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Languages shape the way we think, and determine what we can think about. (Benjamin Whorf)



oz.all

function()

{
0z()
points(.0z.cities)
points(.Oz.cities$x[ 7], .Oz.citiespy[ 7], pch = 16)
justif <-¢(1,1,1,1,1,1,0,1,0,1,1, 1, 1, 1)
here <- justif == 0
citiesl <- lapply(.Oz.cities, function(x, here)
x[here], here = here)
chw <- par()$cxy[1]
cities1$x <- cities1$x + chw/2
chh <- par()$cxy[2]
cities2 <- lapply(.Oz.cities, function(x, here)
X['here], here = here)
cities2$y[9] <- cities2$y[9] + chh/3
Cities2$x <- cities2$x - chw/2
text(citiesl, citiesl$name, adj = 0)
text(cities2, cities2$name, adj = 1)
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Introduction — Why S-PLUS?

S-PLUSisacommercia impl ementaticm and substantial enhancement of the S data analysis,
graphics and programming environment™. The data analysis and graphics abilities are implemented
in an environment that is attractive for more general interactive commercial and scientific
computation. In the words of the citation for John Chambers’ 1998 Association for Computing
Machinery Software Award, S has “forever altered how people analyse, visualize and manipulate
data” These notes hope to convey a sense of why it is reasonable to describe Sin thisway.

Insightful Corporation, who market S-PLUS, have made substantial enhancementsto S. They have
ported the system across to Microsoft Windows 95, 98 and NT. They developed the graphical user
interface that is available for Microsoft Windows environments. The S-PLUS command line
language retains some features that reflect S PLUS s origin in a Unix environment.

Leading statistical researchers have contributed substantial new statistical analysis abilities. Some
of these enhancements are distributed as part of S-PLUS, and some are available separately.
Section 13.3 gives useful web addresses for software libraries that are available separately.

Features which S-PLUS offersinclude:

1. There are extensive and powerful graphics abilities, which are tightly linked with its analytic
abilities. Trellis graphics, not widely available elsewhere, are a distinguishing feature of S-
PLUS graphics. Trellis graphics provide multi-panel graphical summaries that reflect data
structure. These may be very helpful in highlighting major features of the data. Carefully
chosen trellis plots often provide clues which may be followed up in subsequent analysis.

2. S-PLUSgives accessto astyle of interactive statistical analysisthat statistical professionals
increasingly take for granted.

3. SPLUS offersamodern and up to date choice of statistical methods. There are ongoing
projects that aim to fill perceived gaps.

4. SPLUS gives access to a sophisticated and relatively state of the art programming language.
Professionals who are familiar both with the S language and with the relevant statistical
methodology can often rapidly develop any new routine that they need. Analyses need not be
limited by the abilities that are immediately available.

5. S-PLUSfinds extensive use for rapid prototyping and development of new statistical methods.
S-PLUS s used in most major centres that develop new statistical methods for practical use.

6. Because computer-intensive components can be handled by acall to a C function, SSPLUS's
implementation as an interpreted language is not usually a serious handicap.

7. S-PLUS users have accessto large libraries of S-PLUS functions that have been devel oped by
Frank Harrell & others (Division of Biostatistics & Epidemiology, VirginiaMedical Institute),
Brian Ripley (Statistics Department, Oxford University) and Bill Venables (CMIS, CSIRO)
and R. J. Tibshirani & others (Statistics Department, Stanford University).

! The S system was devel oped by Richard A Becker, John M Chambers, Allan R Wilks, William S Cleveland,
and colleagues, at AT&T Bell Laboratories. The S system is now a project of Lucent Technologies.



SPLUS isthe statistical computing environment of choice for many highly skilled statistical
professionals. As aresult, it has received higher levels of critical scrutiny than most other
statistical software. Note however that many of the model fitting routinesin S-PLUS are leading
edge. Some features have not been tested and checked as adequately as one would like. Because
the language is powerful it also, inevitably, has elements of subtlety. There are traps which call
for special care from users. There are also annoying inconsistencies. Especially when you are
doing anything at all complicated, check every step with care.

Jeff Wood (CMIS, CSIRO), Andreas Rukhstuhl (Technikum Winterthur Ingenieurschule,
Switzerland), and Ken Brewer (Department of Statistics & Econometrics, ANU) gave me
exemplary help in getting this document somewhere near shipshape form. | am indebted to John
Braun (University of Winnipeg) for a number of the exercises. | take full responsibility for the
errors that remain.

SPLUS isavailable from the CMIS division of CSIRO:
Web address http://www.cmis.csiro.au
Email address S+inquiries@cmis.csiro.au

This document has immediate relevance to the use of S-PLUS under Windows 95. Sections which
might be omitted at afirst reading are marked with an asterisk.



1. Starting Up

S-PLUS must be installed on your system! If it is not, follow the instructions that came with the
installation CD-ROM.

Following installation you should have one or more S-PLUS icons (or afolder containing one or
more icons) on your screen. If you have closed the screen icons then click on the START menu,
place the mouse cursor on Programs, and look for a program folder that holds the S-PLUS
icon(s).

Click onthe S-PLUS icon. If there is more than one icon, thiswill be because you have different
icons for different projects or groups of projects. Click on theicon for the project on which you
want to work. For this demonstration | will click on my S-course icon.

Here, we will work from the command line. If you do not have acommand line window, click on
Window (or type Alt/W) and then on Commands Window. On my system the following appears:

5-PLUS - Commands M= E

File Edit “iew Insert Data Statistics Graph Options  Window Help
D|e(u| 8] lelel of =] | Bl nlglx 5 kel B b @l x|

Commands

morking data will be in c:i%statshs-course' _Data ﬂ

- ' PR .

Fig. 1: An S-PLUS screen, at the start of asession. We have opened a Commands window, but closed the
object browser. Thereis no script window.

In interactive use under Microsoft Windows there are several ways to input commandsto S-PLUS.
One can use any or al of the following three forms of input:

1. Open and work in a command window, typing commands at the command line prompt. For the
moment, we will work in acommands window.

2. Open and work in ascript window. In the screen snapshot above, there is no script window.
To get ascript window, go to the File menu.



Commands can be input to the script window from afile, and/or typed in directly. Any
commands that are to beinput to S-PLUS are highlighted in the script window. Clicking on the
arrow in the script toolbar then sends these commands to S-PLUS.

3. Usethegraphical user (gui) point and click command interface. In other words, use the icons
such as are shown in the screen snapshot. In this course, we will make little use of the graphical
user command interface.

Under Unix, the standard form of input is the command line interface. Under both Microsoft
Windows and Unix, afurther possibility isto run S-PLUS from within the emacs editor.

1.1 Using the Command Window
Hereiswhat appeared in the command window when it was first opened:

Working data will be in C:\stats\S-course\_Data
>

The command line prompt, i.e. the >, isaninvitation to start typing in your commands. For
example, typein 2+2 and pressthe Enter key. Hereiswhat | now have on my screen:

Working data will be in C:\stats\S-course\_
Data

> 242

[11 4

>

Heretheresultis4. | will explain the [1] later. Thefinal > indicates that S-PLUS isready for
another command.

Just in case you want to quit from S-PLUS at this point, you should know that the exit or quit
command is

> a0

Alternatives are to click on the File menu and then on Exit, or to click on the X in the top right
hand corner of the S-PLUS window.

1.2 A Short S-PLUS Session

We will read into S-PLUS afile that holds the population figures for Australian states and
territories, and the total population, at varioustimes since 1917. We will use information from
thisfileto create agraph. Hereistheinformation on thefile:

Year NSWVic. Qd SA WA Tas. NI ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

The preferred way to input these datais to use the Import Data dialogue under the File menu.
This dialogue may be used to import files with a variety of different formats, aswell astext files.
It offerswhat is usually the preferred means to import Excel files.

Specify
File|Import Data | From File ...



Fig. 2 shows a screen snapshot, immediately before clicking on From File.

5-PLUS - Commands M= E
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Fig. 2: Theimport of data from afile, immediately before clicking on From File... . The lower part of the
screen image has been cropped.

After clicking on From File..., click on the Look in pull-down menu and specify that the data are
to be found on the A drive. Fig. 3 shows what you should see:

5-PLUS - Commands =] |

File Edit “iew Insert Data Statistice Graph  Options  Window Help
D|e| & 4|=le] ||| | =] Dls|als B il -] B¢ @ %

| &

B Commands
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Import Data E A=
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Files of type: IText [A5CH] Files [* prn.™ st " asc) j Cancel

Import To Hel
’7Data Frame: I j =2
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Target Start Cok |1 'l Preview Only: [ ol evmert

n - ' TR i

Fig. 3: The Import Data dialogue.

The names of any . txt fileson the A: drive are now displayed on the screen. Thefilewewant is
austpop.txt. Click onthis name, causing austpop . txt to appear in the File name field. Now
click on Open, and the data will pop up in awindow on the screen. After checking that S-PLUS
has entered the column header information correctly and that the data seem correct, you may wish
to close the austpop window. The data are now stored as an object in the S-PLUS project
directory, with the name austpop. There was an option to change the name when the data were
read in, but austpop seems like a reasonable name, and we will stick withit. Typein austpop at
the command line prompt. The object will be displayed, thus:



> austpop

Year NSW Vic. QIid SA WA Tas. NT ACT Aust.
1917 1904 1409 683 440 306 193 5 3 4941
1927 2402 1727 873 565 392 211 4 8 6182
1937 2693 1853 993 589 457 233 6 11 6836
1947 2985 2055 1106 646 502 257 11 17 7579
1957 3625 2656 1413 873 688 326 21 38 9640
1967 4295 3274 1700 1110 879 375 62 103 11799
1977 5002 3837 2130 1286 1204 415 104 214 14192
1987 5617 4210 2675 1393 1496 449 158 265 16264
1997 6274 4605 3401 1480 1798 474 187 310 18532

V © 0 N O 0 h WDN P

We will learn later that austpop isaspecia form of S PLUS abject, known as adataframe. Data
frames that consist entirely of numeric dataare similar in structure to numeric matrices.

We will now do aplot of the ACT population between 1917 and 1997. We will first of all remind
ourselves of the column names:

> names(austpop)

[1] "Year™ 'NSW* "Vic." "QId"
[5]1 '"SA™ WA “"Tas."™ "NT"
[9]1 "ACT" "Aust."

>

A simple way to get the plot is:

> plot(ACT ~ Year, data=austpop, pch=16)
>

The option pch=16 sets the plotting character to solid black dots. Fig. 4 shows the graph:

ACT
250 300
1 |

150
1

50
I

T T T T
1920 1940 1960 1980 2000

Year

Fig. 4: ACT population versus year, over 1917 - 1997.

Thereisagreat deal that we could do to improve thisplot. We can specify more informative axis
labels, change size of the text and of the plotting symbol, and so on.

If you wish to quit from the S-PLUS session at this point, type
>q0

1.3 Using the S PLUS Data Menu



Click on the New Data Frame button on the standard toolbar. The button isin the centre of Fig. 5:
| (1B o |

5| D[s

@ Fig.5: The New Data Frame Button

Y ou should then see the following Data Window (Fig. 6)
S-PLUS - SDF1 [_[=]=]

File Edit “iew Ingert Fomat Data  Statistice Graph Options  Window Help
D] &) wlele] o« [<] -] =| o[s[&f: & ke B -] p @l e
fo'3|+'°.3| ﬁl Il double j |1|L:,—=|=JNBWDataF'amB %Jolﬂl @lﬁlﬁl

[ Commands = =] B3
Al
DF )
I
rmw(ZDFL)
ru{SDFL)
4 |

Creates a new data frame S S l_ IW
Fig. 6: The Data Window. Notice that, for the data frame that will be entered, the default name is SDF1.

Y ou can now start entering data, pretty much as though you were working with a spreadsheet. By
default, the data go into a data frame with the name SDFn, where n is the next avail able number.
By right-clicking with the cursor in the body of the sheet, you get a menu. Right click on
Properties... to go to a Properties dialogue, where you can change the name of the data frame to
any legal name you choose.

Alternatively you can select the Data menu (click on Data), click on New Data Object... , and
click on OK.

1.4 Further Notational Details
As noted earlier, the command line prompt is

>

S-PLUS commands (expressions) are typed in following this prompp.

2 Multiple commands may appear on the one line, with the semicolon (;) as the separator.



Thereis also acontinuation prompt, used when, following a carriage return, the command is still
not complete. By default, the continuation prompt is

+
In these notes, we often continue commands over more than one line, but omit the + that will
appear on the commands window if the command is typed in as we show it.

When typing the names of S-PLUS objects or commands, caseis significant. Thus Austpop is
different from austpop. For file names however, the Microsoft Windows conventions apply, and
case does not distinguish file names. On Unix systems letters that have a different case are treated
as different.

Anything which follows a # on the command line is taken as comment, and ignored by S-PLUS.

Note: Recall that we had to type q(), not g, in order to quit from the SSPLUS session. Thisis
because g isafunction. Typing g on its own, without the parentheses, displays the text of the
function on the screen. Try it!

1.50n-lineHelp
To get ahelp window (under S-PLUS for Windows) with alist of help topics, typein
> helpQ

In S-PLUS for Windows, you can aternatively click on the help menu item, and then use key
wordsto do asearch. To get help on a specific S PLUS function, e. g. plot(), typein

> help(plot)
In addition, the official manuals noted in Appendix 1 are available on-line for searching.

In general the supplied documentation does a good job in providing broad-ranging accounts of the
methodol ogy, with extensive references to recent literature. It is often short on detail. Users may
need to experiment to discover precisely what a specific S-PLUS function does. The
documentation may be short on details of the specific formulathat has been used.

1.6 Exercises

1. Thefollowing data give, for each amount by which an elastic band is stretched over the end of a
ruler, the distance which the band moved when released:

Stretch (mm)  Distance (cm)

46 148
54 182
48 173
50 166
44 109
42 141
52 166

Enter the datainto a data frame elasticband (or into a hame of your own choosing). Plot
distance against stretch.

2. The following ten observations, taken during the years 1970-79, are on October snow cover for
Eurasia. (Snow cover isin millions of square kilometers):

Year Cover

1970 6.5
1971 12.0
1972 14.9
1973 10.0



1974 10.7
1975 7.9

1976 21.9
1977 12.5
1978 14.5

i. Enter the datainto S-PLUS. You might call the data set snow. cover.
ii. Plot snow cover versustime.
iii. Repeat, after taking logarithms of snow cover.

3. Input the following data, on damage that had occurred in space shuttle launches prior to the
disastrous launch of Jan 28 1986. These are the data, for 6 launches out of 24, that were included
in the pre-launch charts that were used in deciding whether to proceed with the launch. (Datafor
the 23 launches where the rocket casing could be recovered isin the data set orings that
accompanies these notes.)

Temperature Erosion Blowby Total
(3] incidents incidents incidents
53

3 2 5
57 1 0 1
63 1 0 1
70 1 0 1
70 1 0 1
75 0 2 1

Enter these datainto a data frame, with (for example) column names temperature, erosion,
blowby and total. Plot total incidents against temperature.
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2. An Overview of S-PLUS

This chapter gives brief summary information that should be enough for getting started on the

graphics and data analysis exercises in chapters 3-6. Chapters 7 and 8 give more detailed
information.

2.1 TheUsesof S-PLUS

2.1.1 S-PLUS may be used as a calculator.

S-PLUS evaluates and prints out the result of any expression that one typesin at the command

line. Remember that S-PLUS expressions are typed following the prompt (>) on the screen. The

result is printed on subsequent lines

> 242
4
> sqrt(10)
[1] 3-162278
> 2*3*4*5
[1] 120
> 1000*(1+0.075)"5 - 1000 # Interest on $1000, compounded annually
# at 7.5% p.a. for five years
[1] 435.6293
> pi # S-PLUS knows about pi
[1] 3-141593
> 2*pi*6378 #Circumference of Earth at Equator, in km; radius is 6378km
[1] 40074.16
> sin(c(30,60,90)*pi/180) # Convert angles to radians, then take sin(Q)
[1] 0.500 0.866 1.000

2.1.2 S-PLUS will provide numerical or graphical summaries of data

Thereis a specia class of object called a data frame, used to store rectangular arrays in which the

columns may be vectors of numbers or factors or text strings. Data frames are central to the way

that all the more recent S-PLUS routines process data. For now, think of data frames as matrices,

where the rows are observations and the columns are variables.

As afirst example, consider the supplied data frame hi I I's, available from Professor Brian

Ripley’s MASS library. This has three columns (variables), with the names dist, climb,

and time. Typingin summary(hills)gives summary information on these variables. Thereis

one column for each variable, thus:

> summaryChills)
distance climb time
Min_.: 2.000 Min.: 300 Min.: 15.95
1st Qu.: 4.500 1st Qu.: 725 1st Qu.: 28.00
Median: 6.000 Median:1000 Median: 39.75

Mean: 7.529 Mean:1815 Mean: 57.88
3rd Qu.: 8.000 3rd Qu.:2200 3rd Qu.: 68.62
Max.:-28.000 Max. :7500 Max. :204.60

Thus we can immediately see that the range of distances (first column) isfrom 2 milesto 28 miles,

and that the range of times (third column) is from 15.95 (minutes) to 204.6 minutes
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We will discuss graphical summariesin the next section.

2.1.3 S-PLUS has extensive abilities for graphical presentation

S-PLUS has two styles of graphics— conventional graphics and trellis graphics. Conventional
graphics using plot() and related commands requires you to attend to details which trellis
graphics may handle fairly automatically. When trellis graphics does not have the immediate
features that you need, adaptation to get exactly what you want can sometimes be complicated.
In addition to pl ot_?) there are functions for adding points and lines to existing graphs, for
placing text at specified positions, for specifying tick marks and tick labels, for 1abelling axes, and
so on.
For plotting Fig. 4, you could in fact replace

plot(ACT~Year, data=austpop, pch=16)
by

xyplot(ACT~Year, data=austpop, pch=16)
Thefirst of theseis a conventional ?raphi cs command, while the second is atrellis graphics

command. The general form of trellis display is a multi-panel display in which thetrellis-like
layout of the panels can be designed to reflect important features of the data.

Trellis graphics provide various alternative helpful forms of graphical summary. A helpful form of
graphical summary for the hi I Is dataframe is the scatterplot matrix, shown in Fig. 7, that was
obtained by typing

splom(~hills) # splomis an acronym for scatterplot matrix
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Figure 7: Scatterplot matrix for the Scottish hill race data. The
diagonal panels give the x-axis variables and labelsfor all panels
in the same column. They givethey-axisvariablesand labels
for all panelsin the samerow.

2.1.4 S-PLUS will handle a variety of specific analyses
The examples that will be given are correlation and regression.

Correlation:
> options(digits=3)
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> cor(hills)
distance climb time
dist 1.000 0.652 0.920
climb 0.652 1.000 0.805
time 0.920 0.805 1.000

Suppose we wish to calculate logarithms, and then calculate correlations. We can do al thisin one
step, thus:

> cor(log(hills))
distance climb time

dist 1.00 0.700 0.890
climb 0.70 1.000 0.724
time 0.89 0.724 1.000

Unfortunately S-PLUS was not clever enough to relabel dist aslog(dist), climb aslog(climb), and
time aslog(time). Notice that the correlations between time and distance, and between time and
climb, have reduced. Why?

Straight Line Regression:

Hereisastraight line regression calculation. One specifiesan Im (= linear model) expression,
which S-PLUS evaluates. The datawere given in section 1.6. They are stored in the data frame
elasticband, and the variable names are the names of columnsin that data frame. The command
asks for the regression of lawn depression on elastic weight.

> plot(stretch~distance, data=elasticband)

> Im(stretch~distance, data=elasticband)

Call:

Im(formula = stretch ~ distance, data = elasticband)

Coefficients:
(Intercept) distance
26.38 0.1395

Degrees of freedom: 7 total; 5 residual
Residual standard error: 2.859

For more complete information type
summary(Im(stretch~distance, data=elasticband))

Try it!

2.1.5 S-PLUS is an Interactive Programming Language

Suppose we want to calculate the Fahrenheit temperatures which correspond to Celsius
temperatures 25, 26, ..., 30. Hereisaway to do thisin S-PLUS:

> celsius <- 25:30
> fahrenheit <- 9/5*celsius+32
> conversion <- data.frame(Celsius=celsius, Fahrenheit=fahrenheit)
> print(conversion)
Celsius Fahrenheit

1 25 77.0
2 26 78.8
3 27 80.6
4 28 82.4
5 29 84.2
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6 30 86.0

We could also have used aloop. In general it is preferable to avoid loops whenever, as here, there
isagood aternative. Loops may involve severe computational overheads.

2.2 TheLook and Feel of S

SPLUSisafunction language. Thereis alanguage core that uses standard forms of algebraic
notation, allowing the calculations described in Section 2.1.1. Beyond this, most computation is
handled using functions. Even the action of quitting from an S session uses, as we noted earlier,
the function call qQ).

In most expressions you can treat every object — vectors, arrays, lists and so on —asawhole. Use
of operators and functions that operate on objects as a whole largely avoids the need for explicit
loops. For an example, look back to section 2.1.5 above.

The structure of an S-PLUS program looks very like the structure of the widely used general
purpose language C and its successors C™ and Javd]

2.3 S-PLUS Objects

All S-PLUS entities, including functions and data structures, exist as objects. They can all be
operated on asdata. Typein Is() to get avector of text strings giving the names of all objectsin
your working directory. An alternativeto Is() isobjects(). Inboth casesyou can restrict the
names to those with a particular pattern, e. g. starting with the letter "p’. However different
parameter settings are required depending on whether you use Is() or objects().

In SSPLUS 4.0 or later the object browser allows you to filter out what you list, i.e. you can restrict
thelist to data frames, or to matrices, or to vectors.

Typing the name of an object causes the contents of the object to be printed. Try typingin q,
mean, €fcC.

Important: Objects that are created stay in place until removed. It pays to remove objects that
will be no longer required at the end of each session, while the details are fresh in the mind. Care
is needed to avoid removing anything that may be required later.

@2.4 L ooping

In SSPLUS there is often a better alternative to writing an explicit loop. Where possible, you

uId use one of the built-in functionsto avoid explicit looping. A simple example of a for loop

{5

i
for (i in 1:10) print(i)

Hereis another example of a for loop, to do in acomplicated way what we did very ssimply in

section 2.1.5:

> # Fahrenheit to Celsius

% Note however that S-PLUS has no header files, most declarations are implicit, there are no pointers, and
vectors of text strings can be defined and manipulated directly. The implementation of S-PLUS relies heavily
on list processing ideas from the LISP language. Lists are akey part of S-PLUS syntax.

* Asterisks (*) identify sections which are more technical and might be omitted at a first reading.
® Other looping constructs are:

repeat <expression> ## You’ll need break somewhere inside
while (x>0) <expression>
Here <expression> is an S-PLUS statement, or a sequence of statements that are enclosed within braces.
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> for (Ffahrenheit in 25:30)print(c(fahrenheit, 9/5*fahrenheit + 32))
[1] 25 77

[1] 26.0 78.8

[1] 27.0 80.6

[1] 28.0 82.4

[1] 29.0 84.2

[1] 30 86

2.4.1 More on looping
Hereis along-winded way to sum the three numbers 3, 5 and 9.

> answer <- 0

> for (J in c(31,51,91){answer <- j+answer}

> answer

[1] 173
The calculation iteratively builds up the object answer, using the successive values of j listed in
the vector (31,51,91). i.e. Initialy, j=31, and answer is assigned the value 31 + 0 =31. Then
jJ=51, and answer isassigned the value 51 + 31 = 82. Finaly, j=91, and answer is assighed the
value91 + 81 =173. Then the procedure ends, and the contents of answer can be examined by
typing in answer and pressing the Enter key.
Thereisamuch easier way to do this calculation:

> sum(c(31,51,91))

[1] 173

Skilled S-PLUS users have limited recourse to loops. There are often, asin the example above,
better alternatives.

2.5 S-PLUS Functions

We give two simple examples of S-PLUS functions.

2.5.1 An Approximate Miles to Kilometers Conversion
> miles.to.km <- function(miles)miles*8/5

The return value 'Elthe value of thefinal (and in thisinstance only) expression which appearsin
the function body”.

Use the function thus

> miles.to.km(175) # Approximate distance to Sydney, in miles

[1] 280
Y ou can do the conversion for severa distances, all at the onetime. To convert a vector of the
three distances 100, 200 and 300 miles to distances in kilometers, specify:

> miles.to.km(c(100,200,300))
[1] 160 320 480

2.5.2 A Plotting function

The data set Florida hasthe votes in the 2000 election for the various Presidential candidates,
county by county in the state of Florida. The following plots the vote for Buchanan against the
vote for Bush.

® Alternatively areturn value may be given using an explicit r et ur n() statement. Thisis however an
uncommon construction.
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attach(florida)
plot(BUSH, BUCHANAN, xlab="Bush”, ylab="Buchanan’)
detach(“florida™)

Hereisafunction that makes it possible to plot the figures for any pair of candidates.

plot.florida <- function(xvar="BUSH”, yvar="BUCHANAN""){
x <- Florida[,xvar]
y<- florida[,yvar]
plot(x, y, xlab=xvar,ylab=yvar)
mtext(side=3, line=1,
“Votes in Florida, by county, in the 2000 US Presidential election™)
}
Note that the function body is enclosed in braces ({ }).

