoretical results have
limited relevance. Accuracy assessment almost inevitably relies on empirical methods.

The empirical methods do if used correctly cope with the effects of model and
variable selection.

4.2.2 Keeping Score

As has been pointed out, the source population from which data have been obtained
will often not be exactly the same as the target population. There are two important
issues here:

e Where predictive modeling of a comparable type is being carried out repeat-
edly, the analyst should keep a record of the comparison between after-the-event
model performance and predicted performance, e.g., from cross-validation on
the original data.

e Often, predictions are successively made ahead in time. If a long enough data
series is available, time series methods may be apprpropriate. In effect, past
changes from one time to the next are used as a guide to likely future changes.

The modeling of changes over time is in principle a good idea. Do not however put
too much faith in the model. A lesson from the recent financial crisis is, surely, that it
is unwise to put much faith in any financial model that does not allow for occasional
“shocks”. The warnings in Taleb (2004) merit attention.

S Challenges from Size of Dataset

Sheer size brings challenges. In the first place, these are challenges for data manage-
ment. The analysis challenges that result from data set size are not, however, primarily
those of scaling up regression and related models for use with large datasets.

The analysis challenges are most important for models with a complex error struc-
ture — repeated measures and times series, spatial models, and so on. They are much
less important for the use of regression models.

Some of the issues are:

e Additional structure often comes with increased size — data may be less homo-
geneous, span larger regions of time or space, be from more countries
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e Or there may extensive information about not much!

- e.g., temperatures, at second intervals, for a day.

— SEs from modeling that ignores this structure may be misleadingly small.
¢ In large homogeneous datasets, spurious effects are a risk

— Small SEs increase the risk of detecting spurious effects that arise, e.g.,
from sampling bias (likely in observational data) and/or from measurement
error.

Where a straightforward use of a regression model really does seem appropriate,
there can be advantages in structuring the analysis as a series of separate regressions:

e As an example, consider data that have been collected over a non-trivial interval
of time. It is then sensible, as a check, to do separate analyses for separate times.

e Where there is no time or other such structure in the data, the analysis can use-
fully be repeated for separate random samples of the data. Variation in model
parameters and predictions under such repeated sampling provides a check on
theoretically based estimates of standard errors. If the empirical standard errors
are larger, it is those that should be believed.

6 The Interpretation of Model Parameters

Consider data® that gives record times for Northern Ireland mountain races.
The “obvious” simple model has log(time) as a linear function of log(dist) and
log(climb).
log(time) = —5.0 + 0.68 log(dist) + 0.47 log(climb)

Note the coefficients 0.68 (for log(dist)) and 0.47 (for log(climb))! Do they make
sense? Thus, the coefficient 0.68 for log(dist) implies that the relative rate of increase
of time with distance is, if climb is held constant, 68% of the relative rate of increase of
distance. If a second kilometer is added to a 1 kilometer race, the time per unit distance
will be better than for the 1 kilometer race.

The clue is that the coefficient predicts what will happen if climb is held constant.
The one kilometer race then involves much steeper climbing (and decent) than the two
kilometer race.

More interpretable coefficients can be obtained by regressing on log(dist) and log(climb/dist).
The comparison between different distances is then fair.

For a meaningful interpretation of model parameters, it is necessary to be sure that:

e All major variables or factors that affect the outcome have been accounted for.

e Those variables and factors operate, at least to a first order of approximation,
independently.

Rosenbaum (2002) suggests approaches that are often useful in the attempt to give
meaningful interpretations to coefficients that are derived from observational data.

3from http://www.nimra.org.uk/calendar.asp
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7 Notes on Methods for Use with Classification Data

Many different methods are available. The data mining literature encourages wide
experimentation. The stance taken here is that it is better to start with several well-
understood methodologies, and get to understand those, before branching out more
widely. Three methodologies will be described here — linear discriminant analysis
(LDA), trees and random forests. Trees will be of interest mainly for understanding the
random forest methodology.

