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Notes that are supplementary to

Data Analysis and Graphics Using R
– An Example-Based Approach

John Maindonald and John Braun

These will be updated from time to time. They were last modified on May 5, 2004.

Chapter 1

Subsection 1.1.3, page 3

In plot(ACT ~ Year, data=ACTpop), ACT ~ Year is a graphics formula. Read “Plot ACT (on the y-axis)
against Year (on the x-axis).”

Subsection 1.1.5, page 4

In using help.search(), it can help to specify a particular package, e.g.

help.search("sort", package="base")}

Subsection 1.3.2, p.7: Retaining objects between sessions

Workspace management
Use of a single working directory and a single .RData image file is likely to be adequate for working
through our scripts and exercises, and will for most users be the preferred option as they work through
the first two or three chapters. When however several different projects are in progress at the same time,
it becomes essential to find some good way to keep separate the different files and R objects. Additionally,
crucial files and objects from projects that are for the time being complete will typically be kept for future
reference or further investigation.

It therefore makes sense, as soon as readers have made some modest progress in their use of R, to
develop and practice a strategy that will be effective for later day to day use. This is especially important
for those who, alongside their use of the book, are working on their own R-based projects. We suggest the
following strategy:

◦ As suggested in Subsection 1.3.2, use a separate working directory and associated workspace file for
each separate project. For example use a directory called DAAGR for work related to this book,
and a directory called project1 for work on the first of several planned R-based projects.

◦ Impose a second level of structure by the use of multiple workspace image files, created as described
in Section 12.9.1. For example, within the directory DAAGR, create image files ch1.RData,
ch2.RData, etc., that hold user-created objects that may be required for future use once work on
a chapter is for the time being complete.

Following a strategy that uses multiple workspace image files within a single working directory, a user
who has finished working through chapter 1 might take the following actions:

## First remove objects that are not wanted, or that can easily be
## retrieved, e.g., from an R package.
rm(p, Animals, trees) # These are from 1.8.3, 1.8.4 & 1.8.5
## Next, save remaining objects in an image file.
save.image(file="ch1.RData") # Save remaining objects
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## Finally, clear the workspace, and quit.
rm(list=ls()) # Clear the workspace
q() # Quit

The user will then be asked whether the workspace is to be saved. As the workspace is at this point empty,
an affirmative answer will generate a default .RData image file in the working directory that is empty
of R objects. Thus, when a new session is started in that directory, the workspace will be empty, ready
perhaps for the objects that will be loaded or created in the course of working through Chapter 2.

At some later point, to access the objects in ch1.RData, alternatives are:

◦ Use load("ch1.RData") to load them all into the workspace.

◦ Use attach("ch1.RData") to place them on the search path.

The attaching of an image file is a useful way to gain access to one or more objects, from a much larger
number of objects in a workspace image file in another directory. Clearly the path to that other directory
must then be given along with the file name.

Copying objects into the workspace

Technically, the search path is a vector of database names, in which the workspace is placed first. An
assignment y <- x takes the first object x that appears in a database on the search path, and assigns it
to an object y in the workspace. More generally, x can be replaced by an expression. The same name can
appear on both sides of the assignment. To copy, e.g., the object olddata that is in from an attached
image file (“database”) into the workspace, type

olddata <- olddata

If there is an existing object olddata in the workspace, it must first be removed, perhaps after making a
copy of it.

Saving the command history

In systems that are set up suitably, so that the up arrow can be used to retrieve earlier commands,
the command line history is saved from one session to another. The commands savehistory() and
loadhistory() can be used to control this process. By default, the history is saved in the file .RHistory.

For explicit saving of the history at the end of every session, put a call to savehistory() into the
function .Last. Thus, if .Last does not already exist, type in:

.Last <- function()savehistory()

Section 1.5

The notation used in this section to extract columns from a data frame can be extended to allow the
extraction of any selection of columns from a data frame. For example, the data frame ACTpop that we
created and used in Section 1.1.3 has a subset of the columns of the data frame austpop in DAAG. It can
be created thus:

ACTpop <- austpop[, c(1,9)]

or

ACTpop <- austpop[, c("year","ACT")]]

The first column of the data frame that is so created has the name year, rather than Year as in Section
1.1.3.
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Relational and logical operators

These warrant more attention than they receive in Chapters 1 and 12. The notes that follow cover some
of the more important points.

