
Supplementary Notes

Data Analysis and Graphics Using R
– An Example-Based Approach

John Maindonald and John Braun

These will be updated from time to time.

Chapter 2

Use of xyplot() to plot columns in parallel

Where column names on the left or right of the equation are separated by a plus sign (+), the plot is done
in parallel for all the columns that are specified. This makes it possible, in the code for Figures 2.9A and
2.9B, to work directly from the jobs. The following code is for Figure 2.9A:

xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ Date, data=jobs,
ylab="Number of jobs", type="l")

The default is to overlay the plots on the one panel, as here. The approach that is demonstrated on p.433
(Subsection 14.3.4) might be used to add labels to the end of each line. Below, there is a note in connection
with Subsection 14.3.4 that gives details.

The argument outer=TRUE gives separate panels, as in Figure 2.9B. In the following, data are plotted
on a sliced logarithmic scale:

xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ Date, data=jobs,
type="l", layout=c(3,2),
scales=list(y=list(relation="sliced", log=TRUE)), outer=TRUE)

Finally, the following modifies the code in Footnote 7 on page 56 to use the + operator and work
directly from the jobs data frame. Additionally, a date object is plotted on the x-axis, and labels of the
form Jan95 are specified. The y-axis labels show both the numbers and values on a loge scale:

ylabpos <- exp(pretty(log(unlist(jobs[,-7])), 100))
ylabels <- paste(round(ylabpos),"\n(", log(ylabpos), ")", sep="")
Create a date object ’startofmonth’; use this instead of ’Date’
startofmonth <- seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="1 month", length=24)
atdates <- seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=4)
datelabs <- format(atdates, "%b%y")
xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ startofmonth,

data=jobs, type="l", layout=c(3,2),
scales=list(x=list(at=atdates, labels=datelabs),

y=list(relation="sliced", log=TRUE,
at=ylabpos, labels=ylabels)),

ylab="Number of workers",
outer=TRUE)

1

Chapter 4

Section 4..4: Analysis of variance

The statement on p.121 that “the analysis of variance table is obtained using the anova() function” is
cryptic. As the code makes clear, the functions anova() and aov() are used in tandem. First, aov()
is used to fit the analysis of variance model. The anova() function is then called with the resulting aov
object as argument.

Here, aov() is used to fit a one-way classification model. The result of the model fit is to give the
mean for each treatment level as the fitted value for that level. The function anova() is used with an aov
or lm object as argument, to give an analysis of variance table.

One-way classification (or other aov) models can equivalently be fitted using lm(), as explained on
page 242. The default output is then different.

Chapter 6

Subsection 6.8.1 – Errors in x

This subsection discusses just one of a variety of possible “errors in x” models, described in Carroll (2006)
as the “classical” model. See Carroll (2006, pp. 49-52) for a summary of different types of models that
have been proposed.

Multiple and orthogonal regression are discussed very briefly in the final paragraph on p. 209, again
with reference to the classical model. Attenuation of regression coefficients is not the only possibility. As
a simple example, suppose that one variable only is measured with error. Its coefficient is attenuated,
while the coefficients of other variables may be reversed in sign, or show an effect when there is none. See
Carroll (2006, pp. 52-55) for summary comment. Some further details follow.

Regression with a single covariate

Consider first regression with a single covariate. Under the classical model errors in explanatory variables,
if they are sufficiently extreme, have two effects:

1. Estimates of the coefficient will be reduced, relative to the coefficient for the variable that is measured
without error.

2. Very large samples may be required to show a statistically detectable coefficient.

The model is
y = α+ βx+ ε

We measure, not x, but w = x+ u, where u is “measurement error”.
Now assume that w is unbiased for x and that u is independent of x and ε.
Then, conditional on x, instead of

β̂ =
∑

(x− x̄)(y − ȳ)∑
(x− x̄)2

we have

β∗ =
∑

(w − w̄)(y − ȳ)∑
(w − w̄)2

Then
E[

∑
(w − w̄)(y − ȳ)] =

∑
(x− x̄)(y − ȳ)

2

This happens because y is independent of u.

E[
∑

(w − w̄)2] = E[
∑

(x− x̄ + u− ū)2]

=
∑

(x− x̄)2 +
∑

(u− ū)2

= (n− 1)σ2
x + (n− 1)σ2

u

Then β∗ is a consistent estimate of λβ, where

λ =
σ2
x

σ2
x + σ2

u

One covariate measured with error; others without error

The coefficient of the variable that is measured with error is attenuated, as in the single variable case. The
coefficients of other variables may be reversed in sign, or show an effect when there is none. See Carroll
(2006, pp. 52-55) for summary comment.

Suppose that
y = βxx + βzz + ε

If w is unbiased for x and the measurement error u is independent of x and z, then least squares regression
yields a consistent estimate of λβx

λ =
σ2
x|z

σ2
x|z + σ2

u

The σ2
x that appears in the single covariate case is replaced by σ2

x|z.
A new feature is the bias in the least squares estimate of βz. The naive least squares estimator estimates

βz + βx(1− λ)γx|z (1)

where γx|z is the coefficient of z in the least squares regression of x on z. The least squares estimate may
be non-zero value even though βz = 0. Where βz 6= 0 , the least squares estimate may, depending on the
relative values of βz, βx and λ be reversed in sign from βz.

