
Chapter 1 Exercises 1

Data Analysis & Graphics Using R – Solutions to Selected Exercises (March 21, 2004)

Preliminaries

> library(DAAG)

Exercise 2
The following table gives the size of the floor area (ha) and the price ($000), for 15 houses
sold in the Canberra (Australia) suburb of Aranda in 1999.
. . . . . .
Type these data into a data frame with column names area and sale.price.

(a) Plot sale.price versus area.

(b) Use the hist() command to plot a histogram of the sale prices.

(c) Repeat (a) and (b) after taking logarithms of sale prices.

The Aranda house price data are also in a data frame in the DAAG package, called
houseprices.

(a) Omitted

(b) Omitted

(c) The following code demonstrates the use of the log="y" argument to cause plot
to use a logarithmic scale on the y axis, but with axis tick labels that are specified
in the original units.

> plot(sale.price ~ area, data = houseprices, log = "y", pch = 16,

+ xlab = "Floor Area", ylab = "Sale Price", main = "(c) log(sale.price) vs area")

The following puts a logarithmic scale on the x-axis of the histogram.

> hist(log(houseprices$sale.price), xlab = "Sale Price (logarithmic scale)",

+ main = "(d) Histogram of log(sale.price)")

●

●●

●

●

●

●
●

●
●

●

● ●

●

●

700 900 1100 1300

15
0

20
0

30
0

(c) log(sale.price) vs area

Floor Area

S
al

e 
P

ric
e

(d)  Histogram of log(sale.price)

Sale Price (logarithmic scale)

F
re

qu
en

cy

4.6 5.0 5.4 5.8

0
1

2
3

4
5

6

Figure 1: Plots for Exercise
2c.

Here is an alternative that prints x-axis labels in the original units:



2

> logbreaks <- hist(log(houseprices$sale.price))$breaks

> hist(log(houseprices$sale.price), xlab = "Sale Price", axes = FALSE,

+ main = "Aranda House Price Data")

> axis(1, at = logbreaks, labels = round(exp(logbreaks), 0), tick = TRUE)

> axis(2, at = seq(0, 6), tick = TRUE)

> box()

Exercise 3
The orings data frame gives data on the damage that had occurred in US space shuttle
launches prior to the disastrous Challenger launch of January 28, 1986. Only the ob-
servations in rows 1, 2, 4, 11, 13, and 18 were included in the pre-launch charts used in
deciding whether to proceed with the launch.
Create a new data frame by extracting these rows from orings, and plot total incidents
against temperature for this new data frame. Obtain a similar plot for the full data set.

Use the following to rows that hold the data that were presented in the pre-launch
charts:

> data(orings)

> orings86 <- orings[c(1, 2, 4, 11, 13, 18), ]

Points are best shown with filled symbols in the first plot, and with open symbols in the
second plot. (Why?)

Exercise 4
Create a data frame called Manitoba.lakes that contains the lake’s elevation (in meters
above sea level) and area (in square kilometers) as listed below. Assign the names of the
lakes using the row.names() function. Then obtain a plot of lake area against elevation,
identifying each point by the name of the lake. Because of the outlying observation, it is
again best to use a logarithmic scale.
. . . . . .

Note that the data are also in the data frame Manitoba.lakes that is included with the
DAAG package. Before running the code, specify

> data(Manitoba.lakes)

> attach(Manitoba.lakes)

Exercise 5
The following code extracts the lake areas from the Manitoba.lakes data frame and
attaches the lake names to the entries of the resulting vector.

area.lakes <- Manitoba.lakes[[2]]
names(area.lakes) <- row.names(Manitoba.lakes)

Look up the help for the R function dotchart(). Use this function to display the data
in area.lakes.



Chapter 1 Exercises 3

> data(Manitoba.lakes)

> area.lakes <- Manitoba.lakes[[2]]

> names(area.lakes) <- row.names(Manitoba.lakes)

> dotchart(area.lakes, pch = 16, main = "Areas of Large Manitoba Lakes",

+ xlab = "Area (in square kilometers)")

Exercise 9
Run the following code:

gender <- factor(c(rep("female", 91), rep("male", 92)))
table(gender)
gender <- factor(gender, levels=c("male", "female"))
table(gender)
gender <- factor(gender, levels=c("Male", "female")) # Note the mistake

# The level was "male", not "Male"
table(gender)
rm(gender) # Remove gender

Explain the output from the final table(gender).

The output is

gender
female male

91 92

> table(gender)

gender
male female
92 91

> gender <- factor(gender, levels = c("Male", "female"))

> table(gender)

gender
Male female

0 91

> rm(gender)

Exercise 10*
The following code uses the for() looping function to plot graphs that compare the
relative population growth (here, by the use of a logarithmic scale) for the Australian
states and territories.

oldpar <- par(mfrow=c(2,4))
for (i in 2:9){
plot(austpop[,1], log(austpop[, i]), xlab="Year", ylab=names(austpop)[i],

pch=16, ylim=c(0,10))}
par(oldpar)

Can this be done without looping? [Hint: The answer is ‘yes’, although this is not an
exercise for novices.]



4

We give the code, omitting the graphs

> oldpar <- par(mfrow = c(2, 4))

> sapply(2:9, function(i, df) plot(df[, 1], log(df[, i]), xlab = "Year",

+ ylab = names(df)[i], pch = 16, ylim = c(0, 10)), df = austpop)

> par(oldpar)

There are several subtleties here:

(i) The first argument to sapply() can be either a list (which is, technically, a type of
vector) or a vector. Here, we have supplied the vector 2:9

(ii) The second argument is a function. Here we have supplied an inline function that has
two arguments. The argument i takes as its values, in turn, the sucessive elements
in the first argument to sapply

(iii) Where as here the inline function has further arguments, they area supplied as
additional arguments to sapply(). Hence the parameter df=austpop.

Note that lapply() could be used in place of sapply().