Relational Operators ( <, <=, >, >=, == and !=)

For details of relational operators, see help(Comparison), help(Logic), and help(Syntax).

Logical operators ( &, |, etc.)

The logical operators & (and) and | (or) operate on vectors. They have counterparts && and || that
expect a single element; if either operand is a vector, the first element only is taken. Thus compare:

> c(T, T, F) & c(F, T, F)
[1] FALSE TRUE FALSE
> c(T, T, F) && c(F, T, F)
[1] FALSE

if and ifelse()

Chapter 1 does not discuss if statements. The only place where they appear, in the code that we give in
the book, is in the discussion of user-written functions in Subsection 12.2.2.

The function ifelse() may be regarded as a vector form of the the if statement. The comparison is
made, and the resultant action taken, for all elements of a vector. See help(ifelse).

Subsection 1.8.2: Identification and labeling of points on the figure region

More generally, the identify() function may be given a set of labels that will be plotted upon clicking
the left mouse button. Try for example:

attach(primates}
plot(Bodywt, Brainwt)
identify(Bodywt, Brainwt, row.names(primates))
## Terminate by clicking outside the plot region,
## or perhaps by clicking inside the region, but
## with a button other than the first.
detach(primates)

Section 1.9 – Functions

User-written functions appear in a relatively small number of places in this book. Though important, they
are not central to our exposition. Readers whose primary interest is in data analysis should be able to
learn what they need as occasion demands.

Section 1.7 had an example of an inline function, i.e., an unnamed function that was defined at the
point of use. The first example of the creation of a named function is in Subsection 4.1.5.

pp.26-28, Section 1.11

Additional Exercise

11. From the data frame austpop, extract a data frame that excludes the information for ACT and NT.
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Chapter 2

p.39, Figures 2.10 and 2.11

It is unfortunate that Figures 2.10 and 2.11, which were intended to appear in color, are printed in black
and white. Figures 2.10 and 2.11 will need to be redrawn in color, or with a different choice of symbols
for different levels of target (Figure 2.10) or different levels of tint (Figure 2.11), for the comments that
follow to make visual sense.

Comparisons between the four panels of these graphs are comparisons between different individuals.
Each person is represented seven times in each panel, once for each combination of tint with target other
than no tinting with high contrast target, which occurs twice. Thus the graphs exaggerate the strength of
the evidence for differences between panels. Comparisons between different levels of tinting, or between
the two contrasts, are made within individuals, and the graphs do not exaggerate the evidence for these
differences. The problem is inherent in graphs that present data where there is more than one level of
variation. Proper interpretation of the graph must have regard to the structure of variation within the
data. There is further discussion below, in connection with the analysis of these data on pp.239-242.

pp.50-51, Section 2.6 – Exercises

Exercise 1

As worded in the first printing, this has some of the elements of a trick question!
The second graph demonstrates an unsatisfactory and misleading choice of breaks. This is most easily

seen by tabulating the frequencies for the two graphs, thus:

table(cut(possum$age, breaks=0:9)) # For comparison
table(cut(possum$age, breaks=c(0,1.5,3,4.5,6,7.5,9)))

For the second graph, the ages fall into groups 1, (2,3), 4, (5,6), 7, and (8,9). The category (0, 1.5] catches
just 1 year olds, the category (1.5, 3] catches ages 2 and 3, and so on. Thus the histogram that has breaks
at intervals of 1.5 years is misleading.

Exercise 2

A problem with the simple form of density plot is that it has a non-zero density for ages less than one.
This can be fixed by changing the code to, e.g.

plot(density(possum$age, na.rm=T, from=0.5), main="")

Chapter 3

Subsection 3.3: The use of random numbers

An important application, to the simulation of data that follow a presumed model, is not mentioned.
One way to check the distribution that was assumed for the random part of the model is to repeatedly

simulate data values from that distribution, for comparison with the distribution of residuals obtained
from fitting the model to the actual data. This approach will be demonstrated in Section 3.4.

