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Abstract

The uniform convergence of finite element approximations based on a modified
Hu-Washizu formulation for the nearly incompressible linear elasticity is analyzed.
We show the optimal and robust convergence of the displacement-based discrete
formulation in the nearly incompressible case with the choice of approximations
based on quadrilateral and hexahedral elements. These choices include bases that
are well known, as well as newly constructed bases. Starting from a suitable three-
field problem, we extend our α-dependent three-field formulation to geometrically
nonlinear elasticity with Saint-Venant Kirchhoff law. Additionally, an α-dependent
three-field formulation for a general hyperelastic material model is proposed. A
range of numerical examples using different material laws for small and large strain
elasticity is presented.

Key words: Hu-Washizu formulation, mixed finite elements, low-order
approximations, uniform convergence

1 Introduction

It is well-known that standard low-order finite elements based on four-noded
quadrilaterals or eight-noded hexahedra have two drawbacks in finite element
computation. The first one is the locking effect in the nearly incompressible
case; in other words, they do not converge uniformly with respect to the Lamé
parameter λ. The second one is that these standard elements lead to poor accu-
racy in bending-dominated problems when coarse meshes are used. There are
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many approaches to overcome these difficulties. Among them are the methods
associated with the enhancement of the strain or stress field. The method of
enhanced assumed strain, first proposed by Simo and Rifai [1], has become
a popular approach; see, e.g., [2–4]. A detailed mathematical analysis of en-
hanced assumed strain has been done by Braess, Carstensen and Reddy

[5], where a robust asymptotic convergence of the error in the displacement
has been proved for a class of meshes. The assumed stress approach proposed
in [6] has a very similar feature to that based on enhanced strains, and in
fact the two methods are equivalent under some assumptions on the discrete
spaces [7,5]. Simo and Rifai have started from the Hu–Washizu principle
[8,9] to derive a method based on the enhancement of the strains. We note
that this idea has been also successfully extended to the nonlinear setting.
A different idea using the Hu–Washihzu formulation as starting point results
in the mixed enhanced strain approach introduced by Kasper and Tay-

lor [10]. Static condensation of the stress and strain yields a displacement
based formulation. The method of the mixed enhanced strain is also applied to
nonlinear hyperelasticity [11]. Another relevant approach having a close link
with the Hu–Washizu formulation is the strain gap method due to Romano,

Marotti, and Diaco [12]. However, the analysis presented in [12] does not
cover the uniform convergence of the finite element solution in the nearly in-
compressible case. All these methods, variationally based on the Hu–Washizu
principle, yield a promising approach to overcome the difficulties referred to
earlier. However, there were open questions on the full mathematical analysis
of the Hu–Washizu formulation. This gap has been filled by a recent work on
the uniform convergence of the Hu–Washizu formulation in the nearly incom-
pressible case, see [13]. The uniform convergence of the finite element solution
in the nearly incompressible case has been shown through a parameter depen-
dent modification that is equivalent to the standard Hu–Washizu formulation
in the continuous setting. However, in the discrete setting the new modified
Hu–Washizu formulation results in a possibly parameter dependent finite ele-
ment solution

The essential point of the analysis in [13] is the requirement that the discrete
space of displacements Vh forms, with the trace space of a discrete spherical
part of Sh, a Stokes-stable pair, i.e. a uniform inf-sup condition with a constant
independent of h and λ is satisfied. We note that in the discrete setting, the
spherical part of the stress field is not necessarily in the discrete space of
stresses. Thus we use a orthogonal decomposition and a suitable projection
operator to define a discrete spherical part which is a subspace of the discrete
space for the stresses. If bilinear or trilinear elements are used to discretize the
displacement field this condition is, in general, not satisfied, so that spurious
modes might be present. However it can be shown that the discretization error
of the displacement is not affected by these spurious modes.

In this paper, we extend the analysis of [13] to the three-dimensional lin-
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ear elasticity and consider also the nonlinear case. We present the spaces of
stresses and strains which satisfy the conditions of well-posedness for linear
elasticity in three dimensions. Moreover, we extend our formulation to geo-
metrically nonlinear elasticity with Saint-Venant Kirchhoff law. Furthermore,
an α-dependent three-field formulation for a general hyperelastic model is pro-
posed. We note that the presented mathematical analysis is restricted to the
linear case. Finally, we illustrate the numerical performance of all our formu-
lations by considering different nonlinear material laws and small and large
strain elasticity.

The structure of the rest of the paper is organized as follows. In the next
section, we briefly recall the standard and the modified Hu–Washizu formu-
lation of linear elasticity. In Section 3, we present examples of discrete spaces
for the stress and strain which satisfy the conditions of well-posedness and
which will be used in our numerical computations. Moreover, we summarize
the results shown in [13] for the two-dimensional setting and extend them to
the three-dimensional case. In Section 4, we consider the geometrically non-
linear situation with Saint-Venant Kirchhoff law. The idea of an α-dependent
three-field formulation is generalized to hyperelastic material laws in Section
5. Finally, numerical results are presented in the last section.

