Data Analysis & Graphics Using R, 2nd edn – Solutions to Exercises (December 13, 2006)

Preliminaries

> library(DAAG)
> library(rpart)

Exercise 1

Refer to the head.injury data frame.

(a) Use the default setting in rpart() to obtain a tree-based model for predicting occurrence of clinically important brain injury, given the other variables.

(b) How many splits gives the minimum cross-validation error? Prune the tree using the 1 standard error rule.

(a) > set.seed(29)
 > injury.rpart <- rpart(clinically.important.brain.injury ~ .,
 + data = head.injury, method = "class", cp = 1e-04)
 > plotcp(injury.rpart)
 > printcp(injury.rpart)

Classification tree:
 rpart(formula = clinically.important.brain.injury ~ ., data = head.injury,

Variables actually used in tree construction:
[1] GCS.13 GCS.15.2hours age.65
[4] amnesia.before basal.skull.fracture high.risk
[7] loss.of.consciousness vomiting

Root node error: 250/3121 = 0.080103

n= 3121

CP nsplit rel error xerror xstd
1 0.0400 0 1.000 1.000 0.060660
2 0.0360 2 0.920 0.992 0.060438
3 0.0140 3 0.884 0.896 0.057678
4 0.0080 5 0.856 0.904 0.057915
5 0.0001 10 0.816 0.916 0.058268

The setting cp=0.0001 was reached after some experimentation.

(b) The minimum cross-validated relative error is for nsplit=3, i.e., for a tree size of 4.

(c) The one-standard-error rule likewise chooses nsplit=3, with cp=0.014. Setting cp=0.02, i.e., larger than cp for the next smallest number of splits, will prune the tree back to this size. We have

 > injury0.rpart <- prune(injury.rpart, cp = 0.02)
We plot the tree from (a) that shows the cross-validated relative error, and the tree obtained from (c).

![Plot of cross-validated relative error versus cp](image1)

There can be substantial change from one run to the next.

Exercise 2
The data set `mifem` is part of the larger data set in the data frame `monica` that we have included in our `DAAG` package. Use tree-based regression to predict mortality in this larger data set. What is the most immediately striking feature of your analysis? Should this be a surprise?

```r
> monica.rpart <- rpart(outcome ~ ., data = monica, method = "class")
> plot(monica.rpart)
> text(monica.rpart)
```

![Classification tree for monica data](image2)

Those who were not hospitalised were very likely to be dead! Check by examining the table:

```r
> table(monica$hosp, monica$outcome)
   live  dead
y 3522  920
n   3 1922
```
Exercise 3

Use tree-based regression to predict re78 in the data frame nsw74psid1 that is in our DAAG package. Compare the predictions with the multiple regression predictions in Chapter 6.

In order to reproduce the same results as given here, do:

```r
> set.seed(21)
```

Code for the initial calculation is:

```r
> nsw.rpart <- rpart(re78 ~ ., data = nsw74psid1, cp = 0.001)
> plotcp(nsw.rpart)
```

It is obvious that cp=0.002 will be adequate. At this point, the following is a matter of convenience, to reduce the printed output:

```r
> nsw.rpart <- prune(nsw.rpart, cp = 0.002)
> printcp(nsw.rpart)
```

Regression tree:
```
rpart(formula = re78 ~ ., data = nsw74psid1, cp = 0.001)
Variables actually used in tree construction:
 [1] age  educ  re74  re75
Root node error: 6.5346e+11/2675 = 244284318
```

```
    CP nsplit rel error  xerror  xstd
 1 0.3446296   0 1.00000 1.00067 0.046287
 2 0.1100855   1 0.65537 0.66461 0.038977
 3 0.0409403   2 0.54528 0.55811 0.033004
 4 0.0317768   3 0.50434 0.51821 0.035244
 5 0.0158188   4 0.47257 0.50636 0.034622
 6 0.0105727   5 0.45675 0.49139 0.034688
 7 0.0105337   6 0.44618 0.48453 0.034527
 8 0.0063341   7 0.43564 0.46901 0.032502
 9 0.0056603   8 0.42931 0.46028 0.032969
10 0.0038839   9 0.42365 0.46133 0.033142
11 0.0035516  10 0.41976 0.46238 0.033096
12 0.0031768  11 0.41621 0.47329 0.033838
13 0.0028300  12 0.41304 0.47544 0.033675
14 0.0027221  13 0.41021 0.47495 0.033776
15 0.0023286  15 0.40476 0.47570 0.033783
16 0.0020199  16 0.40243 0.47642 0.033609
17 0.0020000  17 0.40041 0.47715 0.033851
```