More generally, data that follow the model may be repeatedly simulated, fitting the mode to each set
of simulated data. The fits to the simulated data should yield model parameters that are comparable
with those that were fitted to the actual data. Repeated fits to simulated data may be used to get an
indication of the sampling variability in model parameters. This can be especially useful in cases where
the theoretical distributions are not known.
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Chapter 4

Subsection 4.4.1

The calculation of residuals can be done more directly, thus:

## Calculate standardized ("Pearson") residuals
x2 <- chisq.test(rareplants)
round(residuals(x2), 3) # Pearson residuals are the default

Analysis of variance – Section 4.5

This is the first of three places in the book that discusses the analysis of data from designed experi-
ments. Section 7.1 is designed to give insight into technical aspects of the handling of analysis of variance
calculations. Sections 9.3 and 9.4 discuss models where there is more than one level of variation.

pp.103-106, Section 4.12 – Exercises

Exercise 3

Add: (i) If the null hypothesis is true, from what distribution are these p-values drawn. Plot the ordered
p-values against the quantiles of the relevant distribution, perhaps using qqplot().

(ii) *Modify the function so that each random value y in the sample of 10 is replaced by exp(y − 1).
Repeat the calculation of 50 independent p-values. (Use t.test(), even though the null distribution will
now be a little different from the t-distribution.) Plot the ordered t-statistics against the quantiles of the
same reference distribution as in (i). Repeat this several times. Is there any indication that the p-values
may not have the assumed null distribution?

(iii) Repeat (ii), but now calculating and plotting 1000 independent p-values.

Exercise 5

Add: *Repeat this calculation a number of times, comparing the variances that are obtained with 2/n,
where n = 50. Is the variance, on average, bigger or smaller than 2/n.
(The correct comparison is with 2(n−1)

n2 . There is a correlation of 0.5 between successive pairs of values of
y1.)

Exercise 10

Add: Repeat the creation of the overlaid density plots, but now replacing the sample values by random
values from a Normal distribution. Repeat this a number of times. Do the density plots from the elastic
band data lie within the range of variation observed for the simulated data sets?

Exercise 12

Add: Perform an analysis of variance calculation that will check whether the height differences seem to
be different for different pots.

Chapter 5

Subsection 5.1.3, page 111

## Most simply, use the function qreference() (DAAG package)
qreference(residuals(roller.lm), nrep=8, nrows=2)
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Subsection 5.3.3, pp.118-119

The line in the left panel of Figure 5.9 is for the data set elastic2, while that in the right panel is for the
data set elastic1. The following code gives a figure that is very similar to Figure 5.9:

panelci<-function(x, y)
{

elastic.lm <- lm(y~x)
pred <- predict(elastic.lm, interval="confidence")
ord<-order(x)
llines(x[ord], pred[ord, "fit"], lty=1, lwd=2)
llines(lowess(x[ord], pred[ord, "upr"]), lty=2, lwd=2, col="grey")
llines(lowess(x[ord], pred[ord, "lwr"]), lty=2, lwd=2, col="grey")

}
library(DAAG)
if(!exists("elastic2"))data(elastic2)
if(!exists("elastic1"))data(elastic1)
elastic <- rbind(elastic2,elastic1)
trial <- rep(c("Range of stretch 30-60 mm","Range of stretch 42-54 mm"),

c(dim(elastic2)[1],dim(elastic1)[1]))
elastic$trial <- trial
xyplot(distance ~ stretch | trial, data=elastic,

xlab="Amount of stretch (mm)", ylab="Distance moved (cm)",
panel=panelci, aspect=1)

p.132, Section 5.11, Exercises

Exercise 4

To convert degrees Celsius to degrees kelvin, add 273.15 ' 273. A logarithmic transformation is too
extreme if pressure is not also transformed. A good starting point is the Clausius-Clapeyron equation
that relates vapor pressure to temperature. Look up information on this equation on the web.