2 The boundary value problem of linear elasticity

We assume that a bounded domain Ω in R
N , N = {2, 3}, with piecewise

Lipschitz boundary Γ is occupied by a homogeneous isotropic linear elastic
material. Given a body force f ∈ L2(Ω)N , we consider the equilibrium equa-
tion in Ω

− div σ = f , (2.1)

where the symmetric Cauchy stress tensor σ is related to the strain tensor
d by the Saint-Venant Kirchhoff constitutive relation written in terms of the
elasticity tensor C as

σ = Cd := λ(trd)1 + 2µ d . (2.2)

Here, 1 is the identity tensor; and λ and µ are the Lamé parameters, which
are assumed to be constant and positive. We are interested in the case of
incompressible limit, which corresponds to λ → ∞. The infinitesimal strain
tensor d is defined as a linear function of the displacement u by

d = ε(u) := 1
2
(∇u + [∇u]t) , (2.3)

and, for simplicity, we assume homogeneous Dirichlet boundary condition for
the displacement u.
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Introducing the Sobolev space V := [H1
0 (Ω)]N of displacements with standard

inner product (·, ·)1 and norm ‖ · ‖1, we define the bilinear form A(·, ·) and the
linear functional ℓ(·) by

A : V × V → R, A(u, v) :=
∫
Ω Cε(u) : ε(v) dx ,

ℓ : V → R, ℓ(v) :=
∫
Ω f · v dx .

Then the standard weak form of the linear elasticity problem is as follows:
given ℓ ∈ V ′, find u ∈ V that satisfies

A(u, v) = ℓ(v) , v ∈ V . (2.4)

Since A(·, ·) is symmetric, continuous, and V -elliptic under the assumptions on
C, standard arguments can be used to show that (2.4) has a unique solution
u ∈ V . Furthermore, we assume that the domain Ω is convex and smooth
enough such that u ∈ [H2(Ω)]N∩V , and there exists a constant C independent
of λ such that

‖u‖2 + λ‖ div u‖1 ≤ C ‖f‖0 . (2.5)

The a priori estimate (2.5) has been shown in [14] for the two-dimensional
linear elasticity posed in a convex domain with polygonal boundary, see also
[15].

We also introduce the space of stresses S and the space of strains D, where
D := {e | eji = eij , eij ∈ L2(Ω), 1 ≤ i, j ≤ N} =: S with the norm ‖ · ‖0

generated in the standard way by the L2-norm. We also need the space S0,
which is a closed subspace of S defined by S0 := {τ ∈ S | (τ , 1)0 = 0}.

The standard Hu–Washizu formulation is obtained by considering the consti-
tutive equation (2.2), the strain-displacement equation (2.3) and the equation
of equilibrium (2.1) in a weak form. Although the existence and the unique-
ness of the solution of the standard Hu–Washizu formulation can be shown,
the continuity constant of one of the involved bilinear forms tends to infinity
as λ does, and thus all a priori results depend in a sensitive way on λ. There-
fore, we consider a modification of the Hu–Washizu formulation depending on
a parameter α ∈ R: find (u, d, σ) ∈ V × D × S0 such that

aα((u, d), (v, e)) + bα((v, e), σ) = ℓ(v) , (v, e) ∈ V × D ,

bα((u, d), τ ) − δ
κ

c(σ, τ ) = 0 , τ ∈ S0 ,
(2.6)

where the bilinear forms are defined by

aα((u, d), (v, e)) := 2µ(d, e)0 + αµ(trd, tre)0 ,

bα((v, e), σ) := (ε(v) − e, σ)0 + δ(trσ, tre)0 ,

c(σ, τ ) := (trσ, tr τ )0 ,
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and κ := 2µ + Nλ, δ := (λ−αµ)
κ

. The standard Hu–Washizu formulation can
be obtained by setting α = λ

µ
in (2.6). We note that the solution of (2.6) does

not depend on α. The existence of a unique solution has been established in
[13].

3 Discrete formulations

Suppose that Th is a quasi-uniform and shape-regular quadrilateral or hexa-
hedral triangulation of the polygonal or polyhedral domain Ω. Each element
K ∈ Th is generated by an isoparametric map FK from the reference element
K̂ := (−1, 1)N . We recall that if v̂ ∈ Q1(K̂), Q1(K̂) being the space of bilinear
or trilinear polynomials on K̂, then v̂ ◦ F−1

K is in general not a polynomial on
the quadrilateral or hexahedron K. However, for the theoretical analysis, we
assume that FK is an affine mapping for each element K ∈ Th. The finite
element spaces for the displacement, stress and strain are defined as

Vh :=
{
vh ∈ V, vh|K = v̂h ◦ F−1

K , v̂h ∈ Q1(K̂)N for all K ∈ Th

}
,

Sh :=
{
τ h ∈ S0 | (τ h|K)ij = (τ̂ h)ij ◦ F−1

K , τ̂ h ∈ S2 for all K ∈ Th

}
,

Dh :=
{
eh ∈ S0 | (eh|K)ij = (êh)ij ◦ F−1

K , êh ∈ D2 for all K ∈ Th

}
,

respectively, where D2 and S2 are the reference bases of strains and stresses
defined on K̂. These two variables are defined locally on each element and no
continuity condition applies at the element boundaries. In the following, we
need additionally the space Mh defined by Mh := tr Sh.