Now try

plot._florida(Q)
plot.florida(yvar="NADER”) # yvar="NADER” over-rides the default
plot.florida(xvar="GORE”, yvar="NADER’")

Fig. 8 shows the graph produced by plot. florida()

Votes in Florida, by county, in the 2000 US Presidential election

o
o
o
o
™
o
Z o |
2 ]
<
T
O
>
om
8
8 o
- 8
o O o °© o
ooO °
$o
o | & °
T T T T T T
0 50000 100000 200000 300000
BUSH
Figure8: Votesin Florida, by county, in the election
night returnsin the 2000 US Presidential election.
2.6 Vectors
Examples of vectors are
c(2,3,5,2,7,1)
3:10 # The numbers 3, 4, .., 10
c(T,F,F,F,T,T,F)

c(’Canberra”,”Sydney”,’Newcastle”,”Darwin’)
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[

Vectors may have mode logical, numeric or character’. The first two vectors above are numeric,
thethirdislogical (i.e. avector with elements of mode logical), and the fourth is a string vector
(i.e. avector with elements of mode character).

The missing value symbol, which isNA, can be included as an element of avector.

2.6.1 Joining (concatenating) vectors

Thecinc(2, 3, 5, 7, 1) abovewasan acronym for “concatenate’, i.e. the meaningis. “Join
these numbers together in to avector. Existing vectors may be included among the elements that
are to be concatenated. In the following we form vectors x and y, which we then concatenate to
form a vector z:

> x <- ¢(2,3,5,2,7,1)

> X

[1]235271

>y <- c(10,15,12)

>y

[1] 10 15 12

>z <-c(x, y)

> Z

[11 2 3 5 2 7 1101512
>

We will later meet lists. The concatenate function c() may also be used to join lists.

2.6.2 Subsets of Vectors
There are two common ways to extract subsets of vector&l

1. Specify the numbers of the elements which are to be extracted, e.g.

> x <- ¢(3,11,8,15,12) # Assign to x the values 3, 11, 8, 15, 12
> x[c(2,4)] # Extract elements (rows) 2 and 4
[1] 11 15
One can use negative numbers to omit elements:
> x <- ¢(3,11,8,15,12)
> x[-c(2,3)]
[1] 3 15 12
2. Specify avector of logical values. The elementsthat are extracted are those for which the

logical valueisT. (Beware of NASs, as noted below.) Thus suppose we want to extract values of x
which are greater than 10.

> x <- ¢(3,11,8,15,12)

" Below, we will meet the notion of “class’, which is important for some of the more sophisticated language
features of S PLUS. Thelogical, numeric and character vectors just given have class NULL, i.e. they have no
class. There are special types of numeric vector which do have aclass attribute. Factors are the most
important example. Although often used as a compact way to store character strings, factors are, technically,
numeric vectors. The class attribute of afactor has, not surprisingly, the value “factor”.

8 A third more subtle method is available when vectors have named elements. One can then use a vector of
names to extract the el ements, thus:
> c(Andreas=178, John=185, Jeff=183)[c(*"'John","Jeff")]
John Jeff
185 183
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> x>10 # This generates a vector of logical (T or F)
[AQFTFTT

> x[x>10]

[1] 11 15 12

Arithmetic relations that may be used in the extraction of subsets of vectors are <, <=, >, >=, ==,
and '=. Thefirst four compare magnitudes, == tests for equality, and 1= tests for inequality.

2.6.3 The Use of NA in Vector Subscripts
Note that any arithmetic operation or relation that involves NA generates an NA.

Suppose that one has
y <- c(1, NA, 3, 0, NA)

Bewarned that y[y==NA] <- 0 leavesy unchanged. Thereason isthat all elementsof y==NA
evaluate to NA. Also y[NA] evaluatesta NA. Where an element on the left of an expression
evaluates to NA, no assignment is made™

To replace all NAs by O, use
ylis.na(y)] <- 0

2.6.3 Factors
A factor is a special type of vector, stored internally as a numeric vector with values 1, 2, 3, m.
The value misthe number of levels.
Consider a survey that has data on 691 females and 692 males. If thefirst 691 are females and the
next 692 males, we can create a vector of strings that that holds the values thus:

gender <- c(rep(“female”,691), rep(“male”,692))
(The usageisthat rep(“female”, 691) creates 691 copies of the character string “female’, and
similarly for the creation of 692 copies of “male’.)
We can change the vector to afactor, by entering:

gender <- factor(gender)

Internally the factor gender is stored as 691 1's, followed by 692 2's. It has stored with it atable
that looks like this:

1 | femae
2 | mae

One benefit isthat once stored as a factor, the space required for storage is reduced.

In most (but not all) contexts that seem to demand a character string, the 1 istrandated into
“female’ and the 2 into “male”’. Thevalues“female” and “male” are the levels of the factor. By
default, the levels are chosen to be in alphanumeric order, so that “female” precedes“male’.
Hence:

> levels(gender) # Assumes gender is a factor, created as above
[1] "female™ "male™

® Where there are vectors on both sides of the equation (e.g. x <- 1:5; x[y>10] <- y[y>10]), this
may have the effect of making the vector of places on the left that are available for assignment shorter than
the vector of valuesthat isto be assigned. The result may be nonsense.
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The order of the levelsin afactor determines the order in which the levels appear in graphs that
use thisinformation, and in tables. To cause “male”’ to come before “female”, use

gender <- factor(gender, levels=c(“male”, “female’))

levels(gender) # Check the order of the levels
This syntax is available both when the factor isfirst created, or later when one wishesto change
the order in an existing factor. Incorrect spelling of the level names will generate an error
message. Try

gender <- factor(c(rep(“female”,691), rep(“male”,692)))

table(gender)

gender <- factor(gender, levels=c(“male”, “female’))

table(gender)

gender <- factor(gender, levels=c(“Male”, “female”)) # Generates an error

rm(gender) # Remove gender.

2.7 Data Frames

Data frames are fundamental to the use of the newer style S-PLUS modelling and graphics
functions. A dataframeisageneralisation of amatrix, in which different columns may have
different modes. All elements of any column must however have the same mode, i.e. all numeric
or al factor, or al character.

Among the data sets that are supplied to accompany these notesis one called vehicle.summary.
Hereiswhat one seeswhen it is printed out:

> vehicle.summary
abbrev Type Average.Price

Small Sm  Small 7737
Medium Md Medium 21623
Compact Cm Compact 15202
Large Lr Large 21500
NK - NA

Van vn Van 14014
Sporty Sp Sporty 15308

The rows of the data frame have names Small, Medium, . . . To print out the row names, typein
row.names(vehicle.summary)

The column names are abbrev, Type, and Average.-Price. To print out the column names,
typein

names(vehicle.summary)

The first two columns are of mode character, and the third of mode numeric. Columns can be
vectors of any mode. They can be factors. Note the missing value for Average.Price inthe
fifth row.

Any of the followi niII pick out the second column of the data frame type - df, then storing it
in the vector type.
type <- vehicle.summary$Type
type <- vehicle.summary[,2]
type <- vehicle.summary[,”Type”]
type <- vehicle.summary[[2]] # Take the object that is stored
# in the second list element.

9 Also legal isvehicle.summary[2]. Thisgivesadataframe with the single column Type.
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2.7.1 Inclusion of character string vectors in data frames

When data are imported using the Import Data dialogue, or when the data. frame() functionis
used to create data frames, vectors of character strings are by default turned into factors. Often

thisis convenient. If not,

there is a setting on the options menu of the Import Data dialogue that

will prevent this behaviour. The as. is=T parameter setting will prevent this behaviour when
data.frame() is used to include one or more columns of factorsin adataframe.

2.7.2 Built-in data sets

We will often use one of |

S S'sbuilt-in data sets, all stored as data frames. One such data

frameisenvironmental

, giving measurements made on 111 successive daysin New Y ork.

Hereis summary information on this data frame

> summary(environmental)

ozone
Min.: 1.0

radiation temperature wind
Min.: 7 Min.:57.0 Min.: 2.30

1st Qu.: 18.0 1st Qu.:114 1st Qu.:71.0 1st Qu.: 7.40
Median: 31.0 Median:207 Median:79.0 Median: 9.70

Mean: 42.1

Mean:185 Mean:77.8 Mean: 9.94

3rd Qu.: 62.0 3rd Qu.:256 3rd Qu.:84.5 3rd Qu-:11.50

Max.:168.0

See section 14.1 for alist

2.8 Common Usefu

Max.:334 Max.:97.0 Max.:20.70

of the built-in data sets to which we will refer in this course.

| Functions

printQ # Prints a single S-PLUS object
cat(Q # Prints multiple objects, one after the other
length() # Number of elements in a vector or a list

mean()
median()

range(Q)

unique() # Vector of distinct values
diffQ # Vector of First differences
# N. B. diff(x) has one less element than x

sort() # Sort elements into order.

orderQ # x[order(x)] orders elements of x, with NAs last
cumsum(Q)

cumprod(Q)

revQ # reverse the order of vector elements

The functions mean(), median(), range(), andanumber of other functions, take the

argument na.rm=T; i.e

remove NAs, then proceed with the calculation.

By default, sort() omits any NAs. The function order () places NAslast. Hence:
> x <- c(1, 20, 2, NA, 22)

> order(x)
[1]132514

> x[order(x)]

[1] 1 2 20 22 NA
> sort(x)

[1] 1 2 20 22

" The dataset air isidentical, except that 0zone has been replaced by the cube root of ozone level.
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2.8.1 Applying a function to all columns of a data frame

The function sapply () doesthis. It takes as arguments the name of the data frame, and the
function that isto be applied. Here are examples, using the supplied data set rainforest.
> sapply(rainforest, is.factor)
dbh wood bark root rootsk branch species
F F F F F F T
> sapply(rainforest[,-7], range) # The final column (7) is a factor

dbh wood bark root rootsk branch
[1.] 4 NA NA NA NA NA
[2,] 56 NA NA NA NA NA

> sapply(rainforest[,-7], mean)
dbh wood bark root rootsk branch
16.1 NA NA NA NA NA

The functions mean and range, and several of the other functions noted above, have the parametersna.. rm.
For example

range(rainforest$branch, na.rm=T) # Omit NAs, then determine range

11 4 120

One can specify na. rm=T as athird argument to the function sapply. Thisargument isthen
automatically passed to the function that is specified in the second argument position. For
example:
> sapply(rainforest[,-7], range, na.rm=T)
dbh wood bark root rootsk branch
[1.1 4 3 8 2 0.3 4
[2,] 56 1530 105 135 24.0 120

Chapter 8 has further details on the use of sapply(). Thereisan example that shows how to use
it to count the number of missing valuesin each column of data.

2.9 Making Tables

table () makes atable of counts. Specify one vector of values (often afactor) for each table
margin that isrequired. Here are some examples

> table(rainforest$species) # rainforest is a supplied data set
Acacia mabellae C. fraseri Acmena smithii B. myrtifolia
16 12 26 11

> table(barley$year,barley$site) # barley is a built-in data set

Grand Rapids Duluth University Farm Morris Crookston Waseca
1932 10 10 10 10 10 10
1931 10 10 10 10 10 10

Warning: NAsareignored in tabulations unless you specify otherwise. The action needed to get
NAs tabulated under a separate NA category depends, annoyingly, on whether or not the vector isa
factor. If the vector is not afactor, specify exclude=NULL. If the vector isafactor named e. g.
T, then you must specify na. include(ff), rather than £f, as aparameter to table().

2.9.1 Chi-Square tests for two-way tables

Use chisq.test() for atest for no association between rows and columnsin the output from
table(). Thisassumesthat counts enter independently into the cells of atable. For example, the
testisinvalid if thereis clustering in the data.
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2.9.2 Number of NAs, broken down by subgroups of the data
The following shows how to get information on the number of NAsin subgroups of the data:

> table(rainforest$species, !is.na(rainforest$branch))

FALSE TRUE

Acacia mabellae 6 10
C. fraseri 0o 12
Acmena smithii 15 11
B. myrtifolia 1 10

Thus for Acacia mabellae there are 6 NAs for the variable branch (i.e. number of branches over
2cmin diameter), out of atotal of 16 datavalues.

2.10 The Use of attach()

Users have, by default, access both to objects in their own working directory and to objectsin a
variety of system directories. Thereisasearch list (type search() to seethislist) that controls
where S-PLUS looks first. The attach function extends this|ist.

Users can extend the search list in two ways. S-PLUS data frames can be added to the search list.
Alternatively, or in addition, one can add new directories. Adding dataframesto the searchlistis
aconvenience, so that explicit reference to the data frame from which vectors are taken is not
necessary. The addition of new directoriesis needed so that the users will have access to objects
in those directories.

The command library() gives access to libraries, which must be already installed, that are not
otherwise available. Details of the attaching and detaching of other (non-library) directories will
be given later, in chapter 5.

The S-PLUS documentation speaks of attaching databases, as away of encompassing al these
types of extension.

2.10.1 Attaching Data Frames

A dataframeisin fact a specialised list, with its columns as the objects. Once a data frame has
been added to the search list, the user can refer to the columns by name, without the need to
specify the data frame to which they belong. If there is any overlap of names, the order on the
search list determines the name that will be taken.

Thus

attach(vehicle.summary)

then allows the user to refer to Type and Average . Price, where it would otherwise be necessary
to type vehicle.summary$Type and vehicle.summary$Average -Price. Thisassumes that
there are no other variables or columns of attached data frames that have either of these names.

> attach(vehicle.summary)

> Type
Small Medium Compact Large NK Van  Sporty
"Smal Ill llMediumll Ilcompactll llLargell LA11] Ilvanll IlSportyll

> Average.Price
Small Medium Compact Large NK Van Sporty
7737 21623 15202 21500 NA 14014 15308

To detach this data frame, type
> detach(*“vehicle.summary’)
i.e. quotes are now used.
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Note how the use of quotes changes. Specify the name (without quotes) when attaching, and
enclose the name between quotes when detaching.

2.10.2 Libraries

Third party libraries that are installed on the user’s system are likely to be attached and appear on
the search list only if the user requests them. These are usually attached using the command
library(). To attach the Venables and Ripley masslibrary that isincluded in the S-PLUS
distribution, typein

library(mass)

2.11 More Detailed I nformation

This chapter has given the minimum detail that seems to me necessary for getting started. Look in
chapters 7 and 8 for amore detailed coverage of the topicsin this chapter. It may pay, at this
point, to glance through chapter 7 to see what is there. Remember also to use the S-PLUS help.

Topics from chapter 7, additional to those covered above, that may be important for relatively
elementary uses of S-PLUS include:

0 Theentry of patterned data (7.1.2)
0 Thehandling of missing values in subscripts when vectors are assigned (7.2)

0 Unexpected consequences (e.g. conversion of columns of numeric datainto factors) from
errorsin data (7.3.1).

2.12 Exercises

1. For each of the following code sequences, sequences, predict the result. Then use S-PLUSto do
the computation:
a)

answer <- 0

for (J in 3:5){ answer <- j+answer }
b)

answer<- 10

for (J in 3:5){ answer <- j+answer }
c)

answer <- 10

for (J in 3:5){ answer <- j*answer }

2. Look up the help for the function prod (), and use prod() to do the calculation in 1(c) above.
Alternatively, how would you expect prod() to work? Try it!

3. Add up all the numbersfrom 1 to 100 in two different ways. using for and using sum.
4. Multiply al the numbers from 1 to 50 in two different ways: using for and using prod.

5. The volume of a sphere of radiusr is given by 41r%/3. For spheres having radii 3, 4, 5, ..., 20
find the corresponding volumes and print the results out in a table. Construct a data frame with
columns radius and volume.

6. Use sapply() to apply the function is. factor to each column of the built-in data frame
market.survey. For each of the columnsthat areidentified as factors, determine the levels.
Which columns are ordered factors? [Use is.ordered()].
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3. Plotting

The complex of functionsplot(), points(), lines(), text(), mtext(), axis() €tc.
belong to the earlier style of S-PLUS graphics, that preceded trellis graphics.

3.1 plot () and allied functions
The following are equivalent:

plot(y ~ x)

plot(x, y)
where x and y must be the same length. This second form of command is the model that is
followed for points(), lines(), text(), etc., which modify the current plot. The commandis
the model that isfollowed by points() etc.

Try
plot((0:20)*pi/10, sin((0:20)*pi/10))

plot((1:30)*0.92, sin((1:30)*0.92))

Comment on the pattern of the points in these graphs. Isit obvious from these graphs that the
points lie on asine curve? One way to make it obviousis to reduce the height of the graphsheet,
while keeping the same height.

Here are further examples:
attach(elasticband) # S-PLUS now knows where to find distance & stretch
plot(distance~stretch)
detach(“elasticband™) # Not strictly necessary, but it is well to tidy up.
plot(ACT ~ Year, data=austpop, type="1")
plot(ACT ~ Year, data=austpop, type="b")

The points() function adds pointsto aplot. The lines() function addslinesto apl ollu_.‘l The
text() function addstext to the plot. The mtext() function places text in one of the margins.
The axis() function givesfine control over axisticks and labels.

3.1.1 Newer plot methods

Above, | described the default plot method. There are other ways to use plot(). In spite of its
ancient ancestry, the plot function has been updated to become a generic function that has special
methods for “plotting” different classes of object. For example, you can plot adataframe. Plotting
adata frame gives, for each numeric variable, anormal probability plot. Or you can plot the Im
object that is created by the use of the Im() modelling function. Thisis designed to give helpful
diagnostic and other information that will aid in the interpretation of regression results.

Try
plot(Chills)

3.2 Fine control — Parameter settings

Much of the time, the default settings of parameters, such as character size, are adequate. If
however you do need to adjust parameters, the par () function will do this. For example,

12 Actually these functions are identical, differing only in the default setting for the parameter
type. Thedefault setting for points() istype = "p",andfor lines() istype = "I".
Explicitly setting type = "'p" causes either function to plot points, while type = "I'" gives
lines.
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par(cex=1.25, mex=1.25)

increases the text size 25% above the default. The setting mex=1.25 may be needed to ensure that
thereisroom in the margin for the increased text size.

On the first use of par () to make changesto the current device, it isa good ideato store the
existing settings, for later restoration if thisisrequired. In order to store the existing settingsin
oldpar, before making changes to parameters (here cex and mex), specify

oldpar <- par(cex=1.25, mex=1.25)
One can then restore the original parameter settings later, with par (oldpar).

For example

attach(elasticband)

oldpar <- par(cex=1.5, mex=1.5)
plot(distance~stretch)

par(oldpar) # Restores the earlier settings
detach(“elasticband™)

Inside afunction it is a good ideato specify, e. g.

oldpar <- par(cex=1.25, mex=1.25)
on.exit(par(oldpar)) # Restores the settings on exiting the function

3.2.1 Multiple plots on the one page
The parameter mfrow can be used to configure the graphics sheet so that subsequent plots appear
row by row, one after the other in arectangular layout, on the one page. If you want a column by
column layout, then use mfcol. Inthe example below we look at four different transformations of
the primates data.

par(mfrow=c(2,2), pch=16)

attach(primates) # Needed if primates is not already attached.

plot(Bodywt,Brainwt)

plot(sgrt(Bodywt) ,sqrt(Brainwt))

plot((Bodywt)~0.1, (Brainwt)”0.1)

plot(log(Bodywt), log(Brainwt))

detach(“primates™)

par(mfrow = c(1,1), pch=1)

3.2.2 The shape of the graph sheet

Often it is desirable to exercise control over the shape of the graph page, e. g. so that the individual
plots are approximately square. In S-PLUS for windows you can use graphsheet() to set up the
graphics page. It takes the parameters width (in inches), height (in inches) and pointsize (in
1/72 of aninch). The setting of pointsize (default =12) determines character heights. It isthe
relative sizes of these parameters that matter for screen display or for incorporation into Word and
similar programs. Graphs can be enlarged or shrunk by pointing at one corner, holding down the
left mouse button, and pulling.

3.3 Adding points, lines and text

Hereis a simple example that shows how to use the function text() to add text labelsto the
points on a plot.

> primates
Bodywt Brainwt
Potar monkey 10.0 115
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Gorilla 207.0 406
Human 62.0 1320
Rhesus monkey 6.8 179
Chimp 52.2 440
attach(primates) # Needed if primates is not already attached.
plot(Bodywt, Brainwt, xlim=c(5, 240))
# Specify xlim so that there is room for the labels

text(x=Bodywt, y=Brainwt, labels=row.names(primates), adj=0)
# adj=0 implies left adjusted text

Fig. 9 shows the resullt.
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Fig. 9: Plot of the primate brain weight data, with row names as |abels.

Fig. 9 would be adequate for identifying points, but is not a presentation quality graph.

Fig. 10 shows how to improveit.
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Figure 10: Improved version of Fig. 9.



We stop text from over-writing the point symbols, and we improve the labelling of the axes. We
use the xlab (x-axis) and ylab (y-axis) parameters to specify meaningful axistitles. We move
the labelling to one side of the points by the use of appropriate horizontal and vertical offsets. We
usechw <- par(Q$cxy[1] to get a 1-character space horizontal offset. We use pch=16 to make
the plot character aheavy black dot. This helps make the points stand out against the labelling.

Hereisthe S-PLUS code:
plot(x=Bodywt, y=Brainwt, pch=16,
xlab=""Body weight (kg)", ylab="Brain weight (g)", xlim=c(5,240))
chw <- par(Q$cxy[1] # Character width
text(x=Bodywt+0.75*chw, y=Brainwt, labels=row.names(primates), adj=0)
detach(“primates™)

3.3.1 Adding Text in the Margin

mtext(side, line, text, ..) addstextinthe margin of the current plot. Thesidesare
numbered 1(x-axis), 2(y-axis), 3(top) and 4.

3.4 I dentification and L ocation on the Figure Region
Two functions are available for this purpose. They are for use once a graph has been drawn.

= identify() labels points. One positions the cursor near the point that isto be identified, and
clicks the left mouse button.

= |ocator() prints out the co-ordinates of points. One positions the cursor at the location for
which coordinates are required, and clicks the left mouse button.

A click with the right mouse button signifies that the identification or location task is complete,
unless the setting of the parameter n isreached first. For identify() the default setting of n is
the number of data points, while for locator () the default setting isn = 500.

3.4.1 identify()

This function requires specification of avector x, avector y, and a vector of text strings that are
available for use alabels. The data set florida hasthe votesin the 2000 election for the various
Presidential candidates, county by county in the state of Florida. We plot the vote for Buchanan
against the vote for Bush, then invoking identify () so that we can label selected points on the
plot.

attach(florida)
plot(BUSH, BUCHANAN, xlab="Bush”, ylab="Buchanan’)
identify(BUSH, BUCHANAN, County)

Click to the left or right, and dlightly above or below a point, depending on the preferred
positioning of the label. When labelling is terminated (click with the right mouse button), the row
numbers of the observations that have been labelled are printed on the screen, in order.

3.4.2 locator()
Left click at the locations whose coordinates are required

attach(florida) # if not already attached
plot(BUSH, BUCHANAN, xlab="Bush’, ylab=""Buchanan’)
locator(Q)
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The function can be used to mark new points (specify type=""p”) or lines (specify type=""1") or
both points and lines (specify type="b").

3.5 Plotsthat show thedistribution of data values
We discuss histograms, density plots, boxplots and normal probability plots.

3.5.1 Histograms
The shapes of histograms depend on the placement of the breaks. Fig. 11 isan example:

N II N III
=l =
7% 80 85 90 95 75 80 8 90 95 100

totingth[here] totingth[here]

20
20

15

15

10
10

A: Breaks at 72.5, 77.5, ... B: Breaks at 75, 80, ...

Figure 11: Thetwo graphs show the same data, but with a different
choice of breakpoints.

Hereisthe code used to plot the histograms:
par(mfrow = c(1, 2))
attach(possum)
here <- sex == "f"
hist(totingth[here], breaks
hist(totingth[here], breaks
par(mfrow = c(1,1))

72.5 + (0:5) * 5, ylim = c(0, 20))
75 + (0:5) * 5, ylim = c(0, 20))

3.5.2 Density Plots

Density plots, now that they are available, are often a preferred aternative to a histogram. In Fig.
12 the histograms from Figure 11 are overlaid with a density plot.

0.08
0.08

0.04
0.04

0.0
0.0

70 75 80 85 90 95 100 70 75 80 85 90 95 100
totingth[here] totingth[here]
A: Breaks at 72.5, 77.5, ... B: Breaks at 75, 80, ...
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Figure 12: On each of the histograms from Fig. 11 a density plot has

been overlaid.

Density plots do not depend on the choice of breakpoints. The choice of width and type of
window, controlling the nature and amount of smoothing, does affect the appearance of the plot.

The main effect isto make it more or less smooth.

The density plot can be produced with
plot(density(totingth[here]), type="1"")

Note that in Fig. 12 the y-axis for the histogram is labelled so that the area of arectangleisthe

frequency for that rectangle. To get the plot on the left, specify:

here <- sex == "f"

dens <- density(totIngth[here])

xlim <- range(dens$x)

ylim <- range(dens$y)

hist(totingth[here], breaks = 72.5 + (0:5) * 5,
probability = T, xlim = xlim, ylim = ylim)

lines(dens)

3.5.3 Boxplots
Hereis how to obtain a boxplot of the above data:

boxplot(totingth[here]l)
detach(“possum’)

Fig. 13 adds information that should assist in the interpretation of boxplots.

Largest value (outliers excepted)—
n _| .
(e}
= _90.5 upper quartile :
median Inter-quartile range
= 90.5-85 :
[@)]
c n .
o o785 lower quartile ™. Compare
: 0.75 x Inter-Quartile Range = 4.12
‘ with standard deviation = 4.18
o Smallest value (outliers excepted)—
=
n _| —
N~

Figure 13: Boxplot of female possum lengths, with additional labelling infor mation.