Linear Discriminant Analysis: The implementation that will be used here is 1da()
in R’s MASS package. This methodology has the following attractions:

e It is simple, in the style of classical regression.

e [t leads naturally to a 2-D plot.

o The plot may suggest trying methods that build in weaker assumptions.
Details are in Section 8.
Random forests: The implementation that will be used here is randomForest () in
R’s randomForest package. This methodology has the following attractions:

e It is clear why it works and does not overfit.

e No other method consistently outperforms it.

e It is simple, and highly automatic to use.

7.1 Example used to illustrate the methodologies

The three classes are from a clinical classification of Diabetes — overt (overt diabetic),
chemical (chemical diabetic), and normal (normal). Can these be derived directly
from five available clinical measures?



7 NOTES ON METHODS FOR USE WITH CLASSIFICATION DATA 13
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fpg>=117 glucArea>=420.5 glucArea>=408
= SSPGP=192 fpg>F116 glucArea>=
guohepmizos [ TR eefmel |
overt normal normal
chemical normal overt  chemical overt chemical
fpg>=117 glucArea>=420.5 glucArea>=422
[el\”‘)kl'oésoz 5 g\ucArei>=596|5 fpg>j113'5
fpg> F117 overt . ) normal normal
normal chemicghemicaiormal overt  chemical overt chemical
fpg>=117 fpg>=119 fpg>=117
Insulin3=294.5 re\w\%:LOl SSPGp=150
overt overt overt
overt chemical chemical normal chemical normal chemical normal
fpg>=118.5 glucArea>=419.5 glucArea>=408
pg>5100.5 glucAreg>=656!5 glucAregd>=656.5
45
overt .nsu iz normal normal
Chem&‘f'\aémmtmspfma' overt  chemical overt chemical

Each tree has one vote; the majority wins

Figure 6: The left panel is a classification tree that was derived from tree-based classi-
fication. Each tree in the right panel is for a different bootstrap sample of the diabetes
data. Additionally, a different random sample of variables is used for each different
tree. The final classification is determined by a random vote over all trees.

The clinical measures (explanatory variables) are relwt (relative weight), fpg
(fasting plasma glucose), glucArea (glucose area), Insulin (insulin area), and SSPG
(steady state plasma glucose).

Figure 5 is a visual summary of results from the use of linear discriminant analysis.
The right panel shows the classification tree obtained from tree-based regression.

Tree-based classification proceeds by constructing a sequence of decision steps. At
each node, the split is used that best separates the data into two groups. Here tree-
based regression does unusually well (CV accuracy = 97.2%), perhaps because it is
well designed to reproduce a simple form of sequential decision rule that has been
used by the clinicians.

How is ‘best’ defined? Splits are chosen so that the Gini index of “impurity” is
minimized. Other criteria are possible, but this is how randomForest () constructs its
trees.

The random forest methodology will usually improve (but not here), sometimes
quite dramatically, on tree-based classification. Figure 6 shows trees that have been
fitted to different bootstrap samples of the diabetes data. Typically 500 or more trees
are fitted, without a stopping rule. Individual trees are likely to overfit. As each tree is
for a different random sample of the data, there is no overfitting overall.

Figure 7 is a visual summary of the random forest classification result.



8 LINEAR METHODS FOR CLASSIFICATION — THEORY 14

overt - chemical - normal
| | | | |
0.4 " o

2 Figure 7: The plot is an attempt to rep-
S 024 - : . :
i resent, in two dimensions, the random
T 00 ™ .. L forest result. This plot tries hard to
= ’ reflect probabilities of group member-

_02 — . — . . .
o . . ship assigned by the apalysm. It does
o —o4 . B not result from a ’scaling’ of the fea-

R ture space.

T T T T T
-04 -02 00 0.2 0.4

1st ordinate axis

8 Linear Methods for Classification — Theory

See Ripley (1996); Venables and Ripley (2002); Maindonald & Braun (2007, Section
12.2).