We recall the Voigt representation of the tensorial quantities stress and strain
in vectorial form in two and three dimensions

σ = [σ11, σ22, σ12]
T , d = [d11, d22, 2d12]

T ; and

σ = [σ11, σ22, σ33, σ12, σ23, σ13]
T , d = [d11, d22, d33, 2d12, 2d23, 2d13]

T ,

respectively. It is easy to see that this representation yields σT d =
∑

i,j σijdij = σ :
d, where on the left the scalar product is applied on the vectorial quantities and on
the right the product is applied to the tensorial quantities. The spaces Sh and Dh

will be generated from bases defined on K̂, and we will make use of the following
bases on K̂:
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A2 := span




ŷ 0

0 x̂

0 0


 , A3 := span




ŷ ẑ ŷẑ 0 0 0 0 0 0 0 0 0

0 0 0 x̂ ẑ x̂ẑ 0 0 0 0 0 0

0 0 0 0 0 0 x̂ ŷ x̂ŷ 0 0 0

0 0 0 0 0 0 0 0 0 ẑ 0 0

0 0 0 0 0 0 0 0 0 0 x̂ 0

0 0 0 0 0 0 0 0 0 0 0 ŷ




,

B2 := span




x̂ 0

0 ŷ

0 0


 , B3 := span




x̂ x̂ŷ x̂ẑ 0 0 0 0 0 0

0 0 0 ŷ ŷẑ x̂ŷ 0 0 0

0 0 0 0 0 0 ẑ ŷẑ x̂ẑ

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0




,

C2 := span




0 0

0 0

x̂ ŷ


 , C3 := span




0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

x̂ ŷ ẑ 0 0 0 0 0 0

0 0 0 x̂ ŷ ẑ 0 0 0

0 0 0 0 0 0 x̂ ŷ ẑ




,

D2 := span




0 0

0 0

x̂ ŷ


 , D3 := span




0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

x̂ ŷ ŷẑ x̂ẑ 0 0 0 0 0 0 0 0

0 0 0 0 ŷ ẑ x̂ẑ x̂ŷ 0 0 0 0

0 0 0 0 0 0 0 0 ẑ x̂ x̂ŷ ŷẑ




,

where the lower index 2 or 3 stands for the space dimension. We note that
C2 = D2 but C3 6= D3. Of special interest will be the choices (Si

h, D
i
h), 1 ≤

i ≤ 5 given in Table 1. Here, IN stands for the span of the identity tensor in
N dimensions and is of dimension one. We note that the five different spaces
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Table 1
Different cases for the discrete spaces, N = 2, 3

Case I II III IV V

S2 IN + AN IN + AN IN + CN IN + AN + DN IN + AN + DN

D2 IN + AN IN + AN + BN IN + CN IN + AN + DN IN + AN + BN + DN

S1

h
= D1

h
S2

h
⊂ D2

h
S3

h
= D3

h
S4

h
= D4

h
S5

h
⊂ D5

h

of stresses and strains have been considered for the two-dimensional setting
in [13], and here we introduce the associated three dimensional cases. The
spaces of stresses and strains for both dimensions can simply be obtained
from Table 1 by setting N = 2 or N = 3. Case II corresponds to the method
of mixed enhanced strains [10,11] while Case V corresponds to the method of
enhanced assumed strains [1]. The Cases IV and V are in three dimensions
more involved because in contrast to the two-dimensional situation, we cannot
work with C3 but have to introduce the new space D3.

The discrete α-dependent Hu–Washizu formulation is as follows: find (uα
h , dα

h , σα
h) ∈

Vh × Dh × Sh such that

aα((uα
h , dα

h), (vh, eh)) + bα((vh, eh), σ
α
h) = ℓ(vh), (vh, eh) ∈ Vh × Dh ,

bα((uα
h , dα

h), τ h) − δ
κ

c(σα
h , τ h) = 0, τ h ∈ Sh .

(3.1)
Although the continuous solution of (2.6) is independent of α, the discrete
solution can depend on α. However, for simplicity of notation from now on we
replace (uα

h , dα
h , σα

h) by (uh, dh, σh).

In the following, we assume that Sh ⊂ Dh, and we restrict ourselves to two
types of discretization.

• Type 1: Sh ⊂ Dh and trDh1 ⊂ Dh.
• Type 2: Sh = Dh and tr Dh1 6⊂ Dh.