3.5.4 Normal probability plots

ggnorm(y) gives anormal probability plot of the elements of y. The points of thisplot will lie

approximately on a straight lineif the distribution isNormal. 1t isagood ideato calibrate your eye
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to recognise plots which indicate non-normal variation by doing several normal probability plots
for random samples of the relevant size from anormal distribution.

attach(possum)

here <- sex == "f"

par(mfrow=c(3,4)) # A 3 by 4 layout of plots

y <- totlngth[here]

qgnorm(y) # Normal probability plot for lengths

# of female possums

for(i in 1:11) qgnorm(rnorm(43)) # Plots for 11 normal random samples
# each of size 43.

par(mfrow = c(1,1))

detach(“possum’)
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Figure 14: Normal probability plots. If data are from a normal distribution then points should
fall, approximately, along aline. The plot in thetop left hand corner showsthe 43 lengths of
female possums. The other plotsarefor independent normal random samples of size 43.

Fig. 14 showsthe plotsthat result. Thereisone unusually small value. Otherwise the distribution
for the female possum lengths is as close to normal as many of the other plots.

Theideaisan important one. In order to judge whether data are normally distributed, one
examines a number of randomly generated samples of the same size from anormal distribution. It
isaway to train the eye.

By default, rnorm() generates random samples from a distribution with mean 0 and standard
deviation 1.

3.6 Other Useful Plotting Functions
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3.6.1 Scatterplot smoothing
scatter.smooth() plots points, then adds a smooth curve through the points. For example:

attach(ais)

here<- sex=="f"

plot(pcBfat[here]~ht[here], xlab = “Height”, ylab = “% Body fat™)
scatter.smooth(ht[here],pcBfat[here])

3.6.2 Adding lines to plots

Use the function abline() for this. The parameters may be an intercept and slope, or a vector
that holds the intercept and slope, or an Im object. Alternatively it is possible to draw a horizontal
line (h = <height>), or avertical line (v = <ordinate>).

here<- sex=="f"

plot(pcBfat[here] ~ ht[here], xlab = “Height”, ylab = “% Body fat™)

abline(Im(pcBfat[here] ~ ht[here]))

3.6.3 Rugplots

By default rug(x) adds, along the x-axis of the current plot, vertical bars showing the
distribution of values of x. It can however be particularly useful for showing the actual values
aong the side of aboxplot. Fig. 15 shows a boxplot of the distribution of total lengths of female
possums, with arugplot added along the y-axis.
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Figure 15: Distribution of heights of female
athletes.

Hereisthe code

here <- ais$sex == "f"

boxplot(ht[here], boxwex = 0.15, ylab = "Height')
rug(ht[here], side = 2)

detach(“ais™)
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The parameter boxwex is used to control the width of the boxplot. Reduction from the default
width often gives amore elegant result.

3.7 Guidelinesfor Graphs

Design graphs to make their point tersely and clearly, with a minimum waste of ink. Label as
necessary to identify important features. In scatterplots the graph should attract the eye’ s attention
to the points that are plotted, and to important grouping in the data. Use solid points when there is
little or no overlap.

When there is extensive overlap, use open plotting symbols. Where points are dense, overlapping
points will give ahigh ink density, which is exactly what one wants.

Use scatterplotsin preference to bar or related graphs whenever the horizontal axis represents a
quantitative effect.

Use graphs from which information can be read directly and easily in preference to those that rely
on visual impression and perspective. Thus in scientific papers contour plots are much preferable
to surface plots or two-dimensional bar graphs.

Draw graphs so that reduction and reproduction will not interfere with visual clarity.

Explain clearly how error bars should be interpreted — + SE limits, + 95% confidence interval, +
SD limits, or whatever. Explain what source of error is represented. It is pointlessto present
information on a source of error that is of little or no interest.

3.8 Exercises

1. Plot the graph of brain weight (brain) versus body weight (body) for the built-in data set
brains. Label the axes appropriately.

2. Repeat the plot 1, but this time plotting log(brain weight) versus log(body weight). Use the row
labelsto label the points with the three largest body weight values. Label the axesin
untransformed units.

3. Repeat the plots 1 and 2, but this time place the plots side by side on the one page.

4. The supplied data set huron has mean July average water surface elevations, i , IGLD
(1955) for Harbor Beach, Michigan, on Lake Huron, Station 5014, for 1860-1986™

a) Plot mean.height against year.

b) Use the identify function to determine which years correspond to the lowest and
highest mean levels. That is, type
identify(huron$year ,huron$mean._height, labels=huron$year)
and use the left mouse button to click on the lowest point and highest point on the plot. To
quit, press both mouse buttons simultaneously.
¢) Asin the case of many time series, the mean levels are correlated from year to year. To
see how each year's mean level isrelated to the previous year's mean level, use
lag.-plot(huron$mean_height)
This plots the mean level at year i against the mean level at year i-1.

5. Write versions of plot.florida() that (a) plot the square roots of the numbers of votes on the
respective axes; and (b) plot the logarithms of the numbers of votes on the respective axes.

3 Source: Great Lakes Water Levels, 1860-1986. U.S. Dept. of Commerce, National Oceanic and
Atmospheric Administration, National Ocean Survey.
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6. Try x <- rnorm(10). Print out the numbersthat you get. Look up the help for rnorm. Now
generate a sample of size 10 from a normal distribution with mean 170 and standard deviation 4.

7. Use mfrow() to set up the layout for a 3 by 4 array of plots. Inthe top 4 rows, show normal
probability plots (section 3.4.2) for four separate ‘random’ samples of size 10, al from a normal
distribution. Inthe middlie 4 rows, display plots for samples of size 100. In the bottom four rows,
display plots for samples of size 1000. Comment on how the appearance of the plots changes as
the sample size changes.

8. The function runif() can be used to generate a sample from a uniform distribution, by default
ontheinterval 0to 1. Try x <- runif(10), and print out the numbers you get. Then repeat
exercise 7 above, but taking samples from a uniform distribution rather than from a normal
distribution. What shape do the points follow?

9. If you find exercise 8 interesting, you might like to try it for some further distributions. For
examplex <- rchisq(10,1) will generate 10 random values from a chi-squared distribution
with degrees of freedom 1. The statement x <- rt(10,1) will generate 10 random values from
at distribution with degrees of freedom 1. Make normal probability plots for samples of various
sizes from these distributions.

10. For the first two columns of the data frame hi I I's, examine the distribution using:
() histograms
(b) density plots
(c) normal probability plots.

Repeat (a), (b) and (c), now working with the logarithms of the data values.
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4. Trellis Graphics

Trellis plots allow the use of the layout on the page to reflect meaningful aspects of data structure.
They offer other innovations also, that are described in S-PLUS documentation and in articles that
you can get from the internet. Goto

http://achille.cs.bell-labs.com/cm/ms/departments/sia/proj ect/trel lis/index.html

SPLUS 4.0 and later attaches the Trellis library automatically. In S-PLUS 3.4 for UNIX, use
library(trellis, first=T) toattachthe Trellislibrary.

4.1 Fine control over the graphics window

Implementations of trellis under S-PLUS 4.0 and later for Windows have a unified approach to
hard copy and screen display. It isoften best to print or copy directly from the screen display. A
variety of different display formats are available, most of which can be used either for the screen
display or for the printer.

S-PLUS 4.0 and later for Windows open the graphics window automatically when it is needed. On
occasionsit is however desirable to open it explicitly, allowing you to make changes from the
default height and width, pointsize, etc.
If you want the default trellis settings, specify

trellis.device(graphsheet)
rather than the standard

graphsheet()

In either case you can set width=, height=, pointsize=, color=, eC.. The parameters
width and height areininches, while pointsizeisin units of <5 inch. If you do not want colour
you can specify

trellis.device(graphsheet, color=F)

One side effect of setting color=F isthat, if you use the groups= parameter when you call a
trellis function, different symbols rather than different colours will by default be used to
distinguish the different groups.

To close the current graphics window, specify
dev.offQ # closes current graphics device

4.2 Examplesthat Present Panels of Scatter plots—Using xypl ot ()

The basic function for use in drawing panels of scatterplotsis xyplot(). Wewill usethe S
PLUS built-in data frame C02 to demonstrate the use of xyplot(). Inthisdataframe uptake
and conc arevariables, while Type (2 levels), Treatment (2 levels) and Plant (3 levels
within each Type and Treatment combination) are factors.

xyplot(uptake~conc|Type+Treatment, data=C02) # Simple use of xyplot()
xyplot(uptake~conc| Type+Treatment, data=C02, panel=panel.smooth)

xyplot(uptake~conc|Type+Treatment, data=CO02,
panel=panel .superpose, groups=Plant)
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All three of the above commands plot uptake against conc for each combination of Type and

Treatment. The second command adds a smooth. The third command uses different colours, or

different symbolsif the plot is black and white, for the different Echinochloa crus-galli pl antdi

Fig. 16 shows the output from the third of these sets of commands:
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Fig. 16: Output from xyplot(uptake~conc| Type+Treatment, data=C02,
panel=panel _superpose, groups=Plant)

If you want to smooth separately for the separate groups, you will need to write your own panel
function. We will come to that |ater.

4.2.1 Using Ranges of Continuous Variables to Define Panels
The function equal . count () may be used to break a continuous variable down into (possibly
overlapping) ranges. For example

hills$climbcat <- equal.count(hills$climb, 3)
# climbcat specifies three overlapping ranges of “climb”
xyplot(time ~ distance | climbcat, data=hills)

Y ou can use the parameter overlap of equal .count() to control the fraction of overlap. By
default overlap is 0.5, i.e. each successive pair of categories have around half their valuesin
common.

4.3 An IncompleteList of Trellis Functions

splom(~data.frame) # Scatterplot matrix
contourplot(numericl~numeric2*numeric3 , . .) # Contour plot
levelplot(numericl~numeric2*numeric3 , . .) # Glitzy contour display
wireframe(numericl~numeric2*numeric3 , . .)

bwplot(factor~numeric , . .) # Box and whisker plot
qq(factor~numeric , - .)

dotplot(character~numeric , . .) # 1-dim. Display
barchart(character~numeric , . .)

piechart(character~numeric , . .)

¥ Data are from: Potvin, C. and Lechowicz, M.J. (1990), "The statistical analysis of ecophysiological
response curves obtained from experiments involving repeated measures', Ecology, 71, 1389-1400.
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histogram(~numeric , . .)
densityplot(~numeric , . .) # Smoothed version of histogram
qgmath(~numeric , . .)

There are anumber of other trellis functions.

4.3.1 Trellis Examples and Trellis Help
You can get alist of example functions which demonstrate trellis graphics by typing in
?trellis_examples

To see the code for any of these functions, type the name of the example function and press the
Enter key. Many of the example trellis functions are more complicated than is really necessary.
Neverthel ess they often serve as useful models.

To get documentation for arguments to trellis functions, typein

?trellis.args # documents arguments to trellis functions

4.4 Trellis Functions— Further Examples

4.4.1 bwplot()

We will do aplot of datafrom the singer data frame, which gives heights of singersin the New
Y ork choral society.
> sapply(singer,is.factor) # First check the columns of the data set
# height voice.part
F T
> bwplot(voice.part~height, data=singer)

Fig. 17 showsthe result:

Soprano 1 E““{::::}““‘H

Soprano 2 E“{::::::}“““H
Atol |E—"1 e —F o
Alto 2 e —r

Tenor 1 1 o
Tenor 2 e ©
Bass 1 1 e —
Bass 2 1 ¢ H
I I I [
60 65 70 75
height

Fig. 17: Heights of singersin the New Y ork Choral Society, by voice part.
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It assists interpretation to know how many points are represented in each boxplot. The table()
command will give thisinformation:
> table(singer$voice.part)
Bass 2 Bass 1 Tenor 2 Tenor 1 Alto 2 Alto 1 Soprano 2 Soprano 1
26 39 21 21 27 35 30 36

4.4.2 Scatterplot matrix Examples — splomQ)

The function splom() plots out a scatterplot matrix, or perhaps a series of panels of scatterplot
matrices. Just as before one can have multiple panels of scatterplot matrices, different symbols
may be used for different groups, and so on. Here are some possibilities

splom(~hillraces)

splom(~kyphosis[,-1] | kyphosis[,1])

splom(~kyphosis[,-1], panel=panel.superpose, groups=kyphosis[,1])

splom(~kyphosis[,-1] | kyphosis[,1], panel=panel.smooth)
Compare the first two displays. The second uses the same panel, but different colours, for
“absent” and “present”. Which display do you consider the more helpful ?

4.5 The Pandl Function

The Trellis functions have a default panel function as argument. For xyplot() the default panel
function is panel .xyplot(). Thus

xyplot(uptake~conc|Type+Treatment, data=C02)
isequivalent to

xyplot(uptake~conc|Type+Treatment, data=C02, panel=panel.xyplot)

A built-in alternative to panel . xyplot() ispanel .smooth(). Thisfitsasmooth curve to the
data. A further possibility isto write your own panel function. This allows you to greatly enhance
the capabilities of the Trellislibrary.

If you want different colours for different groups then, as demonstrated earlier, specify the groups
argument when you call the trellis function, and set panel equal to panel.superpose. We can
control the different colours used for the different groups. Also we can join the points for each
plant. Thuswe have

xyplot(uptake~conc|Treatment+Type,data=C02, panel=panel.superpose,
groups=Plant, col=2:4, type="b”)

There are three plants in each panel. So we specified three colours, which are recycled each time
we move to anew panel. The parameters type=""b” and col=2:4 both get passed to

panel .superpose(). There are three possible settings for type. The default is type=""p”
(points); other settings are type=""1"" (lines), and type=""b”* (both points & lines).

*4.5.1 A user-defined panel function

Hereis how you might, while using bwplot, use arugplot along the x-direction to examine in more
detail the distribution of data valuesin each panel.

bwplot(Type ~ uptake|Treatment, data=CO02,
panel=function(x,y){ panel.bwplot(X,y); rug(x) } )

Of course it would be nice to make the colour of the rug bars different for the two different Types.
Hereishow to doit. We have to define our own panel function, which calls panel.bwplot() and
does more besides.

panel .mybw <- function(X,y)
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{ panel_bwplot(x,y) # x will be set to uptake, and y to Type

for(u in unique(y)){par(col=u+2); rug(x[y==u])}
par(col=1) } # End panel._mybw

bwplot(Type~uptake | Treatment, data=C02, panel=panel._mybw)

Note that Type hasvalues 1 and 2. When panel .bwplot iscaled to create each individual
panel, uptake isthe x argument, and Type isthe y argument.

*4.6 AddingaKey

Keys may be used to identify the plotting symbols, line styles and colours that have been used for
different subsets of the data.

We illustrate with amodified and substantially simplified version of the commands in the built-in
example.overplot() exampletrellisfunction. The part of the command that generates the key
has been shaded. Notice its somewhat complicated structure. | have specified three list elements —
anumeric valuey, alist with the name points, and alist with the name text. Thevaueof y
sets the vertical positioning; the graphicsregion finishesat aroundy = 1. | haveleft x at its
default value, i.e. 0.5:

dotplot(variety~yield | site, data=barley, groups=year,
panel=panel .superpose, pch=16, col=3:4,
key=list(y=1.08,
points=list(pch=16,col=3:4),
text=list(text=levels(barley$year),col=3:4)
)
)

There are awide variety of other settings that one can includein the list: columns to specify the
number of columnsinto which to divide the key (in the above we might have set columns=2), the
parameter between to specify the distance in character widths between the different key elements,
and between .columns for use when columns>1 to specify the distance between columns. The
syntax carries across from that for the function key (), which can be used to put akey on agraph
after it has been drawn. The difference is that one has to make sure that there is space available
before the function key () is called.

Y ou might want to control the aspect ratio and layout. Try aspect=0.4 and layout=c(1,6) as
parametersto dotplot().

*4.7 The Subscripts Argument

All of the Trellis functions take a subscripts argument. If thisargument is set to TRUE (T),
then "subscripts' can be passed to the panel function. These subscripts can then be used in
conditional statements so that the panel function's behaviour depends on the level of the
conditioning variable.

The subscripts are useful when variables other than those passed as x or y or groups are to be
used in theindividual panels. If for examplethe variableis called z, then the values that are
relevant to any specific panel can be passed as z[subscripts].

If you want to use panel . superpose inside your own function, you must either explicitly pass
the groups argument, or elseinclude the . . . argument as a parameter to your function, and call
panel .superpose aspanel .superpose(x, y, --.). The ... argument must be specified
just asit appears. It allows for the passing of additional arguments, at this point unspecified.

Hereis how you might fit a separate smooth curve for each of the different plants. Thisisgiven
here for completeness. First we define a new panel function:
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my.panel <- function(x, y, subscripts, groups, -..)
{
gps <- groups[subscripts]
ugp <- as-.character(unique(gps))
i<-1
for(u in ugp) {
i<-i1+1
here <- gps ==
panel _smooth(x[here], y[here], col = i, pch =i, ...)
}
}

To do thetrellis graph, proceed as follows:

xyplot(uptake ~ conc | Type + Treatment, data = C02, panel =
my.panel, groups = Plant, span=1)

The span=1 parameter is passed as an unnamed parameter. Whenever afunction has ... inthelist
of ar%uments, thisisallowed. It |Z|passed through to my . panel and thence to panel . smooth,
which knows how to extract the value of span fromits ... list.

4.8 Exercises

1. Thefollowing data gives milk volume (g/day) for smoking and nonsmoking mothers:
Smoking Mothers: 621, 793, 593, 545, 753, 655, 895, 767, 714, 598, 693
Nonsmoking Mothers: 947, 945, 1086, 1202, 973, 981, 930, 745, 903, 899, 961
Present the data (i) in side by side boxplots; (ii) using adotplot form of display.
[The data were taken from the paper ~~Smoking During Pregnancy and Lactation and Its Effects
on Breast Milk Volume" (Amer. J. of Clinical Nutrition).]

2. The built-in data frame envi ronmental has columns ozone (avariable), radiation (a
variable), temp (avariable), andwind (avariable). Plot ozone against radiation for each of three
temperature ranges, and each of three wind ranges. [Use equal . count() to generate the ranges
of temp andwind

3. Repeat the plot asin example 1, but this time including a scatterplot smooth on each panel.

4. Taking the supplied data frame ships, plot incidents against service for each level of
consyr (construction period) and for each level of period (period of service).

5. Repeat the plot from exercise 4, but now plot log(incidents+1) against log(service), and
use adifferent colour or plot symbol for each different shiptype.

6. Use suitable trellis plots to explore the built-in kyphosis data set.
[To get details of the variables, typein help(kyphosis).]

7. For the possum data set, generate the following plots for each separate population (Pop) and for
each sex (sex) separately:

a) histograms of hdingth —use histogram();
b) normal probability plots of hdIngth —use ggmathQ);
¢) density plots of hdIngth —usedensityplot().

The histogram function allows you to control the ration of they to x scales (aspect) and the
number of intervals (nint). Investigate the effect of varying these. The densityplot function
allows you to vary parameters aspect and width. The parameter width controls the width of
the smoothing window. Investigate the effect of varying these parameters.

8. Import the data frame called ACF, from the file acf.txt . The data were obtained from an
experiment involving 66 rats which were injected with acarcinogen 1, 2 or 3times. The rats were
sacrificed at either TIME = 6, 12 or 24 weeks, and their colons were stained and examined. Each
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colon was divided into 6 sections, and the numbers and sizes of aberrant crypt foci (ACF) were
evaluated. The average size (AVERAGE) and total number (TOTAL) of ACF were recorded for
each section.

(a) Using the xyplot function, explore the relation between the total number of ACF and TIME,
taking into account the number of injections and the section.

(b) Repeat (a), using AVERAGE in place of TOTAL.

(c) Construct a contour plot of TOTAL versus TIME and SECTION.

(d) Repeat (c), using the wi reframe plot instead of the contour plot.
(e) Repeat (¢) and (d), using AVERAGE in place of TOTAL.

(f) Repeat (c),(d) and (€), using INJECTION in place of SECTION.

(g) Construct box and whisker plots for TOTAL, using TIME as afactor.
(h) Repeat (), using AVERAGE in place of TOTAL.

(i) Construct normal probability plotsfor TOTAL, using TIME>12 asthe factor. Isthere evidence
that the distribution of TOTAL for TIME>12 differs from the distribution of TOTAL for TIME <=
12?

(i) Repeat (i), using AVERAGE instead of TOTAL. What can you say about the distributions of
AVERAGE for different times?

(k) Use the command
bwplot(TIME~TOTAL | SECTION, data=ACF, panel=function(x,y){ panel_bwplot(x,y);

rug(x)} )
to create arugplot.

(1) Repeat (K), replacing SECTI0N with SECTION+INJECTION.

(m) Construct a dotplot using
dotplot(TIME~TOTAL | SECTION+INJECTION, data=ACF)
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5. Regression Models and Analysis of Variance

5.1 TheMode Formulain Straight Line Regression
We begin with a straight line regression example:

plot(distance ~ stretch, data=elasticband, pch=16) # Plot the data
The code for the regression calculation is:

elastic.Im <- Im(distance ~ stretch, data=elasticband)

Heredistance ~ stretchisamode formula. We will meet more general types of model
formulae in the course of this chapter. The output from the regression is an Im object, which we
have caled elastic.Im.

Now examine asummary of the regression results. Notice that the documentation of the call gives
details of the model formula.

> options(digits=4)

> summary(elastic.Im)

Call: Im(formula = distance ~ stretch, data = elasticband)
Residuals:

1 2 3 4 5 6 7
2.11 -0.321 18 1.89 -27.8 13.3 -7.21

Coefficients:
Value Std. Error t value Pr(c|t])
(Intercept) -63.571 74.332 -0.855 0.431
stretch 4.554 1.543 2.951 0.032

Residual standard error: 16.3 on 5 degrees of freedom
Multiple R-Squared: 0.635

F-statistic: 8.71 on 1 and 5 degrees of freedom, the p-v
alue is 0.0319

Correlation of Coefficients:
(Intercept)
stretch -0.997

5.2 Regression Objects

An Im object isalist of named elements. Above, we created the object elastic. Im. Let uslook
at the names of its elements:

> names(elastic.Im)

[1] "coefficients” ‘'residuals™ "fitted.values" "effects”
[5] "R" "rank" ''assign” "df.residual”
[9] "contrasts" "terms" call”

Various functions are available for extracting information that you might want from thelist. This
is better than manipulating the list directly. Examples are:

> coef(elastic.lIm)
(Intercept) stretch
-63.57 4.554
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> resid(elastic.Im)

1 2 3 4 5 6 7
2.107 -0.3214 18 1.893 -27.79 13.32 -7.214

The function that one uses most often is summary(). Thisisintended to extract the information
that users are most likely to want. For example, in section 5.1, we had

summary(elastic.Im)

Thereisaplot method for Im objects. Fig. 11 shows the result of typing in:

par(mfrow = c(2, 2))
plot(elastic.Im, which.plots = ¢(1,2,4,6), pch = 16)
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Fig. 18: Diagnostic plots for Im(distance~stretch, data=el asti cband)

Note that in the S-PLUS help, the argument which.plots is not documented.

In addition one can use plot.gam for Im objects. Fig. 19 shows the output from:

plot.gam(elastic.lIm, residuals=T, se=T)
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The X-matrix has two columns, one for the constant term, and one for weight. What the graph
shows is the contribution of weight in explaining depression, after taking out the effect that is
due to the mean. The dotted lines show the bounds that are determined by 95% confidence
intervals for the slope of theline.

5.2.1 Pointwise confidence bounds for fitted values
To get 95% confidence bounds for fitted values one would need to incorporate uncertainty in the
estimate of the fitted mean. One can get those as follows:

> elastic.hat <- predict(elastic.Im, se=T)

> elastic.ci <- pointwise(elastic.hat, coverage=0.95)

> elastic.ci

$upper:
1 2 3 4 5 6 7
163.6 210.9 170.9 181.8 159.2 156.3 195.7
$fit:
1 2 3 4 5 6 7
145.9 182.3 155 164.1 136.8 127.7 173.2
$lower:
1 2 3 4 5 6 7

128.2 153.7 139.1 146.4 114.3 99.07 150.8
plot(distance~stretch, data=elasticband)
ord<-order(elasticband$stretch)
lines(elasticband$stretch[ord],elastic.ci$fit[ord])
lines(elasticband$stretch[ord],elastic.ci$upper[ord], Ity=3)
lines(elasticband$stretch[ord],elastic.ci$lower[ord], Ity=3)

Hereisway to get smoother confidence bounds:

V V.V VvV V

lines(spline(elasticband$stretch,elastic.ci$lower), Ity=3)
This has the advantage that you do not need to first order the points.

5.3 Model Formulae, and the X Matrix

The model formulafor the elastic band example was distance~stretch. The model formulais
arecipe for setting up the calculations. It describes how to set up the model matrix or X matrix,
and specifies the vector y of values of the dependent variable. For some of the examples we
discuss later, it helps to know what the X matrix looks like. Details for the elastic band example
follow.

For the elastic band example the X matrix, with the y-vector alongside, is:

X y
Stretch (mm) Distance (cm)

1| 46 148
1 54 182
1| 48 173
1 50 166
1| 44 109
1| 42 141
1 52 166
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The function model .matrix() printsout the model matrix. Thus:

> model .matrix(distance ~ stretch, data=elasticband)
(Intercept) stretch
1 46
54
48
50
44
42
52

No oA WNR
PR R R RR

Another possibility, with elastic. Im calculated asin section 5.1, is:

model _.matrix(elastic.Im)

The model matrix corresponds directly to the equation for the model. The model is
y=a+bx+residua

which we write as
y=1xa+xxb+residua

For each row, one takes a multiple a of the value in the first column of the model matrix, a
multiple b of the value in the second column, and adds them, to give fitted values. Another name
ispredicted values. Theaimisto reproduce, as closely as possible, the values in the y-column.
The residuals are the differences between the values in the y-column and the fitted values. Least
squares regression, which is the form of regression that we describe in this course, choosesa and b
so that the sum of sguares of the residualsis as small as possible.