Where there are multiple explanatory variables that are measured without error, equation 1 can be
applied to each of them in turn.

One covariate measured without error – a simulation exercise

Here is an exercise that illustrates how measurement error in one variable may lead to a spurious effect for
a variable that is measured without error. The code simulates data in which the regression relationship
y = 2.5 + 1.5x is the same in each of two groups, which we call CTL and TRT. The plot identifies the two
fitted lines. These are, to within statistical error, identical:

‘errorsINxGP‘ <-
function(n=1000, xshift=1.25, a=2.5, b=1.5,

gpSDx=2, yerr=0.5, sdRatio=1.5){
xshift is the difference in mean value of x, between ctl and TRT

xraw <- rnorm(2*n, 12.5, gpSDx)
df <- data.frame(x=rnorm(2*n, 12.5, gpSDx) + rep(c(0,xshift), c(n,n)),

trt = rep(c("CTL", "TRT"), c(n,n)))
df$y <- a + b*df$x + rnorm(2*n, sd=yerr)
b is the slope of the regression line of y on the "true" x

Now add random error to each of the x-values, thus:
gpSDx is the conditional SD of x, given the treatment groups

df$xWITHerr <- df$x + rnorm(2*n, sd=sdRatio*gpSDx)

3

sdRatio is the ratio of the measurement error SD to SDx
b <- lm(y ~ trt+x, data=df)$coef
B <- lm(y ~ trt+xWITHerr, data=df)$coef
atten <- 1/(1+sdRatio^2) # Theoretical attenuation
cat("\n", "Attenuation, simulated model =", round(atten,3))
cat("\n", "Slope Estimates - On x:", round(b[3],3), " On xWITHerr:",

round(B[3],3), "\n")
cat("\n", "Estimated group effect - Reg on x", round(b[2],3),

" Reg on xWITHerr", round(B[2],3), "\n")
plt <- xyplot(y ~ x+xWITHerr, data=df, groups=trt,

panel=function(x,y,...){
panel.superpose(x,y,type="p",...)
subs <- list(...)$subscripts
fac <- list(...)$groups[subs]
gps.lm <- lm(y~fac+x)
hat <- fitted(gps.lm)
panel.superpose(x,y=hat,type="r",...)

},
auto.key=list(columns=2)
)

print(plt)
invisible(df)

}

The left panel shows the regression lines when x is measured without error. The right panel shows the
fitted regression lines when random error of the same order of magnitude as the within groups variation
in x is added to x, giving the column of values xWITHerr. The default argument n=1000 gives results
that are close to the theoretical lines. Whereas the lines that appear in the left panel can be expected to
overlap, those in the right panel are distinct. The “measurement” error in x leads to a spurious treatment
(or group) effect.

(a) Run the function for several different values of xshift in the interval (0,1.5), and plot the estimate
of the treatment effect (identified in the output as trtTRT) against xshift.

(b) Run the function for several different values of sdRatio in the interval (0,1.5) and plot the estimate
of the treatment effect against xshift.

(c) Run the function with b = -1.5. How does the estimate of the treatment effect change, as compared
with b = 1.5? Explain the change.

Chapter 8

Fitted and Predicted values for GLMs

Page 246 introduces the notation
f (E[y]) = α+ βx

where f() is the link function. In the fitted model, α+βx is the linear predictor, while E[y] is the expected
value of the response.

Thus, for a logistic regression model

f(π) = log(
π

1− π
)

where π is the expected proportion.

4

For GLMs, there are two “types” of predicted values. The function fitted() delivers fitted values on
the scale of the response. The text does not mention, however, the use of predict() to get fitted values
on the scale of the linear predictor.

The following uses the example on the first three lines of page 250, where we had

anes.logit <- glm(nomove ~ conc, family=binomial(link="logit"),
data=anesthetic)

Scale used Logistic regression Code Used in R

response (type="response") π = E[p] predict(anes.logit, type="response")
or fitted(anes.logit)

linear predictor (type="link") log(π
1−π) predict(anes.logit, type="link")

(for predict(), type="link" is the default)

Here are the two different types of predicted values, for the object anes.logit that was created above:

> fitted(anes.logit)
1 2 3 4 5 6 7 8 9 10 11 12 13

0.289 0.553 0.790 0.790 0.553 0.999 0.920 0.118 0.920 0.790 0.118 0.920 0.999
14 15 16 17 18 19 20 21 22 23 24 25 26

0.790 0.920 0.790 0.790 0.118 0.118 0.553 0.118 0.118 0.289 0.118 0.289 0.553
27 28 29 30

0.289 0.553 0.289 0.553
> predict(anes.logit)