For discretizations of Type 1, the numerical solution does not depend on α 6=
−1, whereas for the discretizations of Type 2, it depends on α, see also the
numerical results of Section 6 and the theoretical result of [13]. We note that
the Cases II, III and V in Table 1 correspond to a discretization of Type 1,
and the Cases I and IV correspond to one of Type 2. Case IV for α = λ

µ
is

equivalent to the standard Q1-approach and thus yields poor numerical results
in the nearly incompressible limit. The link between the modified Hu–Washizu
formulation (3.1), the Hellinger–Reissner, Mixed Enhanced Strain, Enhanced
Assumed Strain and the classical Q1-P0 formulation has been discussed in
detail in [16].

The rest of this section is devoted to summarizing some relevant results proved
in [13] for the modified Hu–Washizu formulation in planar elasticity, which can
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easily be extended to the three-dimensional case. Since the spherical part of
the stress plays a crucial role in the analysis of the incompressible limit, we
define the L2-orthogonal projections sph and dev on S by sph τ := 1

N
(tr τ )1,

and dev τ := τ − sph τ . In contrast to the continuous setting, dev Sh and
sph Sh are in general not subspaces of Sh, and therefore, we introduce the
discrete deviatoric operator devh defined by devh Sh := PSh

dev Sh, where PSh

is the L2-orthogonal projection onto Sh, and decompose Sh according to

Sh = devh Sh ⊕ sphh Sh . (3.2)

Next, we define M̃h := tr sphh Sh, and find that M̃h = {q ∈ L2
0(Ω) | q|K ∈

P0(K), K ∈ Th} ⊂ Mh for all our cases.

The analysis of the saddle point problem (3.1) is done in [13] for plane elas-
ticity but can be quite easily extended to the three-dimensional case, see also
[17,5]. The implementation of the modified Hu–Washizu formulation does not
use the saddle point formulation (3.1) but is based on the positive definite dis-
placement based system. Element-wise static condensation of the stress and
the strain yields a symmetric and positive-definite system for the displacement

Ah(uh, vh) = ℓ(vh) , vh ∈ Vh . (3.3)

To obtain the explicit expression for the discrete bilinear form Ah(uh, vh), we
decompose Sh orthogonally in Sh = Sc

h ⊕ St
h with Sc

h := {τ ∈ Sh | Cτ ∈ Sh}.
We note that St

h ⊂ devh Sh, sphh Sh ⊂ Sc
h and tr(sphh Sh) = tr Sc

h. In the
following, we provide two lemmas for N ∈ {2, 3}. These results can be found
in [13] for N = 2, and the proof can easily be generalized to the case N = 3.

Lemma 1 We define a scalar quantity θ(µ, λ, α) depending on the material
parameters µ and λ and the stability parameter α 6= 1. For the Cases II, III,
V it is given by

θ(µ, λ, α) :=
2µ(2µ + Nλ)

2µ + λ(N − 1)
and by

θ(µ, λ, α) :=
(2µ + Nλ)2µ(2 + α)

µ(2 + α)(2µ + 2Nλ − λ) + (N − 1)2λ2
, α 6= −2 ,

for the Cases I and IV. Then the bilinear form Ah(uh, vh) is equal to:

Ah(uh, vh) = (Qhε(uh), ε(vh))0 ,

where Qhε(uh) := CPSc

h
ε(uh) + θ(µ, λ, α)PSt

h

ε(uh), and PSc

h
and PSt

h

are or-

thogonal projections onto the spaces Sc
h and St

h, respectively.

The definition of the bilinear form Ah(·, ·) shows that it is symmetric and
positive semi-definite. From this representation it follows directly that the
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parameter α does not enter into the formulation for the Cases II, III, and V.
Moreover, it is easy to see that θ(µ, λ, α) is uniformly bounded with respect to
λ in the Cases I and IV if α is bounded uniformly. The classical Hu–Washizu
formulation is given by α = λ/µ and thus θ(µ, λ, α) grows linearly with respect
to λ for the Cases I and IV.

We assume that the triangulation has a macro-structure so that M̃2h ⊂ M̃h,
where M̃2h := {q ∈ L2

0(Ω)| q|K ∈ P0(K), K ∈ T2h}. Then the following
theorem holds for all our cases.

Theorem 2 For the Cases I and IV, we assume that α satisfies 0 < c1 ≤
µ(2 + α) ≤ C1 < ∞. Then under the regularity assumption (2.5), we obtain
an optimal a priori estimate for the discretization error

‖u − uh‖1 ≤ Ch‖f‖0 ,

where C < ∞ is independent of λ and h.

Remark 3 The results of Lemma 1 and Theorem 2 can be extended to other
discretizations of Type 1 or Type 2. Suitable new pair of spaces (Dh, Sh) can be
constructed by using the assumptions specified in [13]. A more detailed analysis
shows that negative values of α might be also of interest. This is also reflected
by our numerical results.