The following are the fitted values and residual s that we get with the estimates of a (= -63.6) and b
(=4.55) that aleast squares regression program chooses for us:

X y y y-y
Stretch (mm) (Fitted) (Observed) (Residual)
x-63.6 x4.55 1 x-63.6 + 4.55 x Stretch Distance (mm) Observed - Fitted
1 46 -63.6 + 4.55 x 46 = 145.7 148 148-145.7= 2.3
1 54 -63.6 +4.55 x 54 = 182.1 182 182-182.1=-0.1
1 48 -63.6 + 4.55 x 48 = 154.8 173 173-154.8 =18.2
1 50 -63.6 + 4.55 x 50 = 163.9 166 166-163.9= 2.1
1 44 -63.6 + 4.55 x 44 = 136.6 109 109-136.6 =-27.6
1 42 -63.6 + 455 %x42=1275 141 141-127.5=13.5
1 52 -63.6 + 4.55x 52 =173.0 166 166-173.0=-7.0

Note that we use ¥ [pronounced y-hat] as the symbol for predicted values. They may also be
called fitted values.

We might also fit the simpler (no intercept) model. For this we have
y =X X b +residual

The X matrix then consists of a single column, the x’s.
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5.3.1 Model Formulae in General
Here iswhat model formulae look like:

y~x+z :Im, gim,, etc.

y~x+Fac+Ffac:x :Im, gim, aov, etc. (If facisafactor and x isavariable, fac:x alows
adifferent slope for each different level of fac.)

Model formulae are widely used to set up most of the model calculationsin S-PLUS. However
there are some older S-PLUS analysis commands that do not use model formulae. Examples are
prcomp(), cancor(), mclust(), hclust(), ace(), andavas().

The S-PLUS parser~” makes no distinction between model formulae and the sorts of formulae that
are used for specifying trellis plots. The difference may matter once one tries to do something
with the formula. By way of reminder, here is a graph formulafor trellis plots.

y~x | facl+fac2 : Thisgivesaplot of y against x for each different combination of
levels of facl (across the page) and fac2 (up the page).

*5.3.2 Manipulating Model Formulae
Model formulae can be assigned, e. g.
formyxz <- formula(y~x+z)
or
formyxz <- formula(*y~x+z’")
The argument to formula() can be atext string. This makes it straightforward to paste the argument
together from components that are stored in text strings. For example
For example

> names(elasticband)

[1] "'stretch™ r‘distance™

> nam <- names(elasticband)

> formds <- paste(nam[1],"~",nam[2])
> Im(formds,data=elasticband)

Call:
Im(formula = formds, data = elasticband)

Coefficients:
(Intercept) distance
26.3780 0.1395

5.4 Multiple Linear Regression Models

5.4.1 The Data Frame Rubber
> library(mass,first=T)
MASS library for Venables & Ripley (1999) version 5.1

This library is provided by Venables & Ripley <MASS@stats.ox.ac.uk>
It is not supported by MathSoft. Use the command ~library(MASS, help=T)"
to view the “readme.txt" file for this library.

> The parser isa part of the S-PLUS implementation code. It takes S-PLUS statements and turns them into
code which can be more directly executed by the computer.
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Use addMassMenus() to install the menus and dialogs
removeMassMenus() to remove them

> splom(~Rubber)
> Rubber.Im <- Im(loss~hard+tens, data=Rubber)
> summary(Rubber.Im)
Call: Im(formula = loss ~ hard + tens, data = Rubber)
Residuals:
Min 1Q Median 3Q Max
-79.4 -14.6 3.82 19.8 66

Coefficients:
Value Std. Error t value Pr(c|t])
(Intercept) 885.161 61.752 14_334 0.000
hard -6.571 0.583 -11.267 0.000
tens -1.374 0.194 -7.073 0.000

Residual standard error: 36.5 on 27 degrees of freedom
Multiple R-Squared: 0.84
F-statistic: 71 on 2 and 27 degrees of freedom, the p-value is 1.77e-011

Correlation of Coefficients:
(Intercept) hard

hard -0.834

tens -0.766 0.299

Now examine diagnostic plots:
par(mfrow=c(2,2))
plot(Rubber.Im, which=c(1,2,4,6))
par(mfrow=c(1,1))

5.4.2 Weights of Books

The books to which the datain the data set oddbooks (accompanying these notes) refer were
chosen to cover awide range of weight to height ratios. Here are the data:

> oddbooks
thick height width weight
44 13.5 9.2 250
29 17.3 10.5 300
28 19.8 12.6 350
25 23.5 15.5 600
18 27.5 18.5 625
15 29.1 20.5 940
14 30.5 23.0 1075
logbooks <- log(oddbooks) # We might expect weight to be
# proportional to thick * height * width
> logbooks. Imi<-Im(weight~thick,data=1ogbooks)
> summary(logbooks. Im1)$coef
Value Std. Error t value PrCjtD
(Intercept) 10.370 0.6005 17.270 0.00001192
thick -1.315 0.1902 -6.913 0.00097087
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> logbooks. Im2<-Im(weight~thick+height,data=1ogbooks)
> summary(logbooks. Im2)$coef
Value Std. Error t value Pr(clt])

(Intercept) 3.691 6.2015 0.5951 0.5838
thick -0.419 0.8489 -0.4936 0.6475
height 1.249 1.1543 1.0820 0.3401

> logbooks. Im3<-Im(weight~thick+height+width,data=1ogbooks)
> summary(logbooks. Im3)$coef
Value Std. Error t value Pr(clt])

(Intercept) 3.08350 4.2206 0.7306 0.51792
thick -0.08437 0.5935 -0.1421 0.89597
height -0.84260 1.1776 -0.7155 0.52595
width 2.23554 0.9390 2.3807 0.09756

Soisweight proportional to thick * height * width?

The correlations between thick, height and width are so strong that if one triesto use more
than one of them as an explanatory variables, the coefficients areill-determined. They contain
very similar information, as is evident from the scatterplot matrix. The regressions on height and
width give plausible results, while the coefficient of the regression on thick isentirely an
artefact of the way that the books were selected.

The design of the data collection really isimportant for the interpretation of coefficients from a
regression equation. The design for these data was about as bad as it gets!

5.4.3 The Data Frame piglitters

The supplied dataframe piglitters hasdataon litter size (3 - 12), body weight and brain weight
for 20 guineapigs. Theinterest isin predicting brain weight given litter size and body weight.
Note in passing that for this example the X matrix will have three columns — an initial column of
ones, and one column each for litter size and body weight.

We check the scatterplot matrix, and then proceed with the regression calculations.

> splom(~piglitters) # First look at the scatterplot matrix
> piglitters.Im <- Im(brainwt ~ Isize + bodywt, data=piglitters)
> summary(piglitters.Im, corr=F)

Call: Im(formula = brainwt ~ Isize + bodywt, data = piglitters)
Residuals:
Min 1Q Median 3Q Max
-0.023 -0.009882 0.0004512 0.009204 0.01808

Coefficients:
Value Std. Error t value PrC|t])
(Intercept) 0.1782 0.0753 2.3664 0.0301
Isize 0.0067 0.0031 2.1361 0.0475

bodywt 0.0243 0.0068 3.5857 0.0023

Residual standard error: 0.01195 on 17 degrees of freedom

Multiple R-Squared: 0.6505

F-statistic: 15.82 on 2 and 17 degrees of freedom, the p-value is 0.0001315
Now examine diagnostic plots

par(mfrow=c(2,2))

plot(piglitters.Im, which=c(1,2,4,6))

par(mfrow=c(1,1))

49



As an exercise, the reader isinvited to carry out the straight line regressions of brain weight on
litter size, and of brain weight on body weight. Why is one of these straight line regression
coefficients different in sign from the coefficient in the multiple regression equation above? L ook
at the scatterplot matrix to find an explanation.

Note the form of the model matrix. Typein:

model .matrix(piglitters.Im)

5.5 Polynomial regression

We show how calculations that have the same structure as multiple linear regression may be used
to model acurvilinear response. We build up curves from linear combinations of transformed
values. A warning isthat the use of polynomial curves of high degree arein general
unsatisfactory. Spline curves, which are constructed by joining together low order polynomial
curves (typically cubics) in such away that the slope changes smoothly, are in general preferable.

5.5.1 Polynomial Terms in Linear Models

The data frame seedratesthat accompanies these notes gives, for each of a number of different
seeding rates, the number of barley grain per head.

> plot(grain ~ rate, data=seedrates, pch=16) # Plot the data

We will need an X-matrix with a column of ones, a column of values of rate, and a column of
valuesof rate®. We can achieve this by putting both rate and 1 (rate”~2) into the model

formula.
> seedrates. Im2<-Im(grain~rate+1(rate”2),data=seedrates)

> summary(seedrates. Im2)

Call: Im(formula = grain ~ rate + I(rate”2), data = seedrates)
Residuals:

1 2 3 4 5
0.0457 -0.123 0.0943 -0.00286 -0.0143

Coefficients:
Value Std. Error t value PrCclt))
(Intercept) 24.060 0.456 52.799 0.000
rate -0.067 0.010 -6.728 0.021
I(rate”2) 0.000 0.000 3.497 0.073

Residual standard error: 0.115 on 2 degrees of freedom
Multiple R-Squared: 0.996
F-statistic: 256 on 2 and 2 degrees of freedom, the p-value is 0.0039

Correlation of Coefficients:
(Intercept) rate
rate -0.978
I(rate”2) 0.941 -0.989
>
hat <- predict(seedrates. Im2)
lines(spline(seedrates$rate, hat))

1® Dataare from McLeod, C. C. (1982) Effect of rates of seeding on barley grown for grain. New Zealand
Journal of Agriculture 10; 133-136. Summary details arein Maindonald, J. H. (1992).
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# Placing the spline fit through the fitted points allows a smooth curve.
# For this to work the values of seedrates$rate must be ordered.

Fig. 20 showsthe plot:

grain
20
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I T T T I
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rate

Figure 20: Plot of number of grain per head ver sus seeding rate, for the barley
seeding rate data. Thefitted curveisaquadratic.

Again, check the form of the model matrix. Typein:

> model .matrix(grain~rate+l(rate”2),data=seedrates)
(Intercept) rate I(rate”2)

1 1 60 2500
2 1 75 5625
3 1 100 10000
4 1 125 15625
5 1 150 22500

This example demonstrates a way to extend linear models to handle specific types of non-linear
relationships. We can use any transformation we wish to form columns of the model matrix. We
could, if we wished, add an x® column.

Once the model matrix has been formed, we are limited to taking linear combinations of columns.
It isin that sense that we are still in alinear model framework.

5.5.2 What order of polynomial?

A polynomial of degree 2, i.e. aquadratic curve, looked about right for the above data. How does
one check?

Oneway isto fit polynomials, e. g. of each of degrees 1 and 2, and compare them thus:
> seedrates. Iml<-Im(grain~rate,data=seedrates)
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> seedrates. Im2<-Im(grain~rate+l(rate”2),data=seedrates)
> anova(seedrates.Im2,seedrates. Iml)
Analysis of Variance Table

Response: grain

Terms Resid. DF RSS Test DF Sum of Sq
1 rate + I(rate”2) 2 0.0263
2 rate 3 0.1870 -I(raten2) -1  -0.1607

F value Pr(F)
1
2 12.23 0.07294

The F-valueislarge, but on this evidence there are too few degrees of freedom to make atotally
convincing case for preferring a quadratic to aline. However the paper from which these data
come gives an independent estimate of the error mean square (0.17 on 35 d.f.) based on 8 replicate
results that were averaged to give each value for number of grains per head. If we compare the
change in the sum of squares (0.1607, on 1 df) with a mean square of 0.172 (35 df), the F-valueis
now 5.4 on 1 and 35 degrees of freedom, and we have p=0.024 . The increase in the number of
degrees of freedom more than compensates for the reduction in the F-statistic.

> # However we have an independent estimate of the error mean square

> # The estimate is 0.1772, on 35 df.

> 1-pf(0.16/0.17~2, 1, 35)

[1] 0.02437
Finally note that R? was 0.972 for the straight line model. This may seem good, but given the
accuracy of these dataiit was not good enough! The statistic is not an inadequate guide to whether
amodel is adequate. Even for any one context, R* will in general increase as the range of the
values of the dependent variable increases. (R?is larger when there is more variation to be
explained.) A predictive model is adequate when the standard errors of predicted values are
acceptably small, not when R? achieves some magic threshold.

R? may be used for comparing results from different sets of data where the combinations of values
of explanatory variables are broadly similar. Even for that purpose, it is a crude measure.

5.5.3 Pointwise confidence bounds for the fitted curve

Hereis code that will give pointwise 95% confidence bounds. Note that these do not combine to
give aconfidence region for the total curve! The construction of such aregion is amuch more
complicated task!

plot(grain ~ rate, data = seedrates, pch = 16, xlim = ¢(50, 175), ylim
= c¢(15.5, 22),xlab="Seeding rate",ylab="Grains per head')
new.df <- data.frame(rate = c((4:14) * 12.5))
seedrates.Im2 <- Im(grain ~ rate + I(rate”2), data = seedrates)
Fitinfo <- predict(seedrates.Im2, newdata=new.df, se=T)
ci <- pointwise(fitinfo, coverage=0.95)
lines(new.df$rate, ci$fit)
lines(new.df$rate, ci$lower,lty=2)
lines(new.df$rate, ci$upper, lty=2)

The extrapolation has deliberately been taken beyond the range of the data, in order to show how
the confidence bounds spread out. Confidence bounds for a fitted line will spread out much more
slowly, but are even less believable!
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*5.5.4 Spline Terms in Linear Models

By now, readers of this document will be used to the ideathat it is possible to use linear modelsto
fit terms that may be highly nonlinear functions of one or more variables. The fitting of
polynomial functions was a simple example of this. Spline functions variables extend thisidea
further. The splinesthat | demonstrate are constructed by joining together cubic curves, in such a
way the joins are smooth. The places where the cubics join are known as "knots'. It turns out that,
once the knots are fixed, and depending on the class of spline curves that are used, spline functions
of avariable can be constructed as a linear combination of basis functions, where each basis
function is a transformation of the variable.

The data frame cars accompanies these notes:
> plot(dist~speed,data=cars)
cars. Im<-Im(dist~bs(speed) ,data=cars) # By default, there are no knots
hat<-predict(cars.Im, se=T)
lines(cars$speed,hat, Ity=3) # NB assumes values of speed are sorted
cars5. Im<-Im(dist~bs(speed,5), data=cars)
# B-spline fit, 1 knot
> ci5 <- pointwise(predict(cars5.Im, se.fit=T), coverage=0.95
> names(cib5)
[1] "fit" "se.fit" rdfr "residual .scale"
> lines(cars$speed, ci5$fit)
> lines(cars$speed, ci5$lower, Ity=2)
> lines(cars$speed, ci5$upper, Ity=2)

VvV V V V

5.6 Using Factorsin S-PLUS Models

Factors are essential, when there are categorical or “factor” variables, for specifying S-PLUS
models. Consider data from an experiment that compared houses with and without cavity
insulation. While one would not usually handle these calculations using an Im model, it makes a
simple example to illustrate the choice of a baseline level, and a set of contrasts. Different
choices, although they fit equivalent models, give output in which some of the numbers are
different and must be interpreted differently.

We begin by entering the data from the command line:

insulation <- factor(c(rep("without", 8), rep(“with", 7)))
# 8 without, then 7 with

kWwh <- c¢(10225, 10689, 14683, 6584, 8541, 12086, 12467,
12669, 9708, 6700, 4307, 10315, 8017, 8162, 8022)

To formulate this as a regression model, we take kWh as the dependent variable, and the factor
insulation as the explanatory variable.

> options(contrasts = c("contr.treatment"”, "contr.poly'), digits = 2)
> insulation.Im <- Im(kWwh ~ insulation)
> summary(insulation.Im, corr=F)

Call: Im(formula = kWh ~ insulation)
Residuals:
Min 1Q Median 3Q Max
-4409 -979 132 1575 3690

Coefficients:
Value Std. Error t value PrCjtD
(Intercept) 7890.143 873.753 9.030 0.000
insulation 3102.857 1196.436 2.593 0.022
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Residual standard error: 2310 on 13 degrees of freedom
Multiple R-Squared: 0.34
F-statistic: 6.7 on 1 and 13 degrees of freedom, the p-value is 0.022

The p-value is 0.022, which may be taken to indicate (p < 0.05) that we can distinguish between
the two types of houses. But what does the “intercept” of 9441.57 mean, and what does the value
for “insulation” of 1551.43 mean? To interpret this, we need to know that the factor levels are, by
default, taken in alphabetical order, and that the initial level istaken asthe baseline. Sowith
comes before without, and with isthe baseline. Hence:

Average for Insulated Houses = 7980.1
To get the estimate for uninsulated houses take 7980.1 + 3102.9 = 10993.0
The standard error of the differenceis 1196.4

Warning: Unless you specifically want helmert contrasts (see section 5.6.2), make sure that
before fitting any Im model that uses factors you give the command:

options(contrasts = c(“contr.treatment”, "contr.poly'™), digits = 3)
[Setting the number of digitsis optional; but three is often sensible.]
Another possibility is:

options(contrasts = c(“contr.sum™, "contr.poly'™), digits = 3)

Section 5.6.2 will explain why.

5.6.1 The Model Matrix

It often helpsto think in terms of the model matrix or X matrix. Here are the X and they that are
used for the calculations. Note that the first eight data values were all withouts:

Contrast kWh
x7980.1 x3102.9 Add to get Compare with Residual
1 1 7980.1+3102.9=10993.0 10225 10225-10993.0
1 1 7980.1+3102.9=10993.0 10689 10689-10993.0
0 7980.1+0 9708 9708-7980.1
0 7980.1+0 6700 6700-7980.1

Typein

model .matrix(kWh~insulation)

and check that one gets the above model matrix.

*5.6.2 Other Choices of Contrasts

There are other ways to set up the X matrix. Intechnical jargon, there are other contrasts that one
can choose. One obvious alternative isto make without the first factor level, so that it becomes
the baseline. Y ou can do thisin the following way:

> insulation <- factor(insulation, labels=c(“without”, “with™)



Another possibility isto use what are called the “helmert” contrasts. Although thisisthe S-PLUS
default, | recommend that you avoid them. That was the reason for the option setting:

> options(contrasts = c("contr.treatment’, "contr.poly'), digits = 2)

Hereisthe output you get if you use the Helmert contrasts:

Coefficients:
Value Std. Error t value Pr(c|t])
(Intercept) 9441.571 598.218 15.783 0.000
insulation 1551.429 598.218 2.593 0.022

Residual standard error: 2310 on 13 degrees of freedom
Multiple R-Squared: 0.341
F-statistic: 6.73 on 1 and 13 degrees of freedom, the p-value is 0.0223

Hereistheinterpretation:
average of (mean for “without”, “mean for with") = 9441.57
To get the estimate for insulated houses (the first level), take 9441.57 - 1551.43 = 7890.14
To get the estimate for insulated houses (the first level), take 9441.57 + 1551.43 = 10993.

The interpretation of the helmert contrasts is simple enough when there are just two levels. With
>2 levels, the helmert contrasts give parameter estimates which in general do not make alot of
sense, basically because the baseline keeps changing, to the average for all previous factor levels.
Y ou do better to use either the treatment contrasts, or the sum contrasts. With the sum contrasts
the baselinegis the overall mean. The sum contrasts are sometimes called “analysis of variance”
contrasts ™.

Y ou can set the choice of contrasts for each factor separately, with a statement such as:

insulation <- C(insulation, contr=treatment)

The statement that we used earlier, |4J_&|

options(contrasts=c(*'contr.treatment', "contr.poly'™))

doesthisfor al factors, except any that have perhaps been set individually.

*5.6.3 Factor Attributes
Factors are relatively complex objects. Below, we form afactor and then examine its attributes:

> options(contrasts=c(“contr.treatment”,”contr.poly”))
> fac<- factor(1:5)

> attributes(fac)

$levels:

[1] "1 2" 3" 4" 5™

$class:
[1] "factor"

7 To make the sum contrasts the default for all factors, begin your work by specifying
options(contrasts=c(*'contr.sum', "contr.poly™))

The Helmert contrasts, which are the default, contrast each level with the average of al earlier levels. The
coefficients are half of this difference.

'8 The second stri ng element, i.e. " contr.poly" , isthe default setting for factors with ordered levels. [One
uses the function ordered () to create ordered factors.]
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> contrasts(fac)
2345
00O00O
1000
0100
0010
50001
One can in fact form afactor in such away that the contrasts matrix is attached to the factor asan
attribute. Specify, e. g.

fac<-C(as-factor(1:5), treatment)

Suppose we define fac as and ordered factor. Then we get the contrasts that relate to ordered
factors, unless we specify otherwise:

> fac<-ordered(1:5)
> contrasts(fac)
-L -Q .C N4
1 -6.325e-001 0.5345 -3.162e-001 0.1195
2 -3.162e-001 -0.2673 6.325e-001 -0.4781
3 -6.939e-018 -0.5345 4.996e-016 0.7171
4 3.162e-001 -0.2673 -6.325e-001 -0.4781
5 6.325e-001 0.5345 3.162e-001 0.1195
The column names are .L (linear), .Q (quadratic), .C (cubic) and ” 4 (quartic). For an explanation,

look up atext which explains the use of orthogonal polynomial terms where factor levels are
ordered.
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5.7 Multiple Lines— Different Regression Linesfor Different Species

The terms which appear on the right of the model formula may be variables or factors, or
interactions between variables and factors, or interactions between factors. Here we take
advantage of thisto fit different lines to different subsets of the data.

In the example which follows, we had weights for a porpoise species (Sellena styx) and for a
dolphin species (Del phinus delphis). We take x; to be a variable which has the value O for
Delphinus delphis, and 1 for Sellena styx. We take x; to be body weight. Then possibilities we
may want to consider are:

A:Asingleline y=a+bx,
B: Two paralel lines: y=a; + a, X + b X,

[For thefirst group (Stellena styx; x; = 0) the constant term is a;, while for the second group
(Delphinus delphis; x; = 1) the constant termisa; + ay.]

C:. Two SeparatelineS: y=agtayXx+ by Xo + by X1 %o
[For thefirst group (Delphinus delphis; x; = 0) the constant term is a; and the slopeisb;. For the
second group (Stellena styx; x; = 1) the constant termisa; + a,, and the slopeisb; + b,.]

We show results from fitting the first two of these models, i.e. A and B:

> options(contrasts = c("contr.treatment", ‘‘contr.poly'))

> names(dolphins)

[1] "'wt" "heart" "logweight™ "logheart" ‘‘species™

> xyplot(logheart ~ logweight, data=dolphins,
panel=panel .superpose, groups=dolphins$species,
pch=c(15,16), col=c(1,5), cex=1.5)

> options(digits=4)

> cet.Iml <- Im(logheart ~ logweight, data = dolphins)
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> summary(cet.Iml, corr=F)

Call: Im(formula = logheart ~ logweight, data = dolphins)
Residuals:
Min 1Q Median 3Q Max
-0.159 -0.0825 0.00274 0.0498 0.219

Coefficients:
Value Std. Error t value Pr(c|t])
(Intercept) 1.325 0.522 2.539 0.024
logweight 1.133 0.133 8.523 0.000

Residual standard error: 0.111 on 14 degrees of freedom

Multiple R-Squared: 0.838

F-statistic: 72.6 on 1 and 14 degrees of freedom, the p-value is 6.51e-007
> cet.Im2 <- Im(logheart ~ species + logweight, data=dolphins)

Check what the model matrix looks like;

> model .matrix(cet.Im2)
(Intercept) species logweight

1 1 1 3.56
7 1 1 3.81
8 1 0 3.99
16 1 0 3.95

Now look at an output summary:

> summary(cet.Im2, corr=F)

Call: Im(formula = logheart ~ species + logweight, data = dolphins)
Residuals:
Min 1Q Median 3Q Max
-0.116 -0.0649 -0.0114 0.0606 0.128

Coefficients:
Value Std. Error t value PrCltD)
(Intercept) 1.605 0.414 3.878 0.002
species 0.144 0.045 3.206 0.007
logweight 1.046 0.107 9.801 0.000

Residual standard error: 0.0859 on 13 degrees of freedom

Multiple R-Squared: 0.91

F-statistic: 65.5 on 2 and 13 degrees of freedom, the p-value is 1.62e-007
> plot(cet.Im2) # Plot diagnostic information for the model just Ffitted.

> cet.Im3 <- Im(logheart ~ species + logweight + species:logweight,
+ data=dolphins)

Check what the model matrix looks like:

> model .matrix(cet. Im3)
(Intercept) species logweight species:logweight
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1 1 1 3.56 3.56

8 1 0 3.99 0.00

Now see why it is not worth wasting time on cet. Im3

> anova(cet.Iml,cet.Im2,cet.Im3)
Analysis of Variance Table

Response: logheart

Terms Resid. DF RSS Test DF Sum of Sq F Value Pr(F)
1 logweight 14 0.1717
2 species + logweight 13 0.0959 +species 1 0.07581 9.585 0.0093
3 species * logweight 12 0.0949 +species:logweight 1 0.00095 0.120 0.7346

5.8 Explaining Fuel Consumption — 2 variables, plusthe factor Type
We will use the data frame fuel . frame. First, here are some of the details of this data frame.