In the list of corrections, we have reworded this question.

Chapter 6

Analysis of the hills data; Section 6.3.3, pp.147-152

A final check should be to examine the component plus residual plots, as in Figure 6.6. Here is suitable
code:

hills.lm <- lm(log(time) ~ log(climb)+log(dist), data=hills[-18,])
b1 <- hills.lm$coef[2]
b2 <- hills.lm$coef[3]
plot(log(hills$climb[-18]),

b1*log(hills$climb[-18])+residuals(hills.lm))
panel.smooth(log(hills$climb[-18]),

b1*log(hills$climb[-18])+residuals(hills.lm))
plot(log(hills$dist[-18]),

b2*log(hills$dist[-18])+residuals(hills.lm))
panel.smooth(log(hills$dist[-18]),

b2*log(hills$dist[-18])+residuals(hills.lm))

There is noticeable curvature in both the plots. This can be accommodated using the regression spline
methodology of chapter 7.
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An alternative to the use of component plus residual plots is the use of plots of partial residuals, using
termplot():

hills.lm <- lm(log(time) ~ log(climb)+log(dist), data=hills[-18,])
termplot(loghills.lm, partial=T, smooth=panel.smooth, col.term=0)

Use of col.term=0 suppresses the line that otherwise appears.

Section 6.6 – Measures for the Comparison of Regression Models

Miller (2002) discusses a number of other measures, additional to those that we consider, with relevance
to variable selection.

Section 6.6 – Problems with Many Explanatory Variables

Miller (2002) has extensive discussion of the issues that we consider, with attention to such theoretical
results as are available. We have largely bypassed that discussion, moving directly to the use of resampling
methods (cross-validation and the boostrap) to assess predictive accuracy. A weakness of Miller’s account,
from our perspective, is that it does not have regard to the frequent demand to transform variables prior
to entering them into the regression equation. In this connection, we have relied heavily on ideas that
are presented in Cook and Weisberg (1999), which Miller does not discuss. Variable selection cannot be
totally separated from model selection.

The Use of Cross-Validation in Model Selection
We mention the use of cross-validation in variable selection. An issue here is the choice of number of folds.
Hastie et al (2001) suggest five-fold or ten-fold cross-validation, as a good compromise. Leave-one-out
cross-validation, where there are as many folds as there are data values, gives estimates that are unbiased
for all except one of the data values. With a smaller number of folds, the estimates are biased downwards,
perhaps with different biases for different subsets of variables or for subsets that are of different sizes.

In the discussion of tree-based regression in chapter 10, cross-validation will determine the number of
splits.

References for Further Reading

Miller, A.J. 2002. Subset Selection in Regression. Chapman & Hall/CRC, 2nd edn.

pp.172-174, Section 6.10: Exercises

Exercise 9

In the list of corrections, we suggest omission of the final 3+ lines, i.e. of
“Are there any advantages . . . the diagnostic plots.”
(It adds little to what has gone before.)

Additional Exercise

10. Values in the data frame carprice can be calculated thus:

data(Cars93)
US <- Cars93$Origin=="USA"
carprice <- Cars93[US, c("Type", "Min.Price","Price","Max.Price")]
carprice$Range.Price <- carprice$Max.Price - carprice$Min.Price
carprice$Range.Price <- round(carprice$Range.Price, 1)
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carprice$RoughRange <- carprice$Range.Price+rnorm(48, sd=0.01)
carprice$RoughRange <- round(carprice$RoughRange, 2)
avMPG <- apply(Cars93[US, c("MPG.city","MPG.highway")], 1, mean)
carprice$gpm100 <- round(100/avMPG, 1)

Examine how the coefficients in the model objects carprice1.lm, carprice2.lm and carprice.lm
change when

(i) Values of RoughRange are recalculated. Do this several times.

(ii) Range.Price and gpm100 are each rounded to two decimal places, rather than to one decimal
place.