8.1 Linear methods, vs strongly non-parametric methods

Linear methods may be contrasted with the strongly non-parametric random forest
method that uses an ensemble of trees. See Maindonald & Braun (2007, Section 11.7).
A good strategy for getting started on an analysis where predictive accuracy is of pri-
mary importance is to fit a linear discriminant model with main effects only, comparing
the accuracy from a random forest analysis. If the random forest analysis gives little or
no improvement, the linear discriminant model may be hard to better. There is much
more that can be said, but this may be a good starting strategy.

8.2 Notation and types of model

Observations are rows of a matrix X with p columns. The vector X, is a row of X, but
in column vector form. The outcome is categorical, one of g classes.

Methods discussed here will all work with monotone functions of the columns of
X. By allowing columns that are non-linear monotone functions of the initial variables,
additive non-linear effects can be accommodated.

As before, observations are rows of a matrix X with p columns. The vector x, is a
row of X, but in column vector form.

The outcome is categorical, one of g classes, where now g may be greater than
2. The matrix W estimates the within class variance-covariance matrix, while B es-
timates the between class variance-covariance matrix. Details of the estimators used
are not immediately important. Note however that they may differ somewhat between
computer programs.

8.3 1da(Q and qda(Q)

The functions that will be used here are 1da() and qda (), from the MASS package for
R. The function 1da() implements linear discriminant analysis, while gda() imple-
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ments quadratic discriminant analysis. Quadratic discriminant analysis is an adaptation
of linear discriminant analysis to handle data where the variance-covariance matrices
of the different classes are markedly different. For g = 2 the logistic regression model,
fitted using R’s glm() function, is closely analagous to the linear discriminant model,
fitted using 1da ().

An attractive feature of 1da() is that it yields “scores” that can be plotted. Let
r = min(g — 1, p). Recall that p is the number of columns of a version of the model
matrix that lacks an initial column of ones. Then assuming that X has no redundant
columns, there will be r sets of scores. The r sets of scores can be examined using a
pairs plot. Often, most of the information is in the fist two or three dimensions. Such
plots may be insightful even for data where 1da () is inadequate as a classification tool.

8.3.1 1lda(Q) and qda() - theory

The functions 1da() and gda() in the MASS package implement a Bayesian decision
theory approach.

e A prior probability . is assigned to the cthclass (i = 1,...g).

e The density p(x|c) of x, conditional on the class c, is assumed multivariate nor-
mal, i.e., rows of X are sampled independently from a multivariate normal dis-
tribution.

e For linear discrimination, classes are assumed to have a common covariance
matrix X, or more generally a common p(x|c). For quadratic discrimination,
different p(x|c) are allowed for different classes.

e Use Bayes’ formula to derive p(c|x). The allocation rule that gives the largest
expected accuracy chooses the class with maximal p(c|x); this is the Bayes’ rule.

e More generally, assign cost L;; to allocating a case of class i to class j, and
choose ¢ to minimize }; L;.p(i|x).

Note that 1da() and qda() use the prior weights, if specified, as weights in com-
bining the within class variance-covariance matrices.
Using Bayes’ formula

n.p(x|c)
p(x)
o« mp(x|c)

p(clx)

The Bayes’ rule maximizes p(c|x). For this it is sufficient, for any given x, to maximize
mep(xlc)
or, equivalently, to maximize
log(7r) + log(p(xlc))

Now assume p(x|c) is multivariate normal, i.e.,

P 1 l
p(xle) = (2m)> | Zc )72 exp(=5Qc)
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where
O = (x—p)' = (x— )
Then

1 1
log(me) + log(p(x|c)) = log(me) = = Qe + glog@ﬂ) — 5 log(l 2 D
Leaving off the log(27) and multiplying by -2, this is equivalent to minimization of

Q. +log(| 2. |) = 2log(re) = (x = pre) T (x = p1,) + log(| Z, |) - 2 log(x,)

The observation X is assigned to the group for which

(x — ) 2N (x = o) + log(| = |) — 2 log(ne)

is smallest.