> sapply(fuel .frame, is.factor)
Weight Disp. Mileage Fuel Type
F F F F T
>
> splom(~fuel .frame[,-5], data=fuel.frame, panel=panel.superpose,
groups=Type) # scatterplot matrix, distinguish Types
> levels(fuel . frame$Type)
[1] "Compact" *Large'™  "Medium™ "Small'™ "Sporty” "Van"

Now regress Fuel onWeight, Disp and Type

> options(contrasts=c(“contr.treatment”, “contr.poly™))
> fuel.Im <- Im(Fuel~-Weight+Disp.+Type, data=fuel.frame)
> summary(fuel.lIm, corr=F)

Call: Im(formula = Fuel ~ Weight + Disp. + Type, data = fuel.frame)
Residuals:
Min 1Q Median 3Q Max
-0.6973 -0.2444 -0.01367 0.2 0.6363

Coefficients:
Value Std. Error t value PrCltD)
(Intercept) 2.9840 0.5757 5.1829 0.0000
Weight 0.0000 0.0003 0.1611 0.8726
Disp- 0.0076 0.0017 4.3616 0.0001
TypelLarge -0.2906 0.2585 -1.1239 0.2662
TypeMedium 0.1490 0.1357 1.0981 0.2772
TypeSmall -0.5436 0.1570 -3.4626 0.0011
TypeSporty -0.3892 0.1400 -2_.7793 0.0076
TypevVan 0.9342 0.2086 4.4780 0.0000
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Residual standard error: 0.3139 on 52 degrees of freedom
Multiple R-Squared: 0.8486
F-statistic: 41.65 on 7 and 52 degrees of freedom, the p-value is O

> res.fuel<-residuals(fuel.Im) # Store residuals for possible later use

par(mfrow=c(2,2))

plot(fuel.lIm) # Gives useful diagnostic plots
par(mfrow=c(1,1))

plot.gam(fuel.Im) # Gives a graphical view of the model
anova(fuel . Im)

V V.V Vv V

It may be possible to improve on this model, either by transforming one or more of the explanatory
variables, or by including interaction terms.

*5.9 aov models (Analysis of Variance)
The class of models which can be directly fitted as aov modelsis quite limited. In essence, aov
provides, for datawhere al combinations of factor levels have the same number of observations,

another view of an Im model. It has an ability, not available in ImQ), to specify the mean square
that will be used to estimate the “error’ term.

> sapply(catalyst, is.factor)
Temp Conc Cat Yield
T T T F
> sapply(catalyst[,-4], levels)
Temp Conc Cat
[1,] ""160" 20" A"
[2,] '"180" 40" "B

fit main effects and 2 factor interactions
options(contrasts=c(“contr.treatment”, “contr.poly”))
cat.aov2 <- aov(Yield ~ (Temp+Conc+Cat)"2, data=catalyst)
# All first order interactions
summary(cat.aov2) # look at anova table
summary.Im(cat.aov2) # Examine effects
> # Effects are relative to the First level as baseline
Above, we have fitted amodel that has all first order interactions. We have one degree of freedom
left for estimating error.

V V.V V V %

*5.9.1 Shading of Kiwifruit Vines

These data (yields in kilograms) are in the data frame kiwishade which accompanies these
notes. They are from an experi ment&here there were four treatments - no shadi ng, shading from
August to December, shading from December to February, and shading from February to May.
Each treatment appeared once in each of the three blocks. The northernmost plots were grouped in
one block because they were similarly affected by shading from the sun. For the remaining two
blocks shelter effects, in one case from the east and in the other case from the west, were thought
more important. Results are given for each of the four vinesin each plot. In experimental design
parlance, the four vines within a plot constitute subplots.

91 am grateful to W. S. Snelgar for the use of these data. Further details, including a diagram showing the
layout of plots and vines and details of shelter, are in Maindonald (1992).
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The block: shade mean square (sum of squares divided by degrees of freedom) provides the
error term. (If thisis not specified, one till gets a correct analysis of variance breakdown. But the
F-statistics and p-values will be wrong.)

> options(contrasts=c(‘‘contr.treatment™”, " "contr._poly™))
> levels(kiwishade$shade)
[1] "Aug2Dec" '‘Dec2Feb™ "Feb2May' '‘none"
> lev<-levels(kiwishade$shade)
> kiwishade$shade<-factor(kiwishade$shade, levels=lev[c(2:4,1)])
> kiwishade.aov<-aov(yield~block+shade+Error(block:shade) ,data=kiwishade)
> summary(kiwishade.aov)
Error: block:shade
Df Sum of Sq Mean Sq F Value Pr(F)

block 2 172 86.2 4.12 0.07488
shade 3 1395 464.8 22.21 0.00119
Residuals 6 126 20.9

Error: Within
Df Sum of Sq Mean Sq F Value Pr(F)
Residuals 36 438.6 12.18

5.10 Exercises

1. Here are two sets of data that were obtained the same apparatus, including the same rubber
band, as the data frame elasticband. For the data set elasticl, the values are:

stretch (mm): 46, 54, 48, 50, 44, 42, 52

distance (cm): 183, 217, 189, 208, 178, 150, 249

For the data set elastic?2, the values are:
stretch (mm): 25, 45, 35, 40, 55, 50 30, 50, 60
distance (cm): 71, 196, 127, 187, 249, 217, 114, 228, 291.

Using adifferent symbol and/or a different colour, plot the data from the two data frames
elasticl and elastic2 onthe same graph. Do the two sets of results appear consistent.

2. For each of the data setselasticl and elastic2, determine the regression of stretch on
distance. In each case determine (i) fitted values and standard errors of fitted values and (ii) the R?
statistic. Compare the two sets of results. What is the key difference between the two sets of data?

3. Use the method of section 5.7 to determine, formally, whether one needs different regression
lines for the two dataframeselasticl and elastic2.

4. Using the datain the supplied data frame ironslag, plot chemical (i.e. iron content, as
measured by a chemical method) against magnetic. Fit alineto thisrelationship, and plot the
line. Then try fitting and plotting a quadratic curve. Does the quadratic curve give a useful
improvement to the fit?

[When you get the fitted values from the quadratic curve, you will need to sort the values of
magnetic into increasing order, and apply the same re-arrangement to fitted values. Use
order () to determine the order in which values of magnetic must be taken, and apply this same
re-ordering both to magnetic and to fitted values.]

5. Using the datain the supplied data frame beams, carry out a regression of strength on
SpecificGravity and Moisture. Carefully examine the regression diagnostic plot, obtained
by supplying the name of the Im object as the first parameter to plot(). What doesthisindicate?

6. Using the dataframe piglitters, carry out the straight line regressions of brain weight on
litter size, and of brain weight on body weight. Why is one of these straight line regression
coefficients different in sign from the corresponding coefficient in the multiple regression equation
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of brain weight on litter size and body weight? Look at the scatterplot matrix to find an
explanation.

7. Using the datain the supplied data frame hi I I's, regress time on dist and climb. What can
you learn from the diagnostic plots which you get when you plot the Im object? Try aso
regressing log(time) on log(dist) and log(climb). Which of these regression equations
would you prefer?

8. In the supplied data frame beams, regress strength on SpecificGravity and moisture.
Examine the diagnostic plots. What do you observe?

9. Modify the code in section 5.5.3 to fit: (a) aline, with accompanying 95% confidence bounds,
and (b) a cubic curve, with accompanying 95% pointwise confidence bounds. Which of the three
possibilities (line, quadratic, curve) is most plausible? Can any of them be trusted?

10. Type

hosp<-rep(c(’RNC”,”Hunter”,”Mater’), 2)
hosp

Thosp<-factor(hosp)

levels(fhosp)

Now repeat the steps involved in forming the factor fhosp, this time keeping the factor levelsin
the order RNC, Hunter, Mater.

Use contrasts(fhosp) to form and print out the matrix of contrasts. Do thisusing helmert
contrasts, treatment contrasts, and sum contrasts. Using an outcome variable

y <- ¢(2,5,8,10,3,9)

fit the model Im(y~fhosp), repeating the fit for each of the three different choices of contrasts.
Comment on what you get.

For which choice(s) of contrasts do the parameter estimates change when you re-order the factor
levels?

11. In section 5.7 check the form of the model matrix (i) for fitting two parallel lines and (ii) for
fitting two arbitrary lines when one uses the sum comtrasts. Repeat the exercise for the helmert
contrasts.
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6. Multivariate and Tree-Based Methods

6.1 Multivariate EDA, and Principal Components Analysis
Principal components analysisis often auseful exploratory tool for multivariate data. The

supplied data set possum has nine morphometric measurements on each of 102 mountain brushtail
possums, trapped at seven sites from southern Victoriato central Queensland. With such datait is

sensible to begin by examining relevant scatterplot matrices. This may draw attention to gross
errorsinthedata. A plot in which the sites and/or the sexes are identified will draw attention to

any very strong structure in the data. For example one site may be quite different from the others,

for some or all of the variables.

Here are some of the possibilities for examining these data:

splom(~possum[,6:14], panel=panel.superpose, groups=possum$sex)
splom(~possum[,6:14], panel=panel.superpose, groups=possum$site)
here<-!is.na(possum$pes) # We need to exclude missing values
print(sum(there)) # Check how many values are missing
possum.prc <- princomp(possumf[here,6:14]) # Principal components
# Print scores on second pc versus scores on first pc
xyplot(possum.prc$scores[,2] ~ possum.prc$scores[,1]|possum$Pop[here],
panel=panel .superpose, groups=possum$sex[here])
xyplot(possum.prc$scores[,2] ~ possum.prc$scores[,1]|possum$site[here],
panel=panel .superpose, groups=possum$sex[here])

Fig. 21 shows the second of these plots:
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Figure 21: Plot of second principal component versusfirst principal
component, for the possum mor phometric data.

See chapter 1 of the SPLUS 2000 Guide to Statistics.
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6.2 Cluster Analysis

In the language of Ripley (19960I uster analysisis aform of unsupervised classification. Itis
“unsupervised” because the clusters are not known in advance. There are two types of algorithms
—algorithms based on hierachical agglomeration, and algorithms based on iterative relocation.
Both types of algorithm are available in SPLUS.

In hierarchical agglomeration each observation starts as a separate group. Groups that are “close”
to one another are then successively merged. The output yields a hierarchical clustering tree which
shows the rel ationships between observations and between the clusters into which they are
successively merged. A judgement is then needed on the point at which further merging is
unwarranted.

In iterative relocation, the algorithm starts with an initial classification, which it then triesto
improve. How does one get the initial classification? Typically, by aprior use of a hierarchical
agglomeration algorithm.

6.3 Discriminant Analysis

We start with data which are classified into several groups, and want a rule which will alow usto
predict the group to which a new data value will belong. In the language of Ripley (1996), our
interest isin supervised classification. For example, we may wish to predict, based on prognostic
measurements and outcome information for previous patients, which future patients will remain
free of disease symptoms for twelve months or more. Here are calculations for the possum data
frame, using the 1da() function from the Venables & Ripley MASS library:

library(MASS, First=T)
here<- l!is.na(possum$pes)
possum.lda <- lda(site~hdIngth+skul lw+totingth+
tai l l+pest+earconch+eye+chest+bel ly,data=possum, subset=here)
possum.lda$svd # Examine the singular values

[1] 15.7577838 3.9372136 3.1859729

[4] 1.5078461 1.1420103 0.7771947

> plot(possum.lda, dimen=3)

> # Scatterplot matrix for scores on 1st 3 canonical variates, as in Fig. 18
The singular values are the ratio of between to within group sums of squares, for the canonical
variatesin turn. Clearly canonical variates after the third have little if any discriminatory power.
One can use predict. Ida() to get (among other information) scores on the first few canonical
variates.

\)

>
>
+
>

% References are at the end of the chapter.
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Figure 22: Scatterplot matrix of thefirst threelinear discriminant
functions, for the possum mor phometric data.

Where there are two groups, logistic regression is often effective. Perhaps the best source of code
for handling more general supervised classification problemsis Hastie and Tibshirani’s mda
(mixture discriminant analysis) library. Thereisabrief overview of thislibrary in the Venables
and Ripley "Complements’, referred to in section 13.2.

6.4 Decision Tree models (Tree-based models)

We include tree-based classification here because it is a multivariate supervised classification, or
discrimination, method. A tree-based regression approach is available for use for regression
problems. Tree-based methods seem more suited to binary regression and classification than to
regression with an ordinal or continuous dependent variable.

Tree-based models, also known as “Classification and Regression Trees’ (CART), may be suitable
for regression and classification problems when there are extensive data. One advantage of such
methods is that they automatically handle non-linearity and interactions. Output includes a
“decision tree” which isimmediately useful for prediction.

In addition to tree() and related functions, there is a separate RPART library of functions. My
preference is for the RPART library.

library(mass) # Forensic glass fragment data is in mass library
glass.tree <- tree(type ~ RI+NatMg+Al+Si+K+Cat+Ba+Fe, data=Ffgl)
plot(glass.tree); text(glass.tree)

summary(glass.tree)

To use these models effectively, it is necessary to know about pruning trees, and about cross-
validation.

The Atkinson and Therneau RPART (recursive partitioning) library is closer to CART thanisthe
S PLUStreelibrary. Itsintegration of cross-validation with the algorithm for forming trees gives
it advantages over the SSPLUS treelibrary. See Maindonald (1998).
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6.5 Exercises

1. Using the data. frame function, convert the object testscores into an S-PLUS data frame.
Apply principal components analysis to the scores for diffgeom, complex, algebra, and
reals. Plotthe scoresfor thefirst principal component against the statistics scores.

2. Apply principal components analysis to the four response variables pre .mean, post.mean,
pre.dev and post.dev in the dataframe wafer. Use xyplot to plot the second principal
component scores against the first principal component scores for each value of maskdim.
3. (a) Use

predict(kyphosis.tree,data. frame(Kyphosis=NA,Age=11,Number=3,Start=5))
to predict whether kyphosis will be present or absent for an 11-month-old whose operation
involved 3 vertebrae starting at the 5th. What about a 36-month-old whose operation involved 6
vertebrae starting at the 7th.
(b) Use

summary(kyphosis.tree)
to obtain an estimate of the misclassification rate.
4. The masslibrary has the Aids2 data set, containing de-identified data on the survival status of

patients diagnosed with AIDS before July 1 1991. Use tree-based classification (rpart()) to
identify major influences on survival.

5. Investig iscrimination between plagiotropic and orthotropic speciesin the data set
leafshape“:
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*7. S-PLUS Data Structures

Chapter 2 included brief summaries of the S-PLUS data structures that beginning S-PLUS users
will encounter. This chapter has more detailed information.

7.1 Vectors

Recall that vectors may have mode logical, numeric or chars;xctel‘z_zzI Recall alsotheuseof c() to
join (concatenate) vectors.

7.1.1 Subsets of Vectors
Recall (section 2.6.1) two common ways to extract subsets of vectors:

1. Specify the numbers of the elements which are to be extracted. One can use negative
numbers to omit elements.

2. Specify avector of logical values. The elements that are extracted are those for which the
logical valueisT. Thus suppose we want to extract values of x which are greater than 10.

The following demonstrates a third possibility, for vectors that have named elements:

> c(Andreas=178, John=185, Jeff=183)[c("'John","Jeff")]
John Jeff
185 183

A vector of names has been used to extract the elements.

7.1.2 Patterned Data

Use 5:15 to generate the numbers5, 6, ..., 15. Entering 15:5 will generate the sequence in the
reverse order.

To repeat the sequence (2, 3, 5) four times over, enter rep(c(2,3,5), 4) thus:

> rep(c(2,3,5),4)
[1] 235235235235
>
If instead one wants four 2s, then four 3s, then four 5s, enter rep(c(2,3,5), c(4,4,4)).

> rep(c(2,3,5),c(4,4,4)) # An alternative is rep(c(2,3,5), each=4)
[11222233335555
Note further that, in place of c(4,4,4) we could write rep(4,3). So afurther possibility isthat
inplace of rep(c(2,3,5), c(4,4,4)) wecould enter rep(c(2,3,5), rep(4,3))-
Another way to achieve the same effect isrep(c(2,3,5), each=4).

In addition to the above, note that the function rep() has an argument lIength.out, meaning
“keep on repeating the sequence until the length is Iength.out.”

%2 Below, we will meet the notion of “class’, which is important for some of the more sophisticated language
features of S PLUS. Thelogical, numeric and character vectorsjust given have class NULL, i.e. they have no
class. There are special types of numeric vector which do have aclass attribute. Factors are the most
important example. Although often used as a compact way to store character strings, factors are, technically,
numeric vectors. The class attribute of a factor has, not surprisingly, the value “factor”.
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7.2 Missing Values

We noted in section 2.6.2 that any arithmetic operation or relation that involves NA generates an
NA. Thisappliesalsoto therelations <, <=, >, >=, ==, 1=, Thismay have unintended
consequences. Specifically, note that x==NA generates NA.

Be sureto use is.na(x) to test which values of x are NA. Note the following:
> x <- ¢(1,6,2,NA)
> is.na(x) # T for when NA appears, and otherwise false
[MIFFFT
> x==NA # All elements of the result are NA
[1] NA NA NA NA
> X[x==NA]
[1] NA NA NA NA
> x[x>2]
[11 6 NA
> NA==NA
[1] NA

WARNING: If x andy have the same length and x has missing values, then
y[x>2] <- x[px>2]
will not give the result that the naive user might expect. Suppose for example we make the
assignments
> x <- ¢(1,6,2,NA)
>y <- c(1,10,2,3)
> y[x>2] <- x[x>2]
Warning messages:
Replacement length not a multiple of number of elements
to replace in: y[x > 2] <- x[x > 2]
The warning messages indicate that something iswrong. Asone might expect, y[NA] equals NA.
On the left-hand side, any element whose subscript evaluates to NA is omitted. Thusin

> y[x>2]
[1] 10 NA

there is only one position (that occupied by the 10) to which avalue can be assigned. On the right
we have

> x[x>2]
[1] 6 NA

There are two elements, which are used in turn to replace the value 10 on the left. The value that
isfinally assigned is not 6, but NA.

One can use !is.na(x) to limit the selection, on both sides, to those elements of x that are not
NAs. Specify

y[lis.na(x) & x>2] <- x[lis.na(x) & x>2]
We will have more to say on missing values in the section on data frames which now follows.

7.3 Data frames

Recall (section 2.7) that adataframe is a generalisation of a matrix, in which different columns
may have different modes. All elements of any column must however have the same mode, i.e. al
numeric or al factor, or all character. For some purposes data frames behave like matrices. There
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are however important differences that arise because data frames are implemented as lists. Lists
are discussed below, in section 7.7.

7.3.1 Component Parts of Data frames

Recall that the data frame primates has a column of row labels, then Bodywt in column 1 of the
data frame proper, then Brainwt in column 2 of the data frame proper. Any of the following will
pick out column 2 of the dataframe primates:

primates$Brainwt

primates[,2]

primates[,”Brainwt™]

primates[[2]] # Take the object stored in the second list element.

When the dataset isread in as indicated above, the species names will be used as the row names
for the data frame, thus:
> primates
Bodywt Brainwt

Potar Monkey 10.0 115
Gorilla 207.0 406

Human 62.0 1320

Rhesus monkey 6.8 179
Chimp 52.2 440

Consider the built-in dataframe bar ley.

> names(barley)

[1] "yield" ‘variety" "year" "site"

> levels(barley$year)

[1] "1932" "1931"

> levels(barley$site)

[1] "Grand Rapids™ "Dulluth" "University Farm”™ "Morris”
[5]1 "Crookston" ""Waseca"

We will extract the datafor 1932, at the Duluth site.

> duluth1932 <- barley[barley$year=="1932" & barley$site=="Duluth"”,
c(yield"”,"variety')]

> dulluth1932

yield variety
66 22.6 Manchuria
72 25.9 Glabron
78 22.2 Svansota
84 22.5 Velvet
90 30.6 Trebi
96 22.7 No. 457
102 22.5 No. 462
108 31.4 Peatland
114 27.4 No. 475

120 29.3 Wisconsin No. 38
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The first column holds the row labels, which in this case are the numbers of the rows that have
been extracted. In place of c(“yield”,”variety’) we could have written, more simply,
c(1,2),oreveni:2.

7.3.2 Built-in data frames
Built-in data frames to which we may refer are;

barley (yield, variety 10, year 2, site 6)

car.all — values of 36 variable for each of 111 cars

claims (age 8, car.age 4, type 4, cost number)

C02 (Plant 12, Type 2, Treatment 2, conc, uptake) [S-PLUS 4.0]
ethanol (NOx, C = compression ratio, E = richness)

environmental (ozone, radiation, temperature, wind)

fuel .frame (Weight Disp. Mileage Fuel Type 6)

kyphosis (Kyphosis 2, Age, Number, Start)

market.survey (pick 2,income 7, moves 9, age 6, education 6,
employment 7, usage, nonpub 2, reach.out 3, card 2)

pigment (Batch 15, Sample 2, Test 2, Moisture)
Where a number is given, thisis afactor, and the number is the number of levels.

7.4 Data Entry

For entering arectangular array into an S-PLUS data frame, the function read.table() isan
alternative to the Import Data dialogue on the File menu. Suppose that the file primates.dat
contains:

""Potar monkey'" 10 115

Gorilla 207 406

Human 62 1320

""Rhesus monkey'" 6.8 179

Chimp 52.2 440
Then

primates <- read.table("a:/primates.dat')

will create the dataframe pri es, fromafileonthea: drive. Thetext stringsin thefirst
column will become row names™, which you can accessas row.names(primates).

Suppose that primates is a data frame with two columns — body weight, and brain weight. You can
give the columns names by typing in:

names(primates)<-c("'Bodywt", " Brainwt')

7.4.1 Idiosyncrasies

Thefunction read.table() is straightforward for reading in arrays that are entirely numeric.
Problems arise when small mistakes cause S-PLUS to interpret a column of supposedly numeric
data as character strings. For example there may be an O (oh) somewhere where there should be a
0 (zero), or an el (1) where there should be aone (1). The same problem arisesif you use * or a
dot (.) asthe missing value (NA) symbol, but fail to warn S-PLUS of this. (The default isto use
NA as the missing value symbol.)

% Note that thisis different from the default behaviour of the Import Data dialogue. A column of row labels
is taken from the data that are to be imported only if the user specifically identifies, through the Options
dialogue, one of the columns as a column of row labels.
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Where the array contains character as well as numeric data, whether by design or accident, the
behaviour of read.table() may seem idiosyncraticUsers can avoid the use of the first
available column of character strings to provide row narrﬁjﬁvspecifyi ng the parameter setting
row.names = NULL. The parameter settingas.is = ill ensure that columns of character
strings are not turned into factors.

7.4.2 Missing values when using read.table()

Thefunction read. table() expects missing values to be coded as NA, unless you set
na.strings to recognise other characters as missing value indicators. For atext file that has
been output from SAS, the setting na.strings=c("'.") may be appropriate. There may be
multiple missing value indicators, €. g. na.strings=c(.","™"). The " will ensure that empty
cells are entered as NAs.

7.4.3 Separators when using read.table()

It is sometimes necessary to specify tab (““\t’*) or comma as the separator. The default separator
iswhite space. To set tab as the separator, specify sep=""\t". In order to ensure that empty
cellsare entered as NA, specify na.strings=c("").

7.5 Factors

As noted in section 2.6.3, factors provide an economical way to store vectors of character strings
in which there are many multiple occurrences of the same strings. Factors have a dual identity.
They are stored as integer yectors, with each of the valuesinterpreted according to the information
that isin the table of levels™~ Model formulae (e.g. in analysis of variance and regression models,
asin chapter 6), and graphics formulae, provide another reason for the use of factor objects.

The data frame islandcities that accompanies these notes holds the populations of the 19
island nation cities with a 1995 urban centre population of 1.4 million or more. The row names are
the city names, the first column (country) has the name of the country, and the second column
(population) hasthe urban centre population, in millions. Hereis atable that gives the number
of times each country occurs

Australia Cuba Indonesia Japan Philippines Taiwan United Ki ngdom

3 1 4 6 2 1 2
[There are 19 cities in all.]

Rather than store “Australia threetimes, "Indonesia four times, and so on, the factor
representation stores different numerical codes for each of the different countries. It then usesa

look-up table, stored in alist of levelsthat is associated with the factor, to associate the code with
the name of a country.

> levels(islandcities$country)
[1] "Australia” ""Cuba" "Indonesia"
[4] "Japan" "Philippines” "Taiwan"

 The first column of character strings that are distinct is, by default, used for row labels. Specify
row.names = NULL to over-ridethis. Any other column that has one or more character strings will,
unless you specify otherwise, become a factor with as many levels as there are unique values in the column.
Specify as. i s=T to over-ride this. Storage of columns of character strings as factorsis efficient when a
small number of distinct strings are each repeated a large number of times.

% gSpecifyingas. is = T prevents columns of (intended or unintended) character strings from being
converted into factors. Under the Import Data dialogue, an option setting is available that has the same
effect. The defaultis, aswith read.table(), to convert any columns of character strings into factors.

% Factors are vectors that have mode numeric and class “factor”. They have an attribute levels that holds the
level names.
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[7] "United Kingdom™
Thus “Australia”, becauseit is stored in the first position, has the code 1, “Cuba’ has the code
2, “Indonesia” hasthe code 3, and so on. The country names are the factor levels.

Printing the contents of the column with the name country gives the names, not the codes. S
PLUS doesthe trandlation invisibly. In fact the codes are invisible in most operations with factors.
There are though annoying exceptions that can make the use of factorstricky. To be sure of
getting the country names, specify

as.character(islandcities$country)
To get the codes, specify

as. integer(islandcities$country)

By default, S-PLUS sorts the level namesin aphabetical order. If we form atable that has the
number of times that each country appears, thisis the order that is used:

> table(islandcities$country)
Australia Cuba Indonesia Japan Philippines Taiwan United Kingdom
3 1 4 6 2 1 2
This order of the level namesis purely a convenience. We might prefer countries to appear in order
of latitude, from North to South. We can change the order of the level names to reflect this desired
order:

> lev <- levels(islandcities$country)
> lev[c(7,4,6,2,5,3,1)]

[1] "United Kingdom™ 'Japan' "Taiwan" ""Cuba"

[5]1 "Philippines” "Indonesia" "Australia"

> country <- factor(islandcities$country, levels=lev[c(7,4,6,2,5,3,1)])
> table(country)

United Kingdom Japan Taiwan Cuba Philippines Indonesia Australia

2 6 1 1 2 4 3

Later we will meet ordered factors, i.e. factors with ordered levels, where the order is not arbitrary.