4 Nonlinear elasticity with Saint-Venant Kirchhoff law

In this section, we extend our modified Hu–Washizu formulation to geomet-
rically nonlinear elasticity with Saint-Venant Kirchhoff law. The three-field
formulation for geometrically nonlinear elasticity with Saint-Venant Kirchhoff
law is obtained by taking the symmetric second Piola–Kirchhoff stress, the
Green–Lagrange strain and the displacement as unknowns. In a variational
form, this consists of finding (uh, dh, σh) ∈ Vh × Dh × Sh that satisfy

∫
Ω(Cdh − σh) : eh dx = 0 , eh ∈ Dh ,

∫
Ω(E(uh) − dh) : τ h dx = 0 , τ h ∈ Sh ,

∫
Ω(1 + ∇uh)σh : ∇vh dx = ℓ(vh) , vh ∈ Vh ,

(4.1)

where Dh and Sh are as defined before, and E(uh) := 1
2
[(1 + ∇uh)

T (1 +
∇uh)− 1], Vh ⊂ W 1,4(Ω)N . The Sobolev space W 1,r(Ω) for r ∈ N is a Banach
space and is defined in a standard way [18],

W 1,r(Ω) := {v ∈ L1
loc(Ω) : ‖v‖r

0,Ω +
N∑

k=1

‖
∂v

∂xk

‖r
Lr(Ω) < ∞}
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with L1
loc(Ω) denoting the space of locally integrable functions in Ω. Working

with this three-field formulation, we cannot expect that we obtain the uniform
convergence of the numerical solution with respect to the Lamé parameter λ.
As in the linear case, we can infer that the continuity constant of the form
(Cdh−σh, eh)0 = 0 is not bounded independently of λ. Therefore, we introduce
an α-dependent three-field formulation written as a nonlinear saddle point
problem: find (uh, dh, σh) ∈ Vh × Dh × Sh such that

aα((uh, dh), (vh, eh)) + b1
α(uh, (vh, eh), σh) = ℓ(vh) , (vh, eh) ∈ Vh × Dh ,

b2
α((uh, dh), τ h) − δ

κ
c(σh, τ h) = 0 , τ h ∈ Sh ,

where the bilinear forms aα(·, ·) and c(·, ·), are defined as before, and

b1
α(u, (v, e), σ) := (δ trσ1 − σ, e)0 + ((1 + ∇u)σ,∇v)0 ,

b2
α((u, d), τ ) := (E(u) − d, τ )0 + δ(trd, tr τ )0 .

We note that if we replace E(u) by ε(u) in the definition of b2
α(·, ·), we find

bα(·, ·), and if we replace 1 + ∇u by 1 in the definition of b1
α(·, ·), we find

bα(·, ·). As in the case of linear elasticity, the solution of (4.2) does not depend
on α under the assumption tr Dh1 ⊂ Dh.

We recall a result concerning the equivalence between the Hu–Washizu and
the Hellinger–Reissner formulation in the linear case. Stolarski and Be-

lytschko [19] have shown that, if the spaces of stresses and strains satisfy
the inclusion

Sh ⊂ CDh , (4.2)

then the classical Hu–Washizu formulation is equivalent to the Hellinger–
Reissner problem of finding (uh, σh) ∈ Vh × Sh such that

∫
Ω C−1σh : τ h dx −

∫
Ω ε(uh) : τ h dx = 0 , τ h ∈ Sh ,

∫
Ω ε(vh) : σh dx = ℓ(vh) , vh ∈ Vh .

(4.3)

Under the assumption tr Dh1 ⊂ Dh, the modified Hu–Washizu formulation
(3.1) can be shown to be equivalent to the Hellinger–Reissner formulation
(4.3), see [16].

As in the linear case, if tr Dh1 ⊂ Dh, the geometrically nonlinear Hu–Washizu
formulation (4.1) can be reduced to a two-field variational problem of Hellinger–
Reissner type so that the weak discrete form can be written as: find (uh, σh) ∈
Vh × Sh such that

∫
Ω C−1σh : τ h dx −

∫
Ω E(uh) : τ h dx = 0 , τ h ∈ Sh ,

∫
Ω(1 + ∇uh)σh : ∇vh dx = ℓ(vh) , vh ∈ Vh .

(4.4)
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Following exactly as in Lemma 1, the stress and strain can be statically con-
densed out from the system to obtain the following displacement-based for-
mulation.

Lemma 4 Defining θ(·, ·, ·) and Qh as in Lemma 1, the displacement-based
formulation of (4.2) is given by

((1 + ∇uh)QhE(uh),∇vh)0 = ℓ(vh)

for all our cases.

5 Extension to general hyperelasticity

Using the inverse of the elasticity tensor C, we have obtained an α-dependent
three-field formulations for linear and geometrically nonlinear elasticity. In
contrast to the linear Saint-Venant Kirchhoff law, the general hyperelastic
constitutive equation cannot be inverted easily. As a consequence, we have
to use a different starting point for the construction of our new α-dependent
three-field formulation.