Set u, = X., and replace | X, | by an estimate W,.
[Note that the usual estimate of the variance-covariance matrix (or matrices) is positive
definite, providing that the same observations are used in calculating all elements in
the variance-covariance matrix and X has no redundant columns.]

Then x is assigned to the group to which, after adjustments for possible differences
in 7. and | Z. |, the Mahalanobis distance

(X - ic)TW:-l(X - ic)

of x from X, is smallest.

If a common variance-covariance matrix W, = W can be assumed, a linear trans-
formation is available to a space in which the Mahalanobis distance becomes a Eucliean
distance. Replace x by

z=U T)_lx
and X, by Z. = (UT)"'%, where U is an upper triangular matrix such that U"U = X.

Then
X~ p) WX~ ) = (2~ 20 (@~ 2)

which in the new space is the squared Euclidean distance to from z to Z,.

Note: For estimation of the posterior probabilities, the simplest approach is that de-
scribed above. Thus, replace p(c|x;6) by p(c|x;6) for calculation of posterior prob-
abilities (the ‘plug-in’ rule). Here, 6 is the vector of parameters that must be es-
timated. The R functions predict.lda() and predict.qda() offer the alterna-
tive estimate method="predictive", which takes account of uncertainty in p(c|x; 0).
Note also method="debiased", which may be a reasonable compromise between
method="plugin" and method="predictive"

8.4 Canonical discriminant analysis

Here we assume a common variance-covariance matrix. As described above, replace x
by
-1
z=U"T x

where U is an upper triangular matrix such that UTU = W.
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The between classes variance-covariance matrix becomes
B=U""'BU"!
The ratio of between to within class variance of the linear combination o’z is then
o"Ba

ala

The matrix B admits the principal components decomposition
B = Liuyu] + Luwu) + ...+ Luul

The choice @ = uy maximizes the ratio of the between to the within group variance, a
fraction A; of the total. The choice @ = u, accounts for the next largest proportion A,,
and so on.

The vectors uy, ...u, are known as “linear discriminants” or “canonical variates”.
Scores, which are conveniently centered about the mean over the data as a whole, are
available on each observation for each discriminant. These locate the observations
in r-dimensional space, where r is at most min(g — 1, p). A simple rule is to assign
observations to the group to which they are nearest, i..e., the distance d. is smallest in
a Euclidean distance sense.

For plotting in two dimensions, one takes the first two sets of discriminant scores.
A point z; that is represented as

Zinug + puy + ..+ G,

is plotted in two dimensions as ({1, {»), or in three dimensions as ({j1, {p, {;3). The
amounts by which the original columns of x; need to be multiplied to give {;; are given
by the first column of the list element scaling in the 1da object. For j;, the elements
are those in the second column, and so on. See the example below.

As variables have been scaled so that within group variance-covariance matrix is
the identity, the variance in the transformed space is the same in every direction. An
equal scaled plot should therefore be used to plot the scores.

8.4.1 Linear Discriminant Analysis — Fisherian and other

Fisher’s linear disciminant analysis was a version of canonical discriminant analysis
that used a single discriminant axis. The more general case, where there can be as
many as r = min(g — 1, p) discriminant functions, is described here.

The theory underlying 1da() assigns x to the class that maximizes the likelihood.
This is equivalent to choosing the class ¢ that minimizes d, + log(w.), where if the
same estimates are used for W and B, d. is the distance as defined for Fisherian linear
discriminant analysis. Recall that 7. is the prior probability of class c.

The output from 1da () includes the list element scaling, which is a matrix with
one row for each column of X and one column for each discriminant function that is
calculated. This gives the discriminant(s) as functions of the values in the matrix X.