Note the dual identity of the factor country. It isat one and the same time a numeric vector and a
vector of character strings. In truth it is neither of these, but rather a data structure that
encompasses them both. The view which afactor presents depends on how you intend to useit.

Factors have the potential to cause afew surprises, so be careful! Points to note are:

1. When avector of character strings becomes a column of a dataframe, S-PLUS by default turns
itinto afactor. Enclose the vector of character strings in the wrapper function 1 () if you want
it to remain character.

2. There are some contexts in which factors become numeric vectors. To be sure of getting the
vector of text strings specify e.g. as.character(islandcities$country).

7.5.1 Changing level names
The“labels’ parameter of factor makes it possible to change level names. The label text string that
is specified for each level becomes the new level name. Care is necessary to ensure that the label
names are in the same order as the relevant level names vector.
> factor(c('UC™,"UC", "ANU","ANU'), labels=c("'Australian National
University","University of Canberra'™))
[1] University of Canberra University of Canberra
[3] Australian National University Australian National University

> factor(c(UC™,"UC", ™"ANU","ANU'), levels=c('UC",""ANU'""), labels=c("University
of Canberra",'Australian National University™))
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[1] University of Canberra University of Canberra
[3] Australian National University Australian National University

7.6 Ordered Factors

Actually, itistheir levelswhich are ordered. To create an ordered factor, or to turn afactor into an
ordered factor, use the function ordered(). Thelevels of an ordered factor are assumed to
specify positions on an ordinal scale. Try

stress. level<-rep(c(“low”,”medium”,”’high’),2)
ordf.stress<-ordered(stress. level, levels=c(“low”,”medium”,’high’))
ordf._stress

class(ordf.stress)

as.character(ordf.stress)

ordf.stress == “low”

ordf.stress >= “medium”

7.7 Lists

Lists make it possible to collect an arbitrary set of S-PLUS objects together under a single name.
Y ou might for example collect together vectors of several different modes and lengths, scalars,
matrices or more general arrays, functions, etc. Lists can be, and often are, arag-tag of different
objects. We will usefor illustration the list object that S-PLUS creates as output from an Im
calculation.

For example, suppose that we create aelastic. Im object (c. f. section 2.1.4) by specifying
elastic.Im <- Im(distance~stretch, data=elasticband)

The elements of thelist elastic. Im areavariety of different kinds of objects, joined together in

alist. To obtain the names of these objects, typein

> names(elastic.lIm)

[1] "coefficients™ "residuals" "Fitted.values" "effects" "R"
[6] "rank™ "assign” ""df.residual™ ""contrasts" “terms"
[11] "‘call”

Thefirst list element is:;

> elastic. Im$coefficients
(Intercept) stretch
-63.57 4.554
Equivalent ways to extract the first list element are:
elastic.Im[["coefficients"]]
elastic.Im[[1]1]
Note: Hereisasubtle point, which can be important for the use of lists. We can also ask for
elastic.Im[“coefficients™] or elastic.Im[1]. Either of these give usthelist whose only
element is the above vector. Thisisreflected in the result that is printed out. The information is preceded by
$coefficients, meaning “list element with name coefficients”.
> elastic.Im[1]
$coefficients:
(Intercept) stretch
-63.57 4.554

The second list element is a vector of length 10

> elastic. Im$residuals
1 2 3 4 5 6 7
2.11 -0.321 18 1.89 -27.8 13.3 -7.21
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We defer discussion of list elements 3 to 10, interesting though they are. Thefinal list element is

> elastic. Im$call
Im(formula = distance ~ stretch, data = elasticband)

*7.8 Matricesand Arrays

In this course the use of matrices and arrays will be quite limited. For the purposes of this course,
data frames have more general relevance, and can do almost everything that we require. Matrices
are likely to be important for those users who wish to implement new regression and multivariate
methods.

All the elements of amatrix have the same mode, i.e. all numeric, or al character. Thus a matrix
isamore restricted structure than a data frame. One reason for numeric matricesis that they allow
avariety of mathematical operations which are not available for dataframes. Another reasonis
that matrix generalisesto array, which may have more than two dimensions.

Note that matrices are stored columnwise. Thus consider
> XX <- matrix(1:6,ncol=3) # Equivalently, enter matrix(1:6,nrow=2)
> XX

[.11 [.2] [.3]
[1.1 1 3 5
2.1 2 4 6

If xx isany matrix, the assignment
X <- as.vector(xx)
places columns of xx, in order, into the vector x. In the example above, we get back the elements
1,2...,6.
Names may be assigned to the rows and columns of amatrix. We leave details until later.

Matrices have the attribute “dimension”. Thus

> dim(xx)
[1] 2 3

In fact amatrix is avector (numeric or character) whose dimension attribute has length 2.
Now set

> X34 <- matrix(1:12,ncol=4)
> x34

(.11 [.21 [.3] [.41
[1.] 1 4 7 10
[2.] 2 5 8 11
[3.] 3 6 9 12

Here are examples of the extraction of columns or rows or submatrices

x34[2:3,c(1,4)] # Extract rows 2 & 3 & columns 1 & 4

x34[2,] # Extract the second row

x34[-2,] # Extract all rows except the second

x34[-2,-3] # Extract the matrix obtained by omitting row 2 & column 3

Use the dimnames () function to assign and/or extract matrix row and column names. The
dimnames() function gives alist, in which the first list element is the vector of row names, and
the second list element is the vector of column names. This generalises in the obvious way for use
with arrays, which we now discuss.
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7.8.1 Arrays
The generalisation from a matrix (2 dimensions) to allow > 2 dimensions gives an array. Thusa
matrix isa2-dimensional array.
Suppose you have a numeric vector of length 24. So that we can easily keep track of the elements,
we will makethem 1, 2, .., 24. Thus
> X <- 1:24
Then
> dim(x) <- c(4,6)
turnsthisinto a4 x 6 matrix.

> X
(.11 [.2]1 [.3] [.4]1 L[.5] [.6]
[1.1 1 5 9 13 17 21
2.1 2 6 10 14 18 22
3.1 3 7 11 15 19 23
[4.1 4 8 12 16 20 24
Now try
> dim(x) <-c(3,4,2)
> X
s » 1

[.11 [.2] [.3] [.4]
. 1 4 7 10
2. 2 5 8 11
3.] 3 6 9 12

s 5 2

[-11 [.2] [.3]1 [.4]
[1.] 13 16 19 22
[2.] 14 17 20 23
[3.] 15 18 21 24

7.8.2 Conversion of Numeric Data frames into Matrices
Use as.matrix() for this purpose.

Suppose for example that you want to interchange the rows and columns of a data frame that
contains only numbers. Y ou can do this by using t(as.matrix()) to convert it to amatrix and
transpose it, then data. frame() to convert it back to a dataframe. Thefirst three columns of the
moths data frame are numeric. So we can do this:

transposed.moths <- data.frame(t(as-matrix(moths[,1:3])))

7.9 Different Types of Attachments

When S-PLUS starts up, it has alist of directories where it looks, in order, for objects. The
attach function extends thislist. Y ou can inspect the current list by typing in search(). The
working directory comesfirst on the search list.

Y ou can extend the search list in two ways. You can add new directories. Alternatively, or in
addition, you can place alist of S-PLUS objects on the search list. The syntax is subtly different in
the two cases. The S-PLUS documentation speaks of attaching databases, as away of
encompassing both these types of extension.
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A dataframeisin fact a specialised list, with its columns as the objects. If you add adataframeto
the search list, then you can refer to the columns by name, without the need to specify the data
frame to which they belong. If thereisany overlap of names, the order on the search list
determines what name will be taken.

7.9.1 Attaching Data Frames
Thus
> attach(primates)

then allows you to refer to Brainwt and Bodywt, where you would otherwise have to type
primates$Brainwt and primates$Bodywt. Thisassumesthat you do not have any other
variables or columns of attached data frames that have either of these names.

> Bodywt
Potar monkey Gorilla Human Rhesus monkey Chimp

10 207 62 6.8 52.2
> Brainwt
Potar monkey Gorilla Human Rhesus monkey Chimp
115 406 1320 179 440

To detach this data frame, type
> detach(“primates™)

i.e. quotes are now used.

Note how the use of quotes changes. Y ou specify the name (without quotes) when you attach, and
enclose the name between quotes when you detach.

7.9.2 The S-PLUS Directory Structure

S-PLUS has a search list, which can however be changed in the course of asession. Thisisthelist
of directories where S-PLUS will look for the objects that are needed as the session proceeds. To
get afull list of these directories, typein

searchQ)

Thefollowing are the different sorts of directories that will or (in the case of third party libraries)
may appear on the search list:

* Working Directory: e.g. “C:/jhm/s-course/_Data”

» System Directories. “C:/Program Files/splus45/. . .~

* MathSoft Libraries: “C:/Program Files/splus45/library/. . .”

* Third Party Libraries: “C:/Program Files/splus45/library/. . .”

(Note that within S-PLUS you need to use Z or \\, not \. Thisisathrowback to Unix.)

Objects that the user creates or changes are, unless specified otherwise, kept in the working
directory.

7.9.3 Directories as databases

The syntax for attaching and detaching a directory is alittle different. For example | have a
directory c:\stats\shape\_Data where | keep S-PLUS functions and other objects for size and
shape calculations. Inside S-PLUS thiswill be referred to as c:/stats/shape/_Data, i.e.
forward slashes replace backslashes.

| can attach this directory, and so gain use to its functions and other objects, by specifying
attach(““c:/stats/shape/ Data”) # N. B. forward slashes
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The default action isto attach it at position 2 in the search list. [You can check this by typing in
search() .] Thedirectory automatically detaches at the end of your S-PLUS session.
Otherwise, assuming that it is at position 2 on the search list, specify detach(2).

Observe that, here, the path was enclosed in quotes when you attached. To detach, specify the
position on the search list. Thusif the directory was attached at position 2, specify

detach(2)

7.10 Exercises
1. Generate the numbers 101, 102, ..., 112, and store the result in the vector x.

Generate four repeats of the sequence of numbers (4, 6, 3).
Generate the sequence consisting of eight 4s, then seven 6s, and finally nine 3s.

Create avector consisting of one 1, then two 2's, three 3's, etc., and ending with nine 9's.

o M 0N

In the built-in data frame envi ronmental determine, for each of the columns, the median,
mean, upper and lower quartiles, and range.

6. For each of the following calculations, decide what you would expect, and then check to see if
you were right!
a)
answer <- c(2, 7, 1, 5, 12, 3, 4)
for (J in 2:length(answer)){ answer[j] <- max(answer[j].answer[j-1D}
b)
answer <- c(2, 7, 1, 5, 12, 3, 4)
for (J in 2:length(answer)){ answer[j] <- sum(answer[j].answer[j-1D}

7. Inthedataframeenvironmental (@) extract the row or rows for which ozone hasits
maximum value; and (b) extract the vector of values of wind for values of ozone that are
above the upper quartile.

8. Determine which columns of the built-in dataframe claims arefactors. For each of these
factor columns, print out the levels vector. Which of these are ordered factors?

9. Determine which columns in the built-in dataframe market.survey are variables, which are
factors, and which are ordered factors.

10. Usesummary() to get information about data in the data frames environmental, claims,
and market.survey. Write brief notes, for each of these data sets, on what you have been
ableto learn.

11. From the dataframe claims, extract a dataframe claimsA which holds only the information
for car type A.

12. From the dataframe car . test. frame extract a data frame which holds only information for
cars manufactured in Germany, France, Sweden, or England.

13. Store the numbers obtained in exercise 2, in order, in the columns of a3 x 4 matrix.

Store the numbers obtained in exercise 3, in order, in the columns of a6 by 4 matrix. Extract the
matrix consisting of rows 3 to 6 and columns 3 and 4, of this matrix.
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8. Useful Functions

8.1 Matching and Ordering
match(<vecl>, <vec2>) ## For each element of <vecl>, returns the
## position of the First occurrence in <vec2>

order(<vector>) ## Returns the vector of subscripts giving
## the order in which elements must be taken

## so that <vector> will be sorted.
rank(<vector>) ## Returns the ranks of the successive elements.

Numeric vectors will be sorted in numerical order. Character vectors will be sorted in
a phanumeric order.

The function match() can be used in all sorts of clever waysto pick out subsets of data. For
example:

> X <- rep(1:5,rep(3,5))

> X
[1J]111222333444555

> twod4 <- match(x,c(2,4), nomatch=0)

> two4
[1J]000111000222000

> # We can use this to pick out the 2s and the 4s

> as.logical (two4)
[MMFFFTTTFFFTTTFFF

> X[as.logical (two4)]

[1] 222 4 4 4> x <- rep(1:5,rep(3,5))

> X

8.2 String Functions
substring(<vector of text strings>, <first position>, <last position>)
nchar(<vector of text strings>)
## Returns vector of number of characters in each element.

*8.2.1 Operations with Vectors of Text Strings — A Further Example
The following stores, in nblank, the position of the first occurrence of ablank space in each of
the row names of the built-in dataset fuel . frame.
nblank <- sapply(row.names(fuel.frame),function(xX){n <- nchar(x);
a <- substring(x,1:n,1:n); m <- match(" ",a,nomatch=1); m})
To extract the first part of the name, up to the first space, specify

car.names <- substring(row.names(fuel.frame), 1, nblank-1)

8.3 Application of a Function to the Columns of an Array or Data Frame
apply(<array>, <dimension>, <function>)
lapply(<list>, <function>)
## N. B. A dataframe is a list. Output is a list.

sapply(<list>, <function>)
##t As lapply(Q), but simplify (e. g. to a vector

## or matrix), if possible.
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8.3.1 apply()
The function apply() can be used on data frames as well as matrices. Hereis an example:

> apply(possum[,-(3:4)],2,mean)
case site age hdingth skullw totlngth taill pes
52.5 3.62 NA 92.6 56.9 87.1 37 NA
earconch eye chest belly

48.1 15 27 32.6
> apply(possum[,-(3:4)],2,mean,na.rm=T)
case site age hdingth skullw totlngth taill pes
52.5 3.62 3.83 92.6 56.9 87.1 37 68.5
earconch eye chest belly

48.1 15 27 32.6

The use of apply(possum[,-(3:4)],1,mean) will give means for each row. These are not,
for these data, useful information!

8.3.2 sapply()

The function sapply () can be useful for getting information about the columns of a data frame.
Here we use it to count that number of missing valuesin each column of the supplied data frame
possum.

> sapply(possum[,-(3:4)], function(X)sum(is.-na(x)))
case site age hdingth skullw totlngth taill pes
0 0o 2 (0] 0 0 0O 1
earconch eye chest belly
0O O 0 0

Here are several further examples that use the data frame moths that accompanies these notes:

> sapply(moths, is.factor) # Determine which columns are factors
meters A P habitat
FALSE FALSE FALSE TRUE
> # How many levels does each factor have?
> sapply(moths, function(X)if(lis.factor(x))return(0) else length(levels(x)))
meters A P habitat
0 0 0 8

The function sapply () often works most conveniently if we can ensure that the function we use
returns just one element for each column. In some circumstances, it may be helpful to use the
paste() function to paste several different items together into a character string.

*8.4 tapply()

The arguments are a variable, alist of factors, and a function that operates on a vector to return a
single value. For each combination of factor levels, the function is applied to corresponding
values of the variable. The output is an array with as many dimensions as there are factors. Where
there are no data values for a particular combination of factor levels, NA isreturned.

Often one wishes to get back, not an array, but a data frame with one row for each combination of
factor levels. For example, we may have a data frame with two factors and a numeric variable, and
want to create a new data frame with all possible combinations of the factors, and the cell means as
the response. Hereis an example of how to do it.

First, use tapply() to produce an array of cell means. The function dimnames(), applied to this
array, returns alist whose first element holds the row names (i.e. for the level names for the first
factor), and whose second element holds the column names. [Further dimensions are possible.]
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We pass thislist (row names, column names) to expand.grid(), which returns a data frame with
al possible combinations of the factor levels. Finally, stretch the array of means out into a vector,
and append this to the data frame. Here is an example using the S-PLUS data set ‘catalyst'.

> npames(catalyst)
[1] "Temp™ "Conc™ "Cat™ "Yield™
> attach(catalyst)

> cat.tab <- tapply(Yield, list(Temp,Cat),mean)

> cat.tab ## Examine the two-dimensional array
A B

160 57 48.5

180 70 81.5

> cat.names <- dimnames (cat.tab) # The list cat.names holds the two
# vectors c(“160”,”180) and c(“A”,”B™)
> cat.df <- expand.grid(Temp=Factor (cat.names[[1]]),
Cat=factor(cat.names[[2]]))
> cat.df$Means <- as.vector(cat.tab) # Stretch the array of means out
# into a vector, and create a new
# column of cat.df, named Means,
# to hold the array values.
> cat.df

Temp Cat Means

1 160 A 57.0
2 180 A 70.0
3 160 B 48.5
4 180 B 81.5

In a case where there are no data for some combinations of factor levels, one might want to omit
the corresponding rows.

8.5 Breaking Vectors and Data Frames Down into Lists — split()
Asan example,
split(catalyst$Yield, catalyst$Cat)

returns alist with two elements, the first named “A” and containing values of Yield where Cat has
thelevel A, and the second named “B” that has the values of Yield where Cat hasthelevel B. You
need to use split() inthisway in order to do side by side boxplots. The function boxplot()
takes asitsfirst element alist in which thefirst list element is the vector of values for the first
boxplot, the second list element is the vector of values for the second boxplot, and so on.

Y ou can use split to split up adataframeinto alist of dataframes. For example

split(catalyst[,-3], catalyst$Cat) # Split remaining columns
# by levels of Cat
split(fuel.frame[,-5], fuel.frame$Type)

*8.6 Merging Data Frames

The data frame car.al I holds extensive information on 111 cars, derived from the April 1990
edition of the US publication “Consumer Reports’. One of the variables, stored as afactor, is
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Type. | havc created a dataframe type . df which holds two character abbreviations of each of
the car types, suitable for usein plotting.

> type.df # Let’s look at type.df
Type abbrev

1 Small Sm
2 Medium md
3 Compact Cm
4 Large Lr
5 -
6 Van vn

7 Sporty Sp

Then
> new.df <- merge(car.all, type.df, by="Type”)

will create a data frame which has the abbreviations in the additional column with name
“abbrev”. Note that rows with missing values will be omitted from the new data frame.

> dim(car.all) # car.all is a built-in data frame

[1] 111 36

> dim(new.df)

[1] 105 37
There are six missing valuesin car .al 1$Type, which explains the discrepancy. One way to get
them included isto specify

> car.all$Type <- as.character(car.all$Type)

> type.df$Type <- as.character(type.df$Type)

> new.df <- merge(car.all, type.df, by="Type”)

> dim(new.df)

[1] 111 37
The function as. character () converts the missing values into empty strings (“’*). So rows
initially with NA in car.al 1$Type will have the empty string in new.df$Type. Moreover
new.df$Type will be avector of character strings.

Hereisalongwinded way, using match(), to achieve the same effect.

> unique(as.-character(car.all$Type)) # Just checking
[1] llsmal III IlMediumll llcompactll IlLargell (111} llvanll IISportyll

> entry <- match(as.character(car.all$Type), as.character(type.df$Type))
> sum(is-na(entry)) # Just checking that there are no NAs
[1] O
> car.all$abbrev <- type.df$abbrev[entry]
> table(car.all$abbrev)
- Cm Lr Md Sm Sp Vn
6 19 7 26 22 21 10

8.7 Dates

The function dates () will convert a character string into a dates object. By default, dates are
stored using January 1 1960 as origin. Thisisimportant when you use as. integer to convert a
date into an integer value.

> as. integer(dates(''20/7/1999", format="d/m/year'"))
[1] 14445
> as. integer(dates(''1/1/1960", format=""d/m/year'"))
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[1] O

> # Convert from “no of days” to date

> tday<-dates(14445, format="'d", out.format="'day month year')
> tday

[1] 20 July 1999

A wide variety of different formats are possible. Y ou can specify the origin that is to be used for
dates, if you prefer something different from the defauilt.

One can subtract two dates and get the time between them in days.

> dates("'20/7/99",format="d/m/y'")-dates(*'27/1/98" ,format=""d/m/y'")
[1] 539
attr(, "format'):
[1] "h:im:s"
attr(, "class"):
[1] "times"
> dates("'20/7/1999",format=""d/m/year'™) -
dates(''27/1/1998" ,format=""d/m/year")
[1] 539
>

8.8 Exercises

1) For the dataframe fuel . frame, get the information provided by summary() for each level
of Type. (Use split().)

2) Determine the number of cars, in the built-in data frame car .all, for each Country and
Type.

3) Inthedataframe claims: (a) determine the number of rows of information for each age
category (age) and car type (type); (b) determine the total number of claims for each age
category and car type; (c) determine, for each age category and car type, the number of rows
for which data are missing; (d) determine, for each age category and car type, the total cost of
claims.

4) Determine the number of days, according to S-PLUS, between the following dates:

a) January 1intheyear 1, and January 1 in the year 500
[Remember to specify the format ase. g. “d/m/year”]

b) January 1 inthe year 500, and January 1 in the year 1000
¢) January 1intheyear 1000, and January 1 in the year 1500
d) January 1intheyear 1500, and January 1 in the year 2000

5) Generate adates object that holds dates for each day in the year 1999. Specify the format so
that the first day is printed as "1 January 1999'.
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9. Writing Functions and other Code
We have already met several functions. Hereisafunction to convert Fahrenheit to Celsius:

> fahrenheit2celsius <- function(fahrenheit=32:40)(fahrenheit-32)*5/9
> # Now invoke the function

> fahrenheit2celsius(c(40,50,60))

[1] 4.444444 10.000000 15.555556

The function returns the value (fahrenheit-32)*5/9. More generally, afunction returns the
value of the last statement of the function. Unless the result from the function is assigned to a
name, the result is printed.

Hereisafunction that prints out the mean and standard deviation of a set of numbers:

mean.and.sd <- function(x=1:10){
av <- mean(x)

sd <- sqrt(var(x))

c(mean=av, SD=sd)

}

# Now invoke the function
mean.and.sd()

mean SD

5.5 3.02765

vV V.V + 4+ + + V

> mean.and.sd(hills$climb)
mean SD
1815.314 1619.151

9.1 Syntax and Semantics

A function is created using an assignment. On the right hand side, the parameters appear within
round brackets. You can if you wish give adefault. In the example above the default was x =
1:10, so that users can run the function without specifying a parameter, just to see what it does.

Following the closing “)” the function body appears. Except where the function body consists of
just one statement, this is enclosed between curly braces ({ }). The return value usually appears

on thefinal line of the function body. In the example above, this was the vector consisting of the
two named elements mean and sd.

9.2 A Function that gives Data Frame Details

First we will define a function which accepts avector x asits only argument. It will allow usto
determine whether x isafactor, and if afactor, how many levelsit has. The built-in function
is.factor(Q will return T if x isafactor, and otherwise F. The following function faclev()
uses is.factor() to test whether x isafactor. It printsout O if x isnot afactor, and otherwise
the number of levels of x.

Ffaclev <- function(X)if(lis.Factor(x))return(0) else length(levels(x))

The function sapply () can be used to repeat a calculation on all columns of adataframe. [More
generally, the first argument of sapply () may bealist.] To apply faclev() to al columns of
the data frame market.survey we can specify

sapply(market.survey, faclev)
We can alternatively put the definition of faclev in directly as the second argument of sapply, thus
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sapply(market.survey, function(X)if(lis.factor(x))return(0)
else length(levels(x)))

Finally, we may want to do similar calculations on a number of different data frames. So we
create afunction check . df() which encapsulates the calculations. Hereisthe definition of
check.df().

check.df <- function(df=market.survey)

sapply(df, function(X)if(lis.factor(x))return(0) else
length(levels(xX)))

9.3 Coding that assists Data M anagement

Where data, labelling etc must be pulled together from a number of sources, and especialy where
you may want to retrace your steps some months later, take the same care over structuring data as
over structuring code. Thusif thereisafactoria structure to the data files, choose file names that
reflect it. Y ou can then generate the file names automatically, using paste () to glue the separate
portions of the name together.

Lists are a useful mechanism for grouping together all data and labelling information that one may
wish to bring together in asingle set of computations. Use as the name of the list a unique and
meaningful identification code. Consider whether you should include objects as list items, or
whether identification by nameis preferable. Bear in mind, also, the use of switch(), with the
identification code used to determine what switch() should pick out, to pull out specific
information and data that is required for a particular run.

Concentrate in one function the task of pulling together data and labelling information, perhaps
with some subsequent manipulation, from a number of separate files. This structures the code, and
makes the function a source of documentation for the data.

Use user-defined data frame attributes to document your data. For example, given adata frame
“roller” containing roller weights and resulting lawn depressions, you might specify

attributes(elasticband)$title <-
“Extent of stretch of band, and Resulting Distance”

9.4 Issuesfor the Writing and Use of Functions

There can be many functions. Choose the names for your own functions carefully, so that they are
meaningful.

Choose meaningful names for arguments, even if this means that they are longer than you would
like. Remember that they can be abbreviated in actual use.

Settings that you may need to change in later use of the function should appear as default settings
for parameters. Uselists, where this seems appropriate, to group together parameters that belong
together conceptually.