The minimum cross-validated relative error is at nsplit=12. The one standard error limit is 0.498 (=0.463+0.035). The one standard error rule suggests taking nsplit=5.

If we go with the one standard error rule, we have a residual variance equal to 244284318 × 0.49177 = 120131699.

For the estimate of residual variance from the calculations of Section 6.x, we do the following.
> attach(nsw74psid1)
> here <- age <= 40 & re74 <= 5000 & re75 <= 5000 & re78 < 30000
> nsw74psidA <- nsw74psid1[here,]
> detach(nsw74psid1)
> A1.lm <- lm(re78 ~ trt + (age + educ + re74 + re75) + (black +
+ hisp + marr + nodeg), data = nsw74psidA)
> summary(A1.lm)$sigma^2

[1] 40177577

The variance estimate is 40177577. This is about a third of the variance estimate that was obtained with tree-based regression.

Exercise 4
Copy down the email spam data set from the web site given in Section 10.2. Carry out a tree-based regression using all 57 available explanatory variables. Determine the change in the cross-validation estimate of predictive accuracy.

We set the random number seed to 21, to allow users to reproduce our results. In most other contexts, it will be best not to set a seed. The file spam.shortnames is available for copying from the web address http://www.maths.anu.edu.au/~johnm/r-book/xtra-data. The data frame spam is created thus:

> spam <- read.table("spambase.data", header = FALSE, sep = ",")
> nam <- scan("spam.shortnames", what = "")
> names(spam) <- nam

Now load rpart and proceed with the calculations.

> set.seed(21)
> spam.rpart <- rpart(yesno ~ ., data = spam, cp = 1e-04, method = "class")
> printcp(spam.rpart)

Classification tree:
rpart(formula = yesno ~ ., data = spam, method = "class", cp = 1e-04)

Variables actually used in tree construction:
 [1] address bang crl.av crl.long crl.tot data
 [7] dollar edu email font free george
 [13] hp internet lefparen money n1999 n650
 [19] our over re remove semicolon technology
 [25] will you your

Root node error: 1813/4601 = 0.39404

n= 4601

CP nsplit rel error xerror xstd
1 0.47655819 0 1.00000 1.00000 0.0182819
2 0.14892443 1 0.52344 0.55819 0.0154972
3 0.04302261 2 0.37452 0.46001 0.0144131
4 0.03088803 4 0.28847 0.32212 0.0124547
5 0.01047987 5 0.25758 0.27910 0.0117052
Figure 3 shows the graph that is obtained by plotting this tree. For making a decision on the size of tree however, it is convenient to work from the information given by the function `printcp()`.

\begin{verbatim}
> plotcp(spam.rpart)
\end{verbatim}

![Figure 3: Plot of cross-validated relative error versus cp, for the full spam data set.](image)

Setting \(cp=0.0001\) ensures, when the random number seed is set to 21, that the cross-validated relative error reaches a minimum, of 0.1958, at \(nsplit=43\). Pruning to get the tree that is likely to have best predictive power can use \(cp=0.001\). Adding the SE to the minimum cross-validated relative error gives 0.2. The smallest tree with an SE smaller than this is at \(nsplit=36\); setting \(cp=0.0012\) will give this tree.

Here then are the two prunings:

\begin{verbatim}
> spam.rpart1 <- prune(spam.rpart, cp = 0.001)
> spam.rpart2 <- prune(spam.rpart, cp = 0.0012)
\end{verbatim}

Additional Exercises A number of additional exercises are included in the laboratory exercises that are available from the web page http://www.maths.anu.edu.au/~johnm/courses/dm