Under the assumption that the material is hyperelastic and isotropic a stored
energy function W exists with σ = 2∂W (C)

∂C
, where σ is the second Piola–

Krichhoff stress tensor, and C is the right Cauchy–Green strain tensor given
by C = F T F . The first Piola–Kirchhoff tensor π is related to the second
Piola–Kirchhoff tensor σ by π = Fσ. Defining W̃ (F ) := W (C), we can write

π = ∂W̃ (F )
∂F

. For the isotropic material the energy function W depends only on
the three principal invariants IC , IIC and IIIC of C, where IC = tr(C), IIC =
1
2
(tr2(C)−tr(C2)), and IIIC = det(C) = J2 with J := det(F ). If the material

law satisfies the two-term Mooney–Rivlin law [20], we have

W (C) = λ U (J) + µ
2

[(1 − cm) (IC − 3 − 2 ln(J)) + cm (IIC − 3 − 2 ln(J))] ,

σ = λU ′(J)JC−1 + µ
[
(1 − cm)

(
1 − C−1

)
+ cm

(
trC1 − C − C−1

)]
,

where cm is a material constant. The real-valued function U is given by U(J) =
1
4
(J2 − 1 − 2 lnJ). We recall that the standard neo-Hookean law is recovered

with cm = 0.

In the nonlinear Hu–Washizu formulation considered in [1,10,11], the displace-
ment u, the first Piola–Kirchhoff stress tensor π and the deformation gradient
F are regarded as independent variables. Different Hu–Washizu functionals
are considered in [21,22]. We start with the three-field formulation where the
displacement u, the Kirchhoff stress τ and the deformation gradient F are
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unknowns. We note that the Kirchhoff stress τ is related to the second Piola–
Kirchhoff stress σ by τ = FσF T . Denoting the inverse of F T by F̃ , this for-
mulation in its strong form can be written as: given a body force f : Ω → R

d

and suitable boundary conditions on ∂Ω, find (u, τ , F ) such that

− div(τ F̃ ) = f ,

τ = ∂W̃ (F )
∂F

F T ,

F = 1 + ∇u .

(5.1)

We point out that the first equation of (5.1) refers to the balance law, the
second equation is the constitutive relation and the third one reflects the rela-
tion between the deformation gradient and the displacement field. We assume
that the relation between the deformation gradient and the displacement is
satisfied in the strong form and introduce

G(u) :=
∂W̃ (F )

∂F
F T

∣∣∣
F=1+∇u

.

By doing so the three-field formulation can be reduced to a two-field formu-
lation: find (u, τ ) ∈ V × S such that

∫
Ω τ : ∇v(1 + ∇u)−1 dx = ℓ(v) , v ∈ V ,

∫
Ω(τ − G(u)) : ζ dx = 0 , ζ ∈ S .

Moreover, we decompose G(·) into G(u) = G1(u) + λG2(J)1. In the case
of the Mooney–Rivlin material law, we can set G1(u) = µ(1 − cm)B(u) +
µcm(tr B(u)B(u)−B2(u))− µ1 and G2(J) = U ′(J)J . Here B(u) is the left
Cauchy–Green tensor defined by B(u) := (1 +∇u)(1 + ∇u)T . We note that
J → 1, λ → ∞ and G2(J) → 0 for a nearly incompressible material.

To treat the nearly incompressible case, we introduce a pressure-like variable
p ∈ L2(Ω) and add the variational equation

∫

Ω
(p − λG2(J))q dx = 0 , q ∈ L2(Ω) .

A similar pressure-like variable is introduced in [23] to study the convergence
of finite element approximations of the nonlinear elasticity problems in the
incompressible limit. Making use of the variable p, we define an α-dependent
function G̃(u, p, α) = G1(u) + µαG2(J)1 + (1 − µα

λ
)p1 to arrive at an α-

dependent three-field formulation involving the displacement u, the Kirchhoff
stress τ and the pressure p. Combining all these three variational equations,
our weak formulation reads: given a body force f and suitable boundary con-
ditions on ∂Ω find (u, τ , p) ∈ V × S × L2(Ω) so that

12



∫
Ω τ : ∇v(1 + ∇u)−1 dx = ℓ(v) , v ∈ V ,

∫
Ω(τ − G̃(u, p, α)) : ζ dx = 0 , ζ ∈ S ,

∫
Ω(p − λG2(J))q dx = 0 , q ∈ L2(Ω) ,

(5.2)

where V ⊂ W 1,r(Ω) with a suitable r ≥ 2, see [24]. In the following, we
concentrate on the three-field formulation (5.2). In contrast to the Hu–Washizu
type formulation given in [11,2], we consider the symmetric Kirchhoff stress
as an independent variable. Working with a symmetric tensor as unknown
leads to a symmetric formulation and a reduction of the number of unknowns.
Furthermore, we point out that the first and second Piola–Kirchhoff stress
tensors are rational functions of the displacement and its gradient for the
considered material laws, whereas the Kirchhoff stress depends polynomially
on the displacement and its gradient. Since the stress will be discretized by
using some piecewise polynomial space Sh, it is more reasonable to work with
the Kirchhoff stress rather than first or second Piola–Kirchhoff stresses.