Asfar as possible, make code self-documenting. Use meaningful names for S-PLUS objects.
Ensure that the names used reflect the hierarchies of files, data structures and code.

S-PLUS allows the use of names for elements of vectors and lists, and for rows and columns of
arrays and dataframes. Consider the use of names rather than numbers when you pull out
individual elements, columns etc. Thusdead.tot[,”dead”] is more meaningful and safer than
dead.tot[,2].

Where appropriate, provide a demonstration mode for functions. Such a mode will print out
summary information on the data and/or on the results of manipulations prior to analysis, with
appropriate labelling. The code needed to implement this feature has the side-effect of showing by
example what the function does, and may be useful for debugging.

Break your functions up into a small number of sub-functions or “primitives’. Re-use existing
functions wherever possible. Write any new “primitives’ so that they can be re-used. This helps
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ensure that functions contain well-tested and well-understood components. Watch s-news (section
13.3) for useful functions for routine tasks.

If at all possible, give parameters sensible defaults. Often a good strategy is to use as defaults
parameters that will serve for a demonstration run of the function.

NULL isauseful default where the parameter mostly is not required, but where the parameter if it
appears may be any one of several types of data structure. Thetest if(1is.null()) then
determines whether one needs to investigate that parameter further.

Structure code to avoid multiple entry of information.

Structure computations so that it is easy to retrace them. For this reason substantial chunks of
code should be incorporated into functions sooner rather than later.

9.4.1 Graphs

Use graphs freely to shed light both on computations and on data. One of S-PLUS sbig plusesis
itstight integration of computation and graphics.

9.5 Calling Modelling Functions from User-Written Functions

Objects that are in the working directory are global, i.e. any function can refer to them without
passing them as parameters.

There are however occasions when commands work when invoked from the working directory, but
not from within afunction. All objectsin the working directory are visible to functions that are
called from that directory, to any functions that they call, and so on. Objectsthat are visible within
afunction are visible only to any function that isimmediately called, unless specific action is taken
to ensure otherwise. An assignmentsin frame 1 (use assign()) is sometimes necessary to deal
with this problem. Thisisnot atidy solution to the problem, but it doeswork! The problem turns
up in anumber of different contexts.

9.6 A Simulation Example

We would like to know how well such a student would do, by random guessing, on amultiple
choice test consisting of 100 questions each with five alterantives. We can get an idea by using
simulation. Each question corresponds to an independent Bernoulli trial with probability of
success equal to 0.2. We can simulate the correctness of the student for each question by
generating an independent uniform random number. If this number isless than .2, we say that the
student guessed correctly; otherwise, we say that the student guessed incorrectly.

Thiswill work, because the prabability that a uniform random variableislessthan .2 is exactly .2,
while the probability that a uniform random variable exceeds .2 is exactly .8, which is the same as
the probability that the student guessesincorrectly. Thus, the uniform random number generator is
simulating the student. S-PLUS can do this as follows:

Guesses <- runif(100)

correct._answers <- 1*(guesses < .2)
The multiplication by 1 causes (guesses<.2), whichiscalculated as T or F, to be coerced to 1
(T) or 0 (F). Thevector correct.answers thus contains the results of the student's guesses. A

1 isrecorded each time the student correctly guesses the answer, while a0 is recorded each time
the student iswrong.

One can thus write an S-PLUS function which simulates a student guessing at a True-False test
consisting of some arbitrary number of questions. We |leave this as an exercise.
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9.6.1 Poisson Random Numbers

Y ou can think of the Poisson distribution as the distribution of the total for occurrences of rare
events. For example, the occurrence of an accident at an intersection on any one day should be a
rare event. The total number of accidents over the course of ayear may well follow adistribution
which is close to Poisson. [However the total number of people injured is unlikely to follow a
Poisson distribution. Why?] We can generate Poisson random numbers using rpois(). Itis
similar to the rbinom function, but there is only one parameter — the mean. Suppose for example
traffic accidents occur at an intersection with a Poisson distribution that has a mean rate or 3.7 per
year. To simulate the annual number of accidents for a 10-year period, we can specify
rpois(10,3.7).

We pursue the Poisson distribution in an exercise below.

9.7 Exercises

1. Use the round function together with runif() to generate 100 random integers between 0 and
99. Now look up the help for sample (), and useit for the same purpose.

2. Write ageneral function to carry out the calculations of section 8.6. More specifically, the
function will take asits arguments alist of response variables, alist of factors, adataframe, and a
function. It will return a data frame in which each value for each combination of factor levelsis
summarised in asingle statistic, for example the mean or the median.

3. The supplied data frame angina has columns placebo and TNG. Hereisafunction that plots,
for each patient, the TNG result against the placebo result, but insisting on the same range for the
xandy axed]
plot.angina <- function()
{
xyrange <- range(angina) # Calculates the range of all values
# in the data frame
par(pin=c(6.75, 6.75)) # Set plotting area = 6.75 in. by 6.75 in.
plot(TNG~placebo,data=angina, xlim=xyrange, ylim=xyrange, pch=16)
abline(0,1) # Line where TNG value = placebo value

}

Rewrite this function so that, given the name of a data frame and of any two of its columns, it will
plot the second named column against the first named column, showing also the line y=x.

4. Write afunction that prints, with their row and column labels, only those elements of a
correlation matrix for which abs(correlation) >= 0.9.

5. Write your own wrapper function for one-way analysis of variance which provides a side by
side boxplot of the distribution of values by groups. If no response variableis specified, the
function will generate random normal data (no difference between groups) and provide the
analysis of variance and boxplot information for that.

6. Write a function which adds a text string containing documentation information as an attribute
to adataframe.

7. Write afunction that computes a moving average of order 2 of the valuesin a given vector.
Apply the above function to the data (in the data set huron that accompanies these notes) for the
levels of Lake Huron. Repeat for amoving average of order 3.

" The acronym TNG stands for trinitroglycerine, taken to help ward off attacks of angina. Dataare froma
clinical trial that compared TNG with placebo. All patients were assessed on both treatments, with the order
randomised. The TNG treatment was known to be short-lived in its effect, acting only for five to fifteen
minutes. So there is unlikely to be any serious carry-over effect to the later result with a placebo.
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8. Find away of computing the moving averages in exercise 3 that does not involve the use of a
for loop.

9. Create a function to compute the average, variance and standard deviation of 1000 randomly
generated uniform random numbers, on [0,1]. (Compare your results with the theoretical results:
the expected value of a uniform random variable on [0,1] is 0.5, and the variance of such arandom
variableis 0.0833.)

10. Write a function which generates 100 independent observations on a uniformly distributed
random variable on theinterval [3.7, 5.8]. Find the mean, variance and standard deviation of such
auniform random variable. Now modify the function so that you can specify an arbitrary interval.

11. Look up the help for the sample() function. Useit to generate 50 random integers between 0
and 99, sampled without replacement. (This means that we do not allow any number to be
sampled a second time.) Now, generate 50 random integers between 0 and 9, with replacement.

12. Write an S-PLUS function which simulates a student guessing at a True-False test consisting of
40 questions. Find the mean and variance of the student's answers. Compare with the theoretical
values of .5 and .25.

13. Write an S-PLUS function which simulates a student guessing at a multiple choice test
consisting of 40 questions, where there is chance of 1 in 5 of getting the right answer to each
question. Find the mean and variance of the student's answers. Compare with the theoretical
values of .2 and .16.

14. Write an S-PLUS function which simulates the number of working light bulbs out of 500,
where each bulb has a probability .99 of working. Using simulation, estimate the expected value
and variance of the random variable X, which is 1 if the light bulb works and O if the light bulb
does not work. What are the theoretical values?

15. Write afunction that does an arbitrary number n of repeated simulations of the number of
accidentsin ayear, plotting the result in a suitable way. Assume that the number of accidentsin a
year follows a Poisson distribution. Run the function assuming an average rate of 2.8 accidents
per year.

16. Write a function which simulates the repeated calculation of the coefficient of variation (= the
ratio of the mean to the standard deviation), for independent random samples from a normal
distribution.

17. Write afunction which, for any sample, calculates the median of the absolute values of the
deviations from the sample median.

*18. Generate random samples from normal, exponential, t (2 d. f.), and t (1 d. f.), thus:
a) xn<-rnorm(100)
b) xe<-rexp(100)
C) xt2<-rt (100, df=2)
d) xt2<-rt (100, df=1)

Apply the function from exercise 17 to each sample. Compare with the standard deviation in each
case.

*19. The vector x consists of the frequencies

5, 3,1, 4, 6
Thefirst element is the number of occurrences of level 1, the second is the number of occurrences
of level 2, and so on. Write afunction which takes any such vector x asitsinput, and outputs the
vector of factor levels, herel1 1 1112 2 2 3 .
[You'll need the information that is provided by cumsum(x). Form avector in which 1's appear
whenever the factor level isincremented, and is otherwise zero. . . .]
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*20. Write a function which cal culates the minimum of a quadratic, and the value of the function
at the minimum.

*21. A “between times’ correlation matrix, has been calculated from data on heights of trees at
timesl, 2, 3,4,... Writeafunction that cal culates the average of the correlations for any given
lag.

*22. Given dataontreesat times1, 2, 3, 4, . . ., write afunction that calculates the matrix of
“average” relative growth rates over the severa intervals. Apply your function to the data frame
rats that accompanies these notes.

[The relative growth rate may be defined as 1‘3—\1\, = d lg?W . Henceitsisreasonable to
w
logw, —logw,

calculate the average over the interval fromt; tot, as

]

» 4
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10. GLM, GAM and General Non-linear Models

GLM models are Generalized Linear Models. GAM models are Generalized Additive Models.
GLM models extend the multiple regression model. The GAM model is afurther extension.

10.1 A Taxonomy of Extensionsto the Linear Model

S-PLUS alows avariety of extensions to the multiple linear regression model. In this chapter we
describe the alternative functional forms.

The basic model formulati os:

Observed value = Model Prediction + Statistical Error

Often it is assumed that the statistical error values (values of € in the discussion below) are
independently and identically distributed as Normal. Generalised Linear Models, and the other
extensions we describe, allow avariety of non-normal distributions. In the discussion of this
section, our focusis on the form of the model prediction, and we leave until later sections the
discussion of different possibilities for the “error” distribution.

Multiple regression model

y=0+ B+ BoXot ... X+ E

Use ImQ) tofit multiple regression models. The various other models we describe are, in
essence, generalizations of this model.

Generalized Linear Modél (e. g. logit model)

y=g(@+bx)+¢€
Here g(.) is selected from one of a small number of options.
For logit models, y =+ ¢, where
T
log——) =a+
) by,
Here 1tis an expected proportion, and
log(—"—) =logit(r) islog(odds).
1-m

We can turn this model around, and write

explathbyx) ..
1+exp(a+bx)

Here g(.) undoes the logit transformation.

y=g(@a+bx)+e=

We can add more explanatory variables: a+ bix; + . . . + byXp

% This may be generalised in various ways. Models that have this form may be nested within other models
which have this basic form. Thus there may be “predictions’ and “errors’ at different levels within the total
model.
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Use gImQ) tofit generalised linear models.

Additive M odel
y = (QI.(Xl) + <02(X2) ot qop(xp) +E&
Additive models are a generalisation of Im models. In 1 dimension

y=@(x)+e

Someof Z =@ (%),Z, =@,(X,),--,Z, = @,(X,) may be smoothing functions, while others
may be the usual linear model terms. The constant term gets absorbed into one or more of the @ s.

Generalized Additive M odel

Y =09(@a (%) + @ (X)) +.... @, (X)) + €

Generalised Additive Models are a generalisation of Generalised Linear Models. For example,
g(.) may be the function that undoes the logit transformation, asin alogistic regression model.

Someof Z =@ (%), Z, = @,(X;),-., Z, = @,(X,) may be smoothing functions, while others
may be the usual linear model terms.

We can transform to get the model
y=9(z+z +..z)) +¢
Notice that even if p =1, we may still want to retain both ¢ (.) and g(.), i.e.

y=9(@(x)) +e¢

The reason isthat g(.) is aspecific function, such as the inverse of the logit function. The function
@ (.) does any further necessary smoothing, in case g(.) is not quite the right transformation. One

wants g(.) to do as much of possible of the task of transformation, with ¢, (.) giving the
transformation any necessary additional flourishes.
Use gam() tofit generalised additive models.

We now give examples of fitting gIm, gam, and other models besides.

10.2 L ogistic Regression
We will use alogistic regression model as a starting point for discussing Generalized Linear
Models.

With proportions that range from less than 0.1 to 0.99, it is not reasonable to expect that the
expected proportion will be alinear function of x. Some such transformation (‘link’ function) as
thelogit isrequired. A good way to think about logit modelsis that they work on alog(odds)
scale. If pisaprobability (e. g. that horse A will win the race), then the corresponding odds are
p/(1-p), and

log(ocds) = log( ) = Iog(p) Joa(Lp)
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The linear model predicts, not p, but Iog(rpp ). Fig. 23 showsthelogit transformation
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Figure 23: Thelogit or log(odds) transformation. The left panel showsa plot of
log(odds) ver sus proportion, while theright panel shows a plot of proportion
versuslog(odds). Notice how the rangeisstretched out at both ends.

The logit or log(odds) function turns expected proportions into values that may range from -co to
+oo. It isnot satisfactory to use alinear model to predict proportions. The values from the linear
model may well lie outside the range from O to 1. It is however in order to use alinear model to

predict logit(proportion). The logit function is an example of alink function.

There are various other link functions that we can use with proportions. One of the commonest is
the complementary log-log function.

10.2.1 Anaesthetic Depth Example

Thirty patients were given an anaesthetic agent which was maintained at a pre-determined
[alveolar] concentration for 15 minutes before making an incisio It was then noted whether the
patient moved, i.e. jerked or twisted. Theinterest isin estimating how the probahility of jerking or
twisting varies with increasing concentration of the anaesthetic agent.

The response is best taken as nomove, for reasons that will emerge later. Thereisasmall number
of concentrations; so we begin by tabulating proportion that have the nomove outcome against
concentration.

Alveolar Concentration

nomove 0.8 1 1.2 14 1.6 25
0 6 4 2 2 0 0
1 1 1 4 4 4 2
Total 7 5 6 6 4 2

Table 1: Patients moving (0) and not moving (1), for each of
six different alveolar concentrations.

| am grateful to John Erickson (Anesthesia and Critical Care, University of Chicago) and to Alan Welsh
(Centre for Mathematics & its Applications, Australian National University) for use of these data.
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Fig. 24 then displays a plot of these proportions.
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Figure 24: Plot, ver sus concentration, of proportion of patients not moving.
Thedotted horizontal lineisthe estimate of the proportion of moves one would
expect if the concentration had no effect.

We fit two models, the logit model and the complementary log-log model. We can fit the models
either directly to the 0/1 data, or to the proportionsin Table 1. To understand the output, you need
to know about “deviances’. A deviance hasarole very similar to a sum of squaresin regression.
Thus we have:

Regression Logistic regression
degrees of freedom degrees of freedom
sum of squares deviance
mean sum of squares mean deviance
(divide by d.f.) divide by d.f.)

We prefer modelswithasmall  We prefer models with a small
mean residual sum of squares.  mean deviance.

If individuals respond independently, with the same probability, then we have Bernoulli trials.
Whileindividuals will be different in their response the assumption is that, each time a new
individual is taken, they are drawn at random from some larger population. Hereisthe S-PLUS
code:

> anaes.logit <- glm(nomove ~ conc, family = binomial(link = logit),

+ data = anesthetic)
The output summary is:
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> summary(anaes.logit)

Call: gim(formula = nomove ~ conc, family = binomial(link = logit),
data = anesthetic)
Deviance Residuals:
Min 1Q Median 3Q Max
-1.77 -0.744 0.0341 0.687 2.07

Coefficients:
Value Std. Error t value
(Intercept) -6.47 2.42 -2.68
conc 5.57 2.04 2.72

(Dispersion Parameter for Binomial family taken to be 1 )

Null Deviance: 41.5 on 29 degrees of freedom
Residual Deviance: 27.8 on 28 degrees of freedom
Number of Fisher Scoring lterations: 5

Correlation of Coefficients:
(Intercept)
conc -0.981

Fig. 25 isagraphical summary of the results:
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Figure 25: Plot, ver sus concentration, of logit(proportion) of patients not
moving. Thelineisthe estimate of the proportion of moves, based on the
fitted logit model.

With such small sample sizesit isimpossible to do much about checking the adequacy of the
model.

Onecan asotry plot(anaes. logit) and plot.gam(anaes. logit)



10.3 gilm models (Generalised Linear Regression Modelling)

In the above we had
anaes.logit <- gIm(nomove ~ conc, family = binomial(link = logit),
data=anesthetic)

The fami Iy parameter specifies the distribution for the dependent variable. There is an optional
argument which allows us to specify the link function. Below we give further examples.

10.3.1 Further analyses of binomial data

In the first example below the family is again binomial, with the default logit link. The
dependent variable is Kyphosi's, which may be either Present or Absent.

kyph.glm<-gIm(Kyphosis ~ poly(Age, 2) + (Number > 5)*Start,
family = binomial, data = kyphosis) # logit link
summary(kyph.glim)
res.kyph<-residuals(kyph.glm, type="deviance’)
# Other types of residuals are “pearson” and “working”

10.3.2 Data in the form of counts
Datathat are in the form of counts can often be analysed quite effectively assuming the poiisson
family. Thelink that is commonly used hereis log. The log link transforms from positive
numbers to numbersin the range - to +co which alinear model may predict.
skips.glm<-gIm(skips ~ ., family = poisson, data = solder_balance)
# log link
summary(skips.glim)

10.3.3 The gaussian family
If no family is specified, then the family is taken to be gaussian. The default link isthen the
identity, asfor an Im model. Thisway of formulating an Im type model does however have the
advantage that one is not restricted to the identity link.

air.glm<-gIlm(ozone~(1/3) ~ bs(radiation, 5) + poly(wind, temperature,

degree = 2), data = air)
# Assumes gaussian family, i.e. normal errors model

# bs(radiation, 5) fits a spline curve which accounts for 5 d.f.
# B-spline models can in fact be fitted as linear models!
plot(air.gim)
plot.gam(air.gim)

10.3.4 The robust(gaussian) family
We investigate what a robust fit will make of the aberrant point in the hills data:
hills.gim<-gIm(log(time)~log(distance)+log(climb),
fami ly=robust(gaussian), data=hills)
> summary(hills.glm,corr=F)

Call: gIm(formula = log(time) ~ log(dist) + log(climb),
family = robust(gaussian), data = hills)
Deviance Residuals:
Min 1Q Median 30 Max
-0.396 -0.0581 0.00356 0.0618 0.723

Coefficients:
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Value Std. Error t value

(Intercept) 0.377 0.2862 1.32
log(dist) 0.903 0.0653 13.83
log(climb) 0.240 0.0490 4.91

(Dispersion Parameter for Robust Gaussian family taken to be 0.024 )
Null Deviance: 16.9 on 34 degrees of freedom
Residual Deviance: 1.15 on 32 degrees of freedom

Number of Fisher Scoring lterations: 5

10.4 gam models (Generalised Additive M odels)

These make it possible to fit spline and other smooth transformations of explanatory variables.
kyph.gam<-gam(Kyphosis ~ s(Age,4) + Number, family = binomial, data =
kyphosis)

Here s(Age, 4) is a spline smooth transformation of Age, with the smoothing chosen to account for

around 4 degrees of freedom. Kyphosisis afactor that has two levels (present/absent); it is treated

asavariable with valuesO or 1.

Ozone.gam<-gam(ozone™(1/3) ~ lo(radiation) + lo(wind, temperature),
data = air)

kyphsub.gam<-gam(Kyphosis ~ poly(Age, 2) + s(Start), data = kyphosis,
subset = Number>5)

plot(kyph.gam)

print(kyph.gam)

summary(kyph.gam)

summary.gim(kyph.gam) # Output is hard to interpret!

For adiscussion of the Generalised Additive Model methodology, see Hastie & Tibshirani (1990).

10.5 Prediction with New Data

The function predict() isageneric function that may be used to get model predictions. It does
however have serious traps. If you have fitted a gam model, then the default isto use
predict.gam (of course!), and all should bewell. Thereis potential for trouble when you fit the
inherently ssimpler Im or gIm models. The problem arises with the computations which the more
mathematically sophisticated novice islikely to undertake!

Warning: With models other than gam (Im, glm, etc.), you must explicitly use predict.gamQ
rather than predict() when you want predictions for new data under any of the following
circumstances:

» themodel usespoly() to include polynomial termsin one or more explanatory
variables. [For example poly(x, 2) is mathematically equivalent to including termsin x
and x°]

» one or more factors has alevels vector which is a subset of the levelsfor the original
data

* gplinetermsare included. [Usually one would then use a gam model.]
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10.6 Non-linear Models

You can use nls() (non-linear least squares) to obtain aleast squaresfit to a non-linear function.
You can use nImin() (minimum of a non-linear function) or ms() (another way to find a
minimum of a non-linear function) to fit non-linear models using maximum likelihood or other
such statistical criteria.

10.7 Model Summaries
Typein
?methods(summary)

to get alist of the summary methods that are available. Y ou may want to mix and match, e.g.
summary . Im() on an aov or gam object. The output may not be what you might expect. So be
careful!

10.8 Further Elaborations

Generalised Linear Models were developed in the 1970s. They unified a huge range of diverse
methodology. They have now become a stock-in-trade of statistical analysts. Their practical
implementation built on the powerful computational abilities which, by the 1970s, had been
developed for handling linear model calculations.

Practical data analysis demands further elaborations. An important elaboration isto the
incorporation of more than one termin the error structure. The S-PLUS nlme library implements
such extensions, both for linear models and for awide class of nonlinear models.

Each such new development builds on the theoretical and computational tools that have arisen
from earlier developments. Exciting new analysistools will continue to appear for along time yet.
Thisisfortunate. Most professional users of S-PLUS will regularly encounter data where the
methodol ogy that the dataideally demandsis not yet available.

10.9 Exercises

1. Fit a Poisson regression model to the data in the data frame moths. Allow different intercepts
for different habitats. Use log(meters) as covariate.

10.10 References
Dobson, A. J. 1983. An Introduction to Statistical Modelling. Chapman and Hall, London.

Hastie, T. J. and Tibshirani, R. J. 1990. Generalised Additive Models. Chapman and Hall,
London.

McCullagh, P. and Nelder, J. A., 2" edn., 1989. Generalized Linear Models. Chapman and Hall.

Venables, W. N. and Ripley, B. D., 2nd edn 1997. Modern Applied Statistics with S-Plus.
Springer, New Y ork.
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11. Multi-level Models, Time Series and Survival Analysis

*11.1 Multi-Level Models, Including Repeated M easures Models

Variance component models and repeated measures models are specia cases of multi-level
models.

Models have both a fixed effects structure and an error structure. For example, in an inter-
laboratory comparison there may be variation between laboratories, between observers within
laboratories, and between multiple determinations made by the same observer on different
samples. If we treat laboratories and observers as random, the only fixed effect is the mean.

The functions Ime () and nlme (), from the Pinheiro and Bates library, handle modelsin which a
repeated measures error structure is superimposed on alinear (Ime) or non-linear (nIme) model.
Version 3 of Ime, which is currently in B-test, is broadly comparablein its abilities to Proc Mixed
which isavailablein the widely used SAS statistical package. The function Ime has associated
with it highly useful abilities for diagnostic checking and for various insightful plots.

There is a strong link between a wide class of repeated measures models and time series models.
In the time series context there is usually just one realisation of the series, which may however be
observed at alarge number of time points. In the repeated measures context there may be alarge
number of realisations of a serieswhich istypically quite short.

11.1.1 The Kiwifruit Shading Data, Again
Refer back to section 6.9.1 for details of these data. The fixed effects are block and treatment

(shade). Therandom effects are block (though making block a random effect is optional), plot
within block, and units within each block/plot combination. Hereisthe analysis:

> kiwishade. Ime<-Ime(yield~shade, random=~1|block/plot, data=kiwishade)
> summary(kiwishade. Ime)
Linear mixed-effects model fit by REML
Data: kiwishade
AIC  BIC logLik
272.3 284.8 -129.2

Random effects:

Formula: ~ 1 | block
(Intercept)
StdDev: 2.019
Formula: ~ 1 | plot %in% block
(Intercept) Residual
StdDev: 1.479 3.49

Fixed effects: yield ~ shade
Value Std.Error DF t-value p-value

(Intercept) 96.53 1.340 36 72.05 <.0001
shadel 1.43 0.934 6 1.53 0.1774
shade2 2.95 0.539 6 5.47 0.0016
shade3 2.23 0.381 6 5.86 0.0011

Correlation:

(Intr) shadel shade2
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shadel 0
shade2 0 0
shade3 0 0 0

Standardized Within-Group Residuals:

Min Q1 Med
-2.415 -0.5981 -0.069

Number of Observations:
Number of Groups:
block plot %in% block
3 12
> anova(kiwishade. Ime)
numDF denDF
(Intercept) 1 36
shade 3 6

This was a balanced design, which iswhy in section 6.8.2 we could use aov() for an analysis.