Chapter 9

Note: Data frames in the nlme package

Note that factors that appear in data frames that are in the nlme package are ordered. A consequence is
that, for use of the relevel() function, they must first be turned into unordered factors. For example

library(nlme); data(ergoStool)
ergoStool$Subject <- factor(ergoStool$Subject, ordered=FALSE)
ergoStool$Subject <- relevel(ergoStool$Subject, ref="1")

pp.239-242: Analysis of the tinting data

Following on from the comments in the final two lines on p.240, note that none of the main effects and
interactions involving agegp and sex are significant at the conventional 5% level, though agegp comes close.
This seems inconsistent with Figures 2.10 and 2.11, where it is the older males who seem to have the longer
times. On the other hand, the interaction terms (tint.L:agegpsenior, targethicon:agegpsenior,
tint.L:targethicon and tint.L:sexm) that are statistically significant stand out much less clearly in
Figures 2.10 and 2.11.

To understand the reason for this, it may help to look at the relative amounts of evidence for the two
different sets of comparisons, and at the consequences for the standard errors in the table of computer
output on p.241.

• Numbers of individuals:

> attach(tinting)
> uid <- unique(tinting$id)
> subs <- match(uid, tinting$id)
> table(sex[subs], agegp[subs])

younger older
f 9 4
m 4 9

Standard errors in the computer output on p.241, for comparisons made at this level, are in the
range 0.23 - 0.32.

• Numbers of comparisons between levels of tint or target: Each of these comparisons is
made at least as many times as there are individuals, i.e., at least 26 times. Standard errors in the
computer output on p.241, for comparisons made at this level, are in the range 0.042 - 0.058.
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p. 245, Subsection 9.5.3, The general AR(p) model

Note that, as defined here, σ2 is the variance of the independent and identically distributed innovations
εt. For the Lake Huron data under the AR(1) model, σ̂2 = LH.mle$var.pred = 0.509, while under the
AR(2) model LH.mle$var.pred = 0.479. Contrast these with var(LakeHuron) = 1.738.

Additional Note

It may be shown that, for an AR(1) process

var[Xt] = σ2/(1− α2)

Note also that, for an AR(1) process

E[
∑

(Xi − X̄)2

n− 1
] ' n− 1− α

n− 1
' σ2

Further Reading

The range of time series abilities that are available in R is extensive. Depending on what is required,
it may now be the system of choice for time series analysis. Apart from the ts package and the gls()
function in nlme see: pear, for periodic autoregressive models, including methods for plotting periodic
time series; fracdiff, for fractionally differenced ARIMA “long memory” processes, where the correlation
between time points decays very slowly as the points move apart in time; strucchange, for estimating
and testing for change points; and the bundle of packages dse1, dse2, dsepadi, syskern, and tframe, for
multivariate ARMA, for state space modeling, and associated forecasting.

As our discussion has indicated, ARIMA processes provide an integrated framework that include AR
and ARMA processes as special cases. Their use in time series modeling and forecasting was popularized
by Box and Jenkins in the late 1960s; hence they are often called Box-Jenkins models.

State space modeling approaches, which are now coming into wide use, are an important alternative.
They provide a theoretical basis for the widely popular exponential forecasting methodology, and for
various extensions of exponential forecasting. See Ord et al (1997) and Hyndman et al (2002). These
approaches are intuitively appealing because they discount information from the remote past. Hyndman
et al give an interesting and insightful comparison of a number of different forecasting approaches, in which
methods of this type do well. Methods of this type are implemented in the StructTS() and HoltWinters()
functions in the ts package.

References for Further Reading

Time Series

Hyndman, R.J., Koehler, A.B., Snyder, R.D. and Grose, S. 2002. A state space framework for
automatic forecasting using exponential smoothing methods. International Journal of Forecasting
18: 439-454.

Ord, J.K., Koehler, A.B., Snyder, R.D. 1997. Estimation and prediction for a class of dynamic
nonlinear statistical models. Journal of the American Statistical Association 92: 1621-1629.

p.258, Section 9.10 – Exercises

Exercise 3

Assume for the purposes of this calculation that σ is known. See the list of corrections.
The following results are relevant to the more usual case where σ is unknown:
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• As defined on p.244, σ2 is the variance of the innovation εt, not the variance of the observations Xt.
[The variance of Xt is σ2

1−α2 .]