From the linear analysis, see also [13,5], it is crucial to project G2(J) onto
piecewise constant functions to obtain a robust numerical scheme for the nearly
incompressible case based on bilinear or trilinear finite element interpolations
for the displacements. Therefore, the pressure is discretized by using piece-
wise constant functions, i.e., by M̃h, and the space of stress is discretized by
defining a finite-dimensional space S2 on a reference element K̂. Both stress
and pressure variables are defined locally on each element and no continuity
conditions apply at the element boundaries.

Defining the discrete determinant Jh := det(1 + ∇uh) and using the discrete
spaces introduced above, we can write our discrete three-field variational for-
mulation as: find (uh, τ h, ph) ∈ Vh × Sh × M̃h such that

∫
Ω τ h : ∇vh(1 + ∇uh)

−1 dx = ℓ(vh) , vh ∈ Vh ,
∫
Ω(τ h − G̃(uh, ph, α)) : ζh dx = 0 , ζh ∈ Sh ,

∫
Ω(ph − λG2(Jh)))qh dx = 0 , qh ∈ M̃h .

(5.3)

We denote the projection onto the space of piecewise constant functions with
respect to the mesh Th by Πh , Then, it is trivial to see that ph = λΠhG2(Jh).
Furthermore, static condensation of the stress from (5.3) yields the following
displacement-based formulation.

Lemma 5 The displacement-based formulation of (5.3) is given by

∫

Ω
PSh

G̃(uh, ph, α) : ∇vh(1 + ∇uh)
−1 dx = ℓ(vh) ,

13



where ph = λΠhG2(Jh) .

Lemma 6 The numerical solution is independent of α if for τ h ∈ Sh, the
components of τ h restricted to an element of the mesh are constant.

Proof. In this case, PSh
(G2(Jh)1) = ΠhG2(Jh)1, and we have PSh

G̃(uh, ph, α) =
PSh

G(uh). The proof now follows by using the displacement-based formulation
from Lemma 5.

Although we have only the displacement and the stress as unknowns in our
general nonlinear mixed formulation, we refer to the different cases by using
the bases of the stress given in Table 1. We point out that since the spaces
of stress are the same for Cases I and II, and for Cases IV and V, we have
here only three distinct cases: Cases I, III and IV. Lemma 6 shows that the
numerical solution is independent of α for Case III. We recall that for the Saint-
Venant Kirchhoff law, we obtain also an α independent numerical solution not
only for the Case III but also for the Cases II and V.

6 Numerical examples

In this section, we present some numerical examples in two and three dimen-
sions using the bases of stresses and strains given in the previous sections.
In particular, we show the locking-free response in the quasi-incompressible
limit of the proposed formulation by comparing our results with the analyti-
cal solution and with the standard Q1 finite element approach. The examples
in two and three dimensions are based on four-noded quadrilateral elements
with standard bilinear interpolation and eight-noded hexahedral elements with
standard trilinear interpolation of the displacement field, respectively. We as-
sume plane strain in the two-dimensional case. Our numerical results show an
excellent performance of the proposed formulation in the nearly incompress-
ible range whereas the standard case exhibits well-known volumetric locking.
One example with a typical shear locking situation is also considered.

6.1 Example-I (Bending of a clamped plate)

In this classical numerical example [25] for a clamped plate subjected to bend-
ing, the formulation is tested for a bending dominated situation. A thin plate
of dimension 2mm×2mm×0.01mm is considered. The plate is clamped along
the complete boundary, and it is subjected to a uniformly distributed pressure
of −100 N/mm2 on the top surface in z-direction [26]. A linear elastic material
is considered with Young’s modulus E = 1.7472 × 107N/mm2 and Poisson’s
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Fig. 2. Comparison of numerical results (clamped plate)

Taking advantage of the symmetry of the problem, only one fourth of the
plate is discretized as shown in Figure 1, with two elements in z-direction.
The convergence behavior of the proposed formulation with respect to the
number of elements can be seen in the left picture of Figure 2. We find that
Case II and Case I (α = 0) yield extremely good coarse mesh accuracy, whereas
Case III, Q1 and Q1-P0 exhibit locking effect. In the right picture of Figure 2,
the vertical deflection at the center of the plate with thickness ranging from
0.01mm to 0.3mm are compared with the analytical solution from Kirchhoff’s
plate theory. In this case, a finite element mesh with 10 × 10 × 2 elements is
used. We can see the increasing locking effect for Case III, Q1 and Q1-P0 with
decrease in thickness, whereas Case I (α = 0) and Case II show extremely
good results.

In a next step, we consider the nearly incompressible plate. The numerical
solution at the center of the plate for Poisson’s ratio ν = 0.4999 is tabulated
in Table 2. Case II works well whereas Case III gives similar results as Q1-P0

with shear locking and the standard Q1 formulation gives results much worse
than the other formulations. In the right picture of Figure 1, the relative error
of the vertical deflection at the center of the plate (ν = 0.4999) using Case
I (mesh 10 × 10 × 2) is plotted with respect to the parameter α/2. Since we
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do not have an exact solution for ν = 0.4999, we compute the error using a
reference solution from Case II with a very fine mesh. At α/2 ≈ −0.4, we find
a minimum for the error. As α approaches −2 or +2, increasing locking effect
can be observed.