Q3 Max
0.7805 1.589

48

F-value p-value
5191 <.0001
22 0.0012

We can get an output summary that is helpful for showing how the error mean squares match up

with standard deviation information given above thus:

> intervals(kiwishade.l
Approximate 95% confide

Fixed effects:
lower
(Intercept) 93.8153 96
shadel -0.8583 1
shade2 1.6324 2
shade3 1.3007 2

Random Effects:
Level: block
lower

me)
nce intervals

est. upper
-533 99.250
427 3.712
952 4.271
-234 3.166

est. upper

sd((Intercept)) 0.5469 2.019 7.456

Level: plot
lower

est. upper

sd((Intercept)) 0.3676 1.479 5.947

Within-group standard error:

lower est. upper
2.77 3.49 4.397

We are interested in the three estimates. By squaring the standard deviations and converting them
to variances we get the information in the following table:

Variance Notes

component
block 2.019° = 4.076 Three blocks
plot 1.479°= 2.186 4 plots per block
residual (within 3.490°=12.180 4 vines (subplots) per
group) plot

100



The above allows usto put together the information for an analysis of variance table. We have:

Variance | Mean square for anovatable d.f.
componen
t
block 4,076 | 12.180+ 4 x 2.186 + 16 x 2
4,076 (3-1)
=86.14
plot 2.186 | 12.180 + 4 x 2.186 6
=20.92 (3-1) x(2-1)
residual (within 12.180 | 12.18 3x4x(4-1)
group)

Now find see where these same pieces of information appeared in the analysis of variance table of
section 6.9.1:
> kiwishade.aov<-
aov(yield~block+shade+Error(block:shade) ,data=kiwishade)
> summary(kiwishade.aov)
Error: block:shade
Df Sum of Sq Mean Sq F value Pr(F)

block 2 172 86.2 4.12 0.07488
shade 3 1395 464.8 22.21 0.00119
Residuals 6 126 20.9

Error: Within
Df Sum of Sq Mean Sq F Value Pr(F)
Residuals 36 438.6 12.18

11.1.2 The Pigment Data

These are multi-level analysis of variance models. The varcomp() function offers one way to fit
them. They are now better handled using the function Ime() in the Pinheiro and Bates nime
library, which can handle avastly wider class of problems. In this particular instance, the data are
balanced over factor levels, and we can use analysis of variance.

We give scant explanation. This section may perhaps be useful for readers who already have some
understanding of the methodology. Data are from the built-in data frame pigment.

First, we use analysis of variance:

> pigment.aov <- aov(Moisture ~ Batch/Sample, data=pigment)
> summary(pigment.aov) # Sum of squares (and mean squares) table
Df Sum of Sq Mean Sq F Value Pr(F)
Batch 14 1210.933 86.49524 94.35844 0
Sample %in% Batch 15 869.750 57.98333 63.25455 0
Residuals 30 27.500 0.91667

Hereiswhat we get from the Ime() function:

> pigment.Ime <- Ime(Moisture~1, random=~1|Batch/Sample, data=pigment)
> intervals(pigment. Ime)
Approximate 95% confidence intervals
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Fixed effects:
lower est. upper
(Intercept) 24.33 26.78 29.24

Random Effects:
Level: Batch
lower est. upper
sd((Intercept)) 0.6999 2.67 10.18
Level: Sample
lower est. upper
sd((Intercept)) 3.713 5.342 7.684

Within-group standard error:
lower est. upper

0.7427 0.9574 1.234

> c(26.78, 5.342, .9574)"2

[1] 717.1684 28.5370 0.9166

> c(2.67, 5.342, .9574)"2

[1] 7.1289 28.5370 0.9166
Thus the variance components are 7.12 (between batches), 28.54 (between samples within
batches), and 0.92 (within samples).

Finally, for completeness, hereisthe output from var comp():

> is.random(pigment) <- T # make all factors random
> pigment.varcomp <- varcomp(Moisture ~ Batch/Sample, pigment)
> # Explain variation in Moisture in terms of variation between batches,
> # and variation of samples within batches
>
> summary(pigment.varcomp) # Components of variance breakdown
Call:
varcomp(formula = Moisture ~ Batch/Sample, data = pigment)
Variance Estimates:
Variance
Batch 7.1279762
Sample %in% Batch 28.5333333
Residuals 0.9166667
Method: minqueO

Coefficients:
(Intercept)
26.78333
Approximate Covariance Matrix of Coefficients:
[1] 1.441587
The first summary above is an analysis of variance (aov) summary. It givesthe sum of squares
table, and the corresponding mean squares. The variance components, given using Ime() and
varcomp(), provide amodel for the generation of the mean squares. We now show how the mean
square can be constructed from the variance components.
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11.1.3 Analysis of Variance Versus Variance Components — The Pigment Data

df AOV Mean Estinmmte from Vari ance Nunber of these
Squar e Conponent s units in next |eve
Bat ch 14 86.5 0. 92+2x28. 53+2x2x7. 128 = 86.5 15
Sample in 15 58.0 0. 92+2x28.23 = 57.98 2
Bat ch
Resi dual 30 0.92 0.92 2

Hereis another possibility:

varcomp(Moisture ~ Batch/Sample, pigment, method=c("winsor', 'r'"))

*11.2 Repeated Measures M odels

The functions Ime () and nIme () handle models in which arepeated measures error structureis
superimposed on alinear (Ime) or non-linear (nIme) model. Version 3 of Ime, which is currently
in B-test, is broadly comparable in its abilities to Proc Mixed which is available in the widely used
SAS statistical package. The function Ime has associated with it vastly superior abilities for
diagnostic checking and for variousinsightful plots.

There is a strong link between awide class of repeated measures models and time series models.
In the time series context there is usually just one realisation of the series, which may however be
observed at alarge number of time points. In the repeated measures context there may be alarge
number of realisations of a serieswhich istypically quite short.

Hereis an example of the use of Ime() for the Michelson speed of light data which are in the
Venables and Ripley MASS library.

> michelson$Run <- as.numeric(michelson$Run) # Ensure Run is a variable
> mich.Ime20 <- Ime(fixed = Speed ~ Run, data = michelson,

random = ~ Run] Expt, correlation = corARMA(value = c(0.25, 0.25),
form = ~ 1| Expt, p =2, g = 0),
weights = varldent(form = ~ 1 | Expt))

> summary(mich. Ime20)
Linear mixed-effects model fit by maximum likelihood
Data: michelson

AIC BIC logLik

1117 1148 -546.4

Random effects:
Formula: ~ Run | Expt
Structure: General positive-definite
StdDev  Corr
(Intercept) 47.031 (Inter
Run 3.628 -1
Residual 121.930

Correlation Structure: ARMA(2,0)
Parameter estimate(s):
Phil Phi2
0.6321 -0.3106
Variance function:
Structure: Different standard deviations per stratum
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Formula: ~ 1 | Expt
Parameter estimates:
1 2 3 4 5
1 0.2993 0.6276 0.5678 0.4381
Fixed effects: Speed ~ Run
Value Std.Error z-value p-value

(Intercept) 860.9 27.2 31.6 0.0
Run -1.6 2.1 -0.7 0.5
Correlation:
(intr)
Run -0.962

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max
-2.905 -0.6207 0.1222 0.7373 1.955

Number of Observations: 100
Number of Groups: 5
> # Now plot population residuals versus BLUP fitted values
> plot(mich.Ime20, fitted(.) ~ Run | Expt,
between = list(x = 0.25, y = 0.25), type = "b"™")
> # NB S-PLUS invokes plot.Ime()
> # Plot BLUP fitted effects versus Run, to help explain previous plot
> plot(mich.Ime20, resid(., type = "p") ~
fitted(.) | Expt, between = list(x = 0.25, y = 0.25))

11.3 Time Series Models

S-PLUS has a number of functions for manipulating and plotting time series, and for calculating
the autocorrel ation function.

There are two styles of analysis methods — time domain methods and frequency domain methods.
In the time domain there are two classes of models — the conventional “short memory” models
where the autocorrelation function decays quite rapidly to zero, and the relatively recently
developed “long memory” time series models, where the autocorrel ation function decays very
slowly as observations move apart in time. A characteristic of “long memory” modelsisthat there
isvariation at all temporal scales. Thusin astudy of wind speedsit may be possible to
characterise windy days, windy weeks, windy months, windy years, windy decades, and perhaps
even windy centuries. S-PLUS has functions both for fitting conventional short memory models
and for fitting the more recently developed long memory models.

The function st () decomposes a times seriesinto atrend and seasonal components, etc. (Thisis
intended to replace the older sabl () function.) The functions ar ) (for “autoregressive’
models) and arima.mle() ( “autoregressive integrated moving average models’) fit standard
types of time domain short memory models. Advanced users may want to be aware of the function
arima.fracdiffQ (“fractionally differenced ARIMA model”). Thisisdesigned for fitting
“long memory” time domain models in which there is some residual correlation even at very long
time lags.

There isin addition an extensive collection of functions for working with frequency domain or
“gpectral” analysis.

See the discussion of these models, including a brief survey of the statistical theory, in chapters 20-
21 of the SPLUS4 Guide to Statistics (MathSoft, 1997).
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11.4 Survival Analysis

For example times at which subjects were either lost to the study or died (“failed”) may be
recorded for individualsin each of several treatment groups. Engineering or business failures can
be modelled using this same methodology. S-PLUS is strong in this area, with what may be the
best abilities for survival analysisthat are available in any statistical analysis package.

Chapters 22-26 of the S-PLUS4 Guide to Statistics (MathSoft, 1997) give an extended overview of
the relevant theory, and details of S-PLUS abilities. Thereis a progression from the Kaplan-Meier
non-parametric model, to model s which assume specific parametric forms for the hazard ratio, and
then through to fully parametric survival models.

11.5 Exercises

1. Use the function acf() to plot the autocorrelation function of lake levelsin successive yearsin
the data set huron that accompanies these notes. Do the plots both with type=""correlation”
and with type="partial.
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12. Advanced Programming Topics

12.1. Methods

S-PLUS s an object-oriented language. Objects may have a*“class’. For functions such as
print(), summary(), €tc., the class of the object determines what action will be taken. Thusin
response to print(x), S-PLUS determines the class attribute of x, if one exists. If for example
the class attribute is “factor”, then the function which finally handles the printing is
print.factor(). Thefunction print.default() isused to print objects which have not been
assigned aclass.

More generally, the class attribute of an object may be a vector of strings. If there are *ancestor”
classes — parent, grandparent, . . ., these are specified in order in subsequent elements of the class
vector. For example, ordered factors have the class “ ordered”, which inherits from the class
“factor”. Thus:

> fac<-ordered(1:3)

> class(fac)

[1] "ordered" 'factor"
>

Here fac has the class “ordered”, which inherits from the parent class “factor”.

The function print.ordered(), whichisthe function that is called when you invoke print()
with an ordered factor, makes use of the fact that “ordered” inherits from “factor”.

> print.ordered

function(x, ...)

{
NextMethod(“'print™) ## Causes printing as for “factor”
cat("'\n", paste(levels(x), collapse = " < "), "\n")

## Adds extra information because factor is ordered
invisible(x)

}

Notethat it is purely aconvenience for print.ordered() to operate in thisway. The printing of
agam object generatesa call to print.gam(), which doesnot call print.gIm() - Nor does
print.gIlmQ cdl print.Im(Q) . Hereisan example:

> kyph.gam(formula = Kyphosis ~ lo(Age, 0.8) + Start +
lo(Number, 0.8), family = binomial, data = kyphosis)

> class(kyph.gam)

[1] "gam”™ *“"gim™ "“Im"

12.2 Extracting Argumentsto Functions

How, inside a function, can one extract the value assigned to a parameter when the function was
called? Below thereisafunction extract.arg(). Whenitiscalled asextract.arg(a=xx),
we want it to return “xx”’. When it iscalled as extract.arg(a=xy), we want it to return “xy”’.
Hereishow it is done.

extract.arg <-
function (a)

{

s <- substitute(a)
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as.character(s)

> extract.arg(a=xy)
[1] llxyl ’

If the argument is afunction, we may want to get at the arguments to the function. Hereis how
one can do it

deparse.args <-
function (a)

{
s <- substitute (a)
if(mode(s) == "call'){
# the Ffirst element of a "call” is the function called
# so we don"t deparse that, just the arguments.
print(paste(“The function is: “, s[1],”(Q”, collapse="""))
lapply (s[-1], function (X)
paste (deparse(x), collapse = '"\n™))
}
else stop (“argument is not a function call™)
}
For example:

> deparse.args(list(x+y, foo(bar)))
[1] “The function is: list(Q)”
[[111:

[1] "x + y"

[[211:

[1] "foo(bar)"

12.3 Parsing and Evaluation of Expressions

When you type in an expression such as mean(x+y) or cbind(x,y) for SPLUSto evaluate,
there are two steps:

1. Thetext string which you typein is parsed and turned into an expression, i.e. the syntax is
checked and it is turned into code which the S-PLUS engine can more immediately eval uate.

2. The expression is evaluated.

If you typein
expression(mean(x+y))

the output is the unevaluated expression expression(mean(x+y)). By setting
my.exp <- expression(mean(x+y))

you can store this unevaluated expression in my .exp . Actually what is actually stored in my .exp
isalittle different from what is printed out. S-PLUS gives you as much information asit judgesis
(most of the time) helpful for you to know.

Note that expression(mean(x+y)) isdifferent from expression(“mean(x+y)), asis
obvious when the expression is evaluated. A text string is atext string isatext string, unless you
explicitly change it into an expression or part of an expression.

Let’s see how thisworks in practice
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X <- 101:110

y <- 21:30

my.exp <- expression(mean(x+y))
my.txt <- expression(“mean(x+y)")
eval (my.exp)

[1] 131

> eval(my.txt)

[1]1 "mean(x+y)"

V V.V VvV V

What if we already have “mean(x+y)” stored in atext string, and we want to turn it into an
expression? The answer isto use the function parse (), but you must tell it that you are
supplying text rather than the name of afile. Thus

> parse(text="mean(x+y)")
expression(mean(x + y))

Let’s store the expression in my .exp2, and then evaluate it

> my.exp2 <- parse(text="mean(x+y)'")
> eval(my.exp2)
[1] 131

Hereisafunction that creates a new data frame from an arbitrary set of columns of an existing
dataframe. Once in the function, we attach the data frame so that we can leave off the name of the
data frame, and use only the column names

function(old.df = fuel.frame, colnames = c("Disp.", "Fuel™))
{

attach(old.df)

on.exit(detach("old.df""))

argtxt <- paste(colnames, collapse = ",")

exprtxt <- paste('data.frame(’”, argtxt, )", sep = ")

expr <- parse(text = exprtxt)

df <- eval(expr)

names(df) <- colnames

df

}
To verify that the function does what it should, typein

> z <- make.new.df(Q)

> z[1:4,] # Display the first four rows of z
Disp. Fuel

Eagle Summit 4 97 3.030303

Ford Escort 4 114 3.030303

Ford Festiva 4 81 2.702703

Honda Civic 4 91 3.125000
>

The function do.cal 1 () may be convenient if you want to keep the function name and the
argument list in separate text strings. When do.-call isused it is only necessary to use parse()
in generating the argument list.

For example

make.new.df <-
function(old.df = fuel.frame, colnames = c("'Disp.", "Fuel™))

{
attach(old.df)
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on.exit(detach("old.df""))

argtxt <- paste(colnames, collapse = ",")

listexpr <- parse(paste("list("", argtxt, ')", sep = "))
df <- do.call(“data.frame”, eval(listexpr))

names(df) <- colnames

df

}

12.4 Sear ching S-PLUS functionsfor a specified token.
A token is asyntactic entity; for example function names are tokens. For example, we search all

functionsin the working directory. The purpose of using unlist() in the code below isto
change myfunc from alist into a simple vector of characters.

> mygrep
function(str)

{

## Assign the names of all objects in current S-PLUS
## working directory to tempobj
Ht
tempobj <- objectsQ
objstring <- character(0)
for(i in tempobj) {
myfunc <- get(i)
if(is.function(myfunc))

if(length(grep(str,
unlist(myfunc))))
objstring <- c(objstring, i)
}
return(objstring)
}
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13. Appendix 1 — S-PLUS Resources

13.1 Official Documentation
S-PLUS 2000 Guide to Statistics. Data Analysis Products Division, MathSoft, Seattle.

The quality isvariable. Some chapters are excellent summaries of the current state of the statistical
methodology, and of the S-PLUS abilities.

S-PLUS 2000 Programmer’s Guide. Data Analysis Products Division, MathSoft, Seattle.
S-PLUS 2000 User’s Guide. Data Analysis Products Division, MathSoft, Seattle.

These documents are available at the web site:

13.2 Literaturewritten by expert users

Burns, P. J. 1998. S Poetry.
This 439 page document is available from
http://www.seanet.com/~pburns/Spoetry/.
Although the style isleisurely, this assumes some prior knowledge of computing language terms. It may be a
good book to work through once you have some initial knowledge of S-PLUS.

Chambers, J. M. 1998. Programming with Data. A Guideto the S Language. Springer-Verlag,
New Y ork.

Thisisabook for specialists. It describesaversion 4 (N. B. 4, not 5) of the S language, which is the basis for
version 5 of SSPLUS. To date, version 5 of S-PLUS is available only for Unix.

Chambers, J. M. and Hastie, T. J. 1992. Statistical Modelsin S. Wadsworth and Brooks Cole
Advanced Books and Software, Pacific Grove CA.
Thisisthe basic reference on S-PLUS model formulae and models.

Everitt, B. S. 1994. A Handbook of Statistical Analyses using S-PLUS. Chapman and Hall,
London.

The choice of analysis methods may seem idiosyncratic. It haslittle on the more recently devel oped methods
which are S-PLUS s strength.

Harrell, F. An Introduction to S-PLUS and the Hmisc and Design Libraries.

The latest version of this manual is available from
http://heswebl._med.virginia.edu/biostat/s/index.html

Chapters 1-4 and 9-10 are a good introduction to S-PLUS, likely to be particularly helpful to anyone who
comesto S-PLUS from SAS. The examplesin this manual are largely medical.

Krause, A. and Olsen, M. 1997. The Basics of Sand S-PLUS. Springer 1997.

Thisisan introductory book, at about the same level as Spector.

Spector, P. 1994. An Introduction to S and S-PLUS. Duxbury Press.

Thisisareadable and compact beginner’s guide to the S-PLUS language. Copies are available from the ANU
Co-op bookshop.

Venables, W. N. and Ripley, B. D., 3rd edn 1999. Modern Applied Statistics with S-Plus.
Springer, New Y ork.

This has become atext book for the use of S-PLUS for applied statistical analysis. It assumes afair level of
statistical sophistication. Explanation is careful, but often terse. Together with the ‘ Complements’ it gives
brief introductions to extensive libraries of functions that have been written or adapted by Ripley, Venables,
and anumber of other statisticians. Supplementary material ("Complements’) is available from
http://www.stats.ox.ac.uk/pub/MASS3/.
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http://www.insightful.com/

The supplementary material is extensive, and is continually supplemented. The present version of the
statistical “Complements’ has extensive information on new libraries that have come from third party sources.
Thereis helpful information, additional to what isin the book, that is specific to the SPLUS 4.0 and S-PLUS
4.5 releases for Microsoft Windows.

Venables, W.N. and Ripley, B.D. 2000. S Programming. Springer 2000.

13.3 Libraries
Extensive libraries and/or collections of S-PLUS functions are available from the web sites;

http://heswebl.med.virginia.edu/biostat/s/index.html (Hmisc and Design)
http://www._stats.ox.ac.uk/pub/MASS3/ (MASS2, and other libraries)
http://lib._stat.cmu.edu

13.4 The s-news electronic mail discussion list
Thisisan email list which is devoted to discussion of SSPLUS. To subscribe, send the message

subscribe s-news

to s-news-request@wubios.wustl.edu

If your mailer inserts a signature, follow the above request with
end

on a separate line.

Thereisan archive of past discussion that you can access via the web page
http://lib.stat.cmu.edu

13.5 Competing Systems— R and XLISP-STAT

The R language implementation is an S clone that is available at no cost. It has aless extensive
range of analysis functionsthan S-PLUS. Thereiswide international co-operation in adding new
function libraries, which . You can get it from (among other places):

http://mirror.aarnet.edu.au/pub/CRAN
It isavailable for Unix, for the Macintosh and for Windows 95.

The Venables and Ripley collection of librariesis now also available for R.

XLISP-STAT isaligp-based system that, like S-S PLUS and R, allows a seamless extensibility. It
isavailable from

ftp://ftp._stat._umn.edu/pub/xlispstat/current/
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14. Appendix

14.1 Data Sets Used in this Course

Data Sets that Accompany these Notes

ACF as anaesthetic angina austpop

beams cars dolphins elasticband florida

huron ironslag islandcities kiwishade moths
oddbooks piglitters possum primates rainforest

roller seedrates snow.cover type.df vehicle.summary

Data Sets in Library MASS
fol hills michelson Rubber

Data Sets Supplied with S-PLUS

CO2 ar barley brains car.al
catalyst environmental  fuel.frame hills kyphosis
market.survey  pigment singer

14.2 Answersto Selected Exercises

Section 1.6
1 plot(distance~stretch,data=el asticband)
2. (i), (iii)

plot(snow.cover ~ year, data = show)
hist(snow$snow.cover)
hist(log(snow$snow.cover))

Section 2.8
1. The value of answer is () 12, (b) 22, (c) 600.

2. prod(c(10,3:5))

3(i) bigsum <- 0; Tfor (i in 1:100) {bigsum <- bigsum+i }; bigsum
3(ii) sum(1:100)

4(i) bigprod <- 1; for (i in 1:50) {bigprod <- bigprod*i }; bigprod
4(ii) prod(1:50)

5. radius <- 3:20; volume <- 4*pi*radius”3/3
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sphere.data <- data.frame(radius=radius, volume=volume)

6. sapply(market.survey, is.factor)
sapply(market.survey[,-7], levels)
sapply(market.survey, is.ordered)

Section 3.8
1. plot(brain ~ body, data=brains, pch=1,
xlab="Body weight (kg)",ylab="Brain weight (g)'")
2. plot(log(brain) ~ log(body), data=brains, pch=1,
xlab="Body weight (kg)", ylab="Brain weight (g)", axes=F)
brainaxis <- 10"seq(-1,4)
bodyaxis <-10"seq(-2,4)
axis(1l, at=log(bodyaxis), lab=bodyaxis)
axis(2, at=log(brainaxis), lab=brainaxis)
box()

identify(log(brains$body), log(brains$brain), labels=row.names(brains))

(See problem 4.)
3. par(mfrow = c(1,2)), etc.

4. (d) plot(mean.height ~ year, data=huron)
(b) identify(huron$year,huron$mean._height, labels=huron$year)
(c) lag.plot(huron$mean.height)

5. Thefollowing isasimple version:

plot._florida <- function(xvar="BUSH”, yvar="BUCHANAN”, fun = sqgrt){
X <- Florida[,xvar]
y<- florida[,yvar]
plot(fun(x), fun(y), xlab=xvar,ylab=yvar)
mtext(side=3, line=1,
“Votes in Florida, by county, in the 2000 US Presidential election™)
}
A better version, which |abels the axes with the actual numbers of votes, is:

plot.florida <- function(xvar="BUSH”, yvar="BUCHANAN”, fun = sqrt){
x <- Florida[,xvar]
y<- florida[,yvar]
xtik <- pretty(x)
xtik <- xtik[xtik>0]
ytik <- pretty(y)
ytik <- ytik[ytik>0]
plot(fun(x), fun(y), xlab=xvar,ylab=yvar, axes=F)
axis(l, at=fun(xtik), labels=xtik)
axis(2, at=fun(ytik), labels=ytik)
box()
mtext(side=3, line=1,
“Votes in Florida, by county, in the 2000 US Presidential election™)
}
6. rnorm(10, 170, 4)

7. par(mfrow = c(3, 4))
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for(i in 1:4)qgnorm(rnorm(10))

for(i in 1:4)qgnorm(rnorm(100))
for(i in 1:4)qgnorm(rnorm(1000))

8. par(mfrow = c(3, 4))

for(i in 1:4)qgnorm(runif(10))

for(i in 1:4)qgnorm(runif(100))
for(i in 1:4)qgnorm(runif(1000))

9. Replace rnorm(10) by rnorm(chisq, 1), €tc.

10. names(hills)

attach(hills)

hist(distance)
plot(density(distance))
qgnorm(distance)
hist(log(distance))
plot(density(log(distance)))
qqgnorm(log(distance))
detach(“hills™)

Section 4.8, example 2
environmental$Temp <- equal.count(environmental$
temperature, 3, 1/2)
environmental$Wind <- equal.count(environmental$
wind, 3, 1/72)
xyplot(ozone ~ radiation | Temp * Wind,
data = environmental, panel = function(

X, ¥Y)
{
panel .grid(v = 2)
panel .xyplot(x, y, cex = 0.5)
panel _loess(X, y, span = 1)
}

, aspect = 2, xlab = "Radiation (langleys)",
ylab = "0zone (ppb)")

Section 7.10
1. x <- seq(101,112) or x <- 101:112

2. rep(c(4,6,3),4)

3. c(rep(4,8),rep(6,7),rep(3,9)) or rep(c(4,6,3),c(8,7,9))
4. rep(seq(l1,9),seq(1,9)) or rep(1:9, 1:9)

5. Use summary(environmental) to get this information.
6277 512 12 4

6(b)2 986 17 15 7

7. environmental [environmental$ozone == max(environmental$ozone),]

environmental$wind[environmental$ozone > quantile(environmental$ozone, .75)]
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8. sapply(claims, function(X)if(is.factor(x))levels(x) else “)

9. sapply(market.survey, is.factor); sapply(market.survey, is.ordered)
10. summary(environmental); summary(claims); summary(market.survey)
11. claimsA <- claims[claims$type=="A",]

12. gfse <- as.logical(match(car.test. frame$Country,

c('Germany","France","Sweden",""England') ,nomatch=0))
car.test.frame[gfse,]

13. mat34 <- matrix(rep(c(4,6,3),4), nrow=3, ncol=4)

14. mat64 <- matrix(c(rep(4,8),rep(6,7),rep(3,9)), nrow=6, ncol=4)
mat64[3:6,3:4]

Additional solutionswill beincluded in later versions of this document.
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