• The statistic
P

(Xt−X̄)2

n−1−α ('
P

(Xt−X̄)2

n−1 providing that n >> 1 + α) is an almost unbiased estimate of
var[Xt].]

Additional Exercises

9.* Use the arima.sim function in the ts library to simulate 100000 values from an AR(1) process with
α = −.5. Now break this up in to 1000 series of length 100. If x is the series, a straightforward way
to do this is to set

xx <- matrix(x, ncol=1000}

Now use the function apply() (Section 12.7.2) to find the means for each of these series of length
100. Compare ∑

(Xt − X̄)2

n− 1

with var[X̄] estimated from the formula σ2

n(1−α)

For comparison, check the effect of using var[X]
n to estimate the variance. First calculate the ordinary

sample variance for each of our 1000 series. Then compute the average of these variance estimates
and divide by the sample size, 100. (This gives a value that is also close to that predicted by the
theory, roughly three times larger than the value that was obtained using the correct formula.)

10. Sugar content in cereal is monitored in two ways: a lengthy lab analysis and by using quick, inex-
pensive high performance liquid chromatography. The data in frostedflakes (DAAG)come from
101 daily samples of measurements taken using the two methods.

(i) Obtain a vector of differences between the pairs of measurements.

(ii) Plot the sample autocorrelation function of the vector of differences. Would an MA(1) model
be more realistic than independence?

(iii) Compute a confidence interval for the mean difference under the independence assumption and
under the MA(1) assumption.

Chapter 11

Section 11.4: Propensity Scores in Regression Comparisons – Labor Training Data

Our conclusions are a little different from the conclusions that might result from a perusal of the Lalonde
(1986) and Dehejia and Wahba (1999) papers. In Section 6.5, a careful use of regression methods reached
a conclusion that was broadly in line with the result from the experimental data. The advantage of the
propensity score method, for these data, is that it allows a simpler and more consistent rationale for the
eventual choice of observations to exclude, and that it greatly improves the effectiveness of diagnostic
plots as tools for checking the adequacy of the model. It was however necessary to screen observations
before proceeding to the calculation that determined the propensity scores. Unless explanatory variables
have approximately linear relationships, and the “true” propensities are a linear function of the scores,
the methodology cannot be expected to work well.

There is an element of arbitrariness in the extent of overlap demanded between the two distributions.
Sensitivity analysis, checking how robust results are to the choices of cut-off point at the different stages
of the analysis, is essential.
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Other methods – Support Vector Machines

Support vector machines have recently come into prominence. The e1071 package in R handles the fitting
of Support Vector Machines. Meyer et al (2003) use a number of different data sets to compare Support
Vector Machines with other approaches.

Section 11.5: Further Reading

Computationally, principal components analysis uses the a principal components form of matrix decom-
position, applied to a variance-covariance or correlation matrix. The variance-covariance matrix has the
form X ′X, where X is derived from the observations by variables matrix by subtracting off means in each
column. For calculations with the correlation matrix, values in each column must, additionally, be scaled
so that the squared values sum to 1.0.

Equivalently, it is possible to work directly with a version of X, and apply the singular value decom-
position. This leads to a different form of description of the analysis. As an example, see Booth et al
(2002), where the singular value decomposition is applied to a matrix that gives, for each of a number
of age categories, mortalities for each of the years 1907-1999 or (for some of the analyses) 1968-1999. In
the “Lee-Carter” methodology that is described and critically evaluated in that paper, scores on what is
really the first principal component are used, after an adjustment that better reproduces the total number
of deaths in any year, as a basis for mortality projections into the future.

Functional data analysis is an extension of such an approach.

References for further reading

Booth, H., Maindonald, J., and Smith, L. 2002. Applying Lee-Carter under conditions of variable
mortality decline. Population Studies, 56: 325-336.