8.4.2 Example - analysis of the forensic glass data

The data frame fgl in the MASS gives 10 measured physical characteristics for each
of 214 glass fragments that are classified into 6 different types.
The following may help make sense of the information in the list element scaling.
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library (MASS}

fgl.lda <- lda(type ~ ., data=fgl)

scores <- predict(fgl.lda, dimen=5)$x # Default is dimen=2

## Now calculate scores from other output information

checkscores <- model.matrix(fgl.lda)[, -1] %*% fgl.lda$scaling

## Center columns about mean

checkscores <- scale(checkscores, center=TRUE, scale=FALSE)
plot(scores[,1], checkscores[,1]) # Repeat for remaining columns
## Check other output information

fgl.1lda

93% of the information, as measured by the trace, is in the first two discriminants.

8.5 Two groups — comparison with logistic regression

Logistic regression, which can be handled using R’s function glm(), is a special case
of a Generalized Linear Model (GLM). The approach is to model p(c|x; ) using a
parametric model that may be the same logistic model as for linear and quadratic dis-
criminant analysis.

In this context it is convenient to change notation slightly, and give X an initial
column of ones. In the linear model and generalized linear model contexts, X has the
name “model matrix”.

The vector x is a row of X, but in column vector form. Then if 7 is the probability
of membershipin the second group, the model assumes that

log(r/(1 - 1) = B'x

where (8 is a constant.
Compare logistic regression with linear discriminant analysis:

o Inference is conditional on the observed x. A model for p(x|c) is not required.
Results are therefore more robust against the distribution p(x|c).

e Parametric models with “links” other than the logit f(mr) = log(n/(1 — m) are
available. Where there are sufficient data to check whether one of these other
links may be more appropriate, this should be done. Or there may be previous
experience with comparable data that suggests use of a link other than the logit.

e Observations can be given prior weights.

e There is no provision to adjust predictions to take account of prior probabilities,
though this can be done as an add-on to the analysis.

e The fitting procedure minimizes the deviance, which is twice the difference be-
tween the loglikelihood for the model that is fitted and the loglikelihood for a
‘saturated’ model in which predicted values from the model equal observed val-
ues. This does not necessarily maximize predictive accuracy.

e Standard errors and Wald statistics (roughly comparable to z-statistics) are pro-
vided for parameter estimates. These are based on approximations that may fail
if predicted proportions are close to O or 1 and/or the sample size is small.
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8.6 Linear models vs highly non-parametric approaches

The linearity assumptions are restrictive, even allowing for the use of regression spline
terms to model non-linear effects. It is not obvious how to choose the appropriate de-
gree for each of a number of terms. The attempt to investigate and allow for interaction
effects adds further complications. In order to make progress with the analysis, it may
be expedient to rule out any but the most obvious interaction effects. These issues affect
regression methods (including GLMs) as well as discriminant methods.

On a scale in which highly parametric methods lie at one end and highly non-
parametric methods at the other, linear discriminant methods lie at the parametric end,
and tree-based methods and random forests at the non-parametric extreme. An attrac-
tion of tree-based methods and random forests is that model choice can be pretty much
automated.

8.7 Low-dimensional Graphical Representation

In linear discriminant analysis, discriminant scores in as many dimensions as seem
necessary are used to classify the points. These scores can be plotted. Each pair of
dimensions gives a two-dimensional projection of the data. If there are three groups and
at least two explanatory variables, the two-dimensional plot is a complete summary of
the analysis. Even where higher numbers of dimensions are required, two dimensions
may capture most of the information. This can be checked.

With most other methods, a low-dimensional representation does not arise so di-
rectly from the analysis. The following approach, which can be used directly with
random forests, can be adapted for use with other methods. The proportion of trees in
which any pair of points appear together at the same node may be used as a measure of
the “proximity” between that pair of points. Then, subtracting proximity from one to
obtain a measure of distance, an ordination method can be used to find a representation
of those points in a low-dimensional space.
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