1 2 3 4 5 6 7 8 9 10 11
-0.902 0.211 1.325 1.325 0.211 7.448 2.438 -2.015 2.438 1.325 -2.015

12 13 14 15 16 17 18 19 20 21 22
2.438 7.448 1.325 2.438 1.325 1.325 -2.015 -2.015 0.211 -2.015 -2.015

23 24 25 26 27 28 29 30
-0.902 -2.015 -0.902 0.211 -0.902 0.211 -0.902 0.211

Chapter 10

The model fit

orthsame.lmer <-
lmer(logdist ~ Sex + I(age - 11) + (I(age - 11) | Subject),

data=Orthodont, method="ML", subset=keep)

may not converge. If you encounter this problem, install version 0.9975-11 of lme4 or later, and use
lmer2() in place of lmer(). See help(lmer2) for current limits on the use of lmer2 objects in subsequent
calculations. In due course, the function lmer2() will morph into an updated version of lmer().

Chapter 12

Section 12.4: Further Reading

Principal components

Computationally, principal components analysis uses the a principal components form of matrix decom-
position, applied to a variance-covariance or correlation matrix. The variance-covariance matrix has the
form X ′X, where X is derived from the observations by variables matrix by subtracting off means in each

5

column. For calculations with the correlation matrix, values in each column must, additionally, be scaled
so that the squared values sum to 1.0.

Equivalently, it is possible to work directly with a version of X, and apply the singular value decom-
position. This leads to a different form of description of the analysis. As an example, see Booth et al
(2002), where the singular value decomposition is applied to a matrix that gives, for each of a number
of age categories, mortalities for each of the years 1907-1999 or (for some of the analyses) 1968-1999. In
the “Lee-Carter” methodology that is described and critically evaluated in that paper, scores on what is
really the first principal component are used, after an adjustment that better reproduces the total number
of deaths in any year, as a basis for mortality projections into the future.

Functional data analysis is an extension of such an approach.

Discriminant methods – Support Vector Machines

Support vector machines have recently come into prominence. The e1071 package in R handles the fitting
of Support Vector Machines. Meyer et al (2003) use a number of different data sets to compare Support
Vector Machines with other approaches.

Chapter 14

Subsection 14.3.4

Addition of axis labels to lattice plots

Here is an alternative to the paragraph that starts at line 4 on page 433, now using the + operator to plot
the first six columns of the data frame jobs in parallel:

atdates <- seq(from=95, by=0.5, length=4)
datelabs <- format(seq(from=as.Date("1Jan1995", format="%d%b%Y"),

by="6 month", length=4), "%b%y")
xyplot(BC+Alberta+Prairies+Ontario+Quebec+Atlantic ~ Date, data=jobs,

xlab="Date", ylab="Number of Jobs",
scales=list(x=list(at=atdates, labels=datelabs)))

Add labels thus:

library(grid)
trellis.focus("panel", row=1, column=1, clip.off=TRUE)
xpos <- unit(rep(max(jobs$Date),6),"native") + unit(1, "strwidth","a")
ypos <- bounce(unlist(jobs[23,1:6]),

as.numeric(convertUnit(unit(1, "strheight","A"), "native")))
grid.text(label=names(jobs)[1:6], x=xpos, y=ypos,

default.units="native", just="left")
trellis.unfocus()

Subsection 14.12

Version 0.17-2 of lattice introduced the function simpleTheme(). Among the arguments that are accepted
are col, col.points, col.line, cex, pch, font, lty and lwd. They affect the trellis parameters in the
manner that might be expected. The list that is returned by simpleTheme() can be supplied as argument
to texttttrellis.par.set(), or given as an argument to par.settings in a lattice function call. In the former
case it affects (until changed) all graphs that are subsequently sent to the current device. In the latter
case changes affect only the graph that is created by that function call. In either case, the setting is made
both for the graph and any key (e.g., created using the argument auto.key) which uses the global settings
for lattice parameters.

Here is an example of its use:

6

library(DAAG)
aisBS <- subset(ais,

sport %in% c("B_Ball", "Swim"))
aisBS$sport <- factor(aisBS$sport)
xyplot(hg ~ rcc | sex, type=c("p","r"), groups=sport, data=aisBS,

auto.key=list(points=TRUE, lines=TRUE, columns=2),
par.settings=simpleTheme(pch = c(3,16), col=c("black","gray"),
lwd=1.5))

References

Booth, H., Maindonald, J., and Smith, L. 2002. Applying Lee-Carter under conditions of variable mortality
decline. Population Studies, 56: 325-336.

Carroll, R., Ruppert, D. and Stefanski, L. A. 2006. Measurement Error in Nonlinear Models. 2nd edition,
Chapman and Hall.

Meyer, D., Leisch, F., and Hornik, K. 2003. The Support Vector Machine under test. Neurocomputing
55: 169-186.

Smith, J. A. and Todd, P.E. 2005. Does Matching overcome LaLonde’s critique of nonexperimental esti-
mators? Journal of Econometrics 125: 305-353.

John Maindonald
December 7, 2007

7