Meyer, D., Leisch, F., and Hornik, K. 2003. The Support Vector Machine under test. Neurocom-
puting 55: 169-186

pp.298-299, Section 11.6 – Exercises

In these exercises, we use the function overlap.density() Be sure to use the corrected version, which
first appeared in version 0.34 of DAAG. Notice that the former argument frac has now become, more
accurately, ratio.

Exercise 1

For each principal component in turn (i = 1, 2, 3 are as many as are likely to be useful), the comparison
can be made graphically. For example, starting with the first principal component, plot the loadings for
females against the loadings for all data combined, and plot the loadings for males against the loadings
for all data combined, on the sample graph. Alternatively, the loadings for males can be plotted against
the loadings for females.

Additional Exercise – continuation of Exercise 1

It would be useful to know whether differences that are observed in Exercise 1 are greater than would be
expected as a result of sampling variation. One way to check is to sample from a multivariate normal
population that has the same variance-covariance structure as the possum population. One sample of 42
observations is labeled “females”, and another sample of 59 is labeled “males”. The principal components
are calculated and, as for the possum data itself, compared graphically. The function rmvnorm in the
mvtnorm package may be used to generate repeated samples from a multivariate normal distribution.
The parameter n is the sample size, and sigma is the variance-covariance matrix. The function returns a
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matrix with with n rows, and with as many columns as there are variables. See the solutions to exercises
for details.

Exercise 2

Note the correction. For principal component read, on each occurrence, discriminant function.

Chapter 12

Section 12.1: colors

The RColorBrewer package offers palettes are suitable for use where colors are used to distinguish different
areas of space or different points in a graph. After installing the package, type in

library(RColorBrewer)
display.brewer.all()
display.brewer.all(name="div") # divergent palettes
display.brewer.all("qual") # qualitative palettes
display.brewer.all("seq") # sequential palettes

A rationale for the choice of colors in the palettes, examples of their use, and references, may be found on
the web site http://colorbrewer.org from which the palettes have (with permission) been taken.

Subsection 12.3.1: read.table()

Note also the use of the quiet and skip arguments. The quiet argument is, by default, set to FALSE, in
which case, scan() prints a line showing how many items of data have been read. The skip argument
tells scan() how many lines of the input file to omit before beginning reading in items.

p.310, Subsection 12.2.3: Functions for working with dates

In version 1.9.0, the date package has been superseded by functions for working with dates that are
in R base. See help(Dates), help(as.Date) and help(format.Date) for information. The document
“Changes with R-1.9.0” has a brief summary.

pp.324-327, Section 12.7: Matrices and Arrays

Note the following matrix operations:

X + Y # Element-wise addition (X & Y both n by m)
X * Y # Element-wise multiplication
X %*% B # Matrix multiplication (X is n by k; B is k by m)
solve(X, Y) # Solve XB = Y

Computational Speed

Here is a comparison of matrix computations with the equivalent computations with data frames.

> xy <- matrix(rnorm(500000),ncol=50)
> dim(xy)
[1] 10000 50
> system.time(xy+1)
[1] 0.05 0.00 0.08 0.00 0.00
> xy.df <- data.frame(xy)
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> system.time(xy.df+1)
[1] 3.24 0.00 8.23 0.00 0.00

The two non-zero numbers are of interest. The first is processor time and the second is elapsed time. The
above was on a 4Mhz Macintosh G4 laptop with 768MB of random access memory.

For a comparison of R 1.9.0, Matlab 6.2, S-PLUS 6.1, O-matrix 5.6, Scilab 2.7, Octave 2.1.42 and Ox
3.30, go to
http://www.sciviews.org/other/benchmark.htm

pp.334-337, Section 12.12: Exercises

Exercise 8

The list of corrections suggests a rewording that makes this a more satisfactory question.

Exercise 11

Note the reworded version of this question that is in the list of corrections.

Section 12.12: Additional exercise

12. The match() function and the %in% operator offer alternative ways to extract, from the cuckoos
data frame (DAAG), rows that relate to wrens and robins. Demonstrate these alternatives.