Table 2
Vertical displacement at the center of the clamped plate

Number of Elements Case I (α = 0) Case II Case III Q1 Q1-P0

25 × 25 × 2 -0.7197 -1.0024 -0.2729 -0.0036 -0.2629

20 × 20 × 2 -0.7101 -0.9923 -0.18875 -0.0036 -0.1831

15 × 15 × 2 -0.6943 -0.9756 -0.1134 -0.0035 -0.1106

10 × 10 × 2 -0.6637 -0.9428 -0.05313 -0.0032 -0.0521

6 × 6 × 2 -0.6061 -0.8791 -0.0200 -0.0028 -0.0196

5 × 5 × 2 -0.5789 -0.8490 -0.0140 -0.0026 -0.0138

2 × 2 × 2 -0.2589 -0.4894 -0.0026 -0.0014 -0.0024

6.2 Example-II (Cook’s membrane example)

In this popular benchmark example [1,10,27], we consider a two-dimensional
tapered panel Ω := conv{(0, 0), (48, 44), (48, 60), (0, 44)}, where conv{ξ} rep-
resents the convex hull of the set ξ. The left boundary of the panel is clamped
in both directions and the right boundary is subjected to an in-plane shear
load in the positive y-direction as shown in the left picture of Figure 3. The
material parameters E = 250N/mm2 and ν = 0.4999 are considered. Finite
element analysis is performed using different discretizations with the initial
mesh given in Figure 3. In the right picture of Figure 3, we show the relative
error of the vertical displacement at T with respect to α/2 using the mixed
formulation (5.3) and the space of stress from Case I for neo-Hookean law
after refining the initial mesh two times. The error is calculated using a refer-
ence solution from Case I with a very fine mesh. We observe that the locking
increases with the increase in α.

In the left and the right pictures of Figure 4, we study the convergence of the
numerical results with respect to the number of elements using different finite
element formulations using Saint-Venant and neo-Hookean material model,
respectively. We can see that for both material models all cases of the mixed
formulation converge rapidly, whereas the standard displacement formulation
shows the well-known locking effect. In particular, we observe a better coarse
mesh accuracy from Cases II and III in the left picture of Figure 4, whereas
Cases I and III give better results in coarse meshes in the right picture. We
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recall that we have only three distinct cases (I, III and IV) for our mixed
formulation with hyperelastic constitutive relation.
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Fig. 3. Cook’s membrane (geometrical data) and relative error in y-displacement at
T versus α
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6.3 Example-III (Arch subjected to bending load)

In this numerical example, the formulation is tested for bending condition. The
fixed circular arch beam with θr = 60 ◦, t = 0.1m and r = 1m is considered
as shown in Figure 5. The beam is subjected to a uniformly distributed load
P = 25N/m in radial direction on the upper boundary in a range of the angle
θp=10◦. Quasi-static finite element analysis is performed where the load is
applied in incremental steps. The material parameters considered are E =
250N/m2 and different values of Poisson’s ratio ν as shown in Table 3.

In Table 3, the vertical deflection at the central point A is compared for the
different formulations with Saint-Venant Kirchhoff material model with 5×80
finite element mesh in radial and angular directions. Similarly in Table 4, the
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vertical deflection at the same point is compared for the different formulations
using neo-Hookean material law. In both cases, the proposed mixed formula-
tion shows better behavior while the standard Q1 formulation shows locking
as ν approaches 0.5. The deflected finite element mesh obtained for ν = 0.499
using Case III of the mixed formulation with neo-Hookean material model is
shown in the right picture of Figure 5. Load-deflection curves using the Saint-
Venant Kirchhoff and the neo-Hookean material law for the Poisson’s ratio
ν = 0.499 are compared in Figure 6. In both pictures, we can hardly see any
difference among our different formulations.
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(left) and neo-Hookean material (right) (circular arch)

6.4 Example-IV (Torus subjected to compression)

In this numerical example, we consider a torus with inner radius 8m and outer
radius 10m subjected to a vertical load (0, 0,±0.3)TN/m2 along the diagonally
opposite external edges in the plane z = 0 with a range of Px = 4.5m as
shown in Figure 7. In addition to this, the torus is fixed in x-direction in
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Table 3
Comparison of numerical results (circular arch using Saint-Venant Kirchhoff mate-
rial law)

ν Case I (α = 0) Case II Case III Q1 Q1-P0

0.49000 -0.371 -0.373 -0.377 -0.352 -0.373

0.49900 -0.370 -0.372 -0.376 -0.263 -0.372

0.49990 -0.369 -0.372 -0.376 -0.101 -0.372

0.49999 -0.369 -0.372 -0.376 -0.056 -0.372

Table 4
Comparison of numerical results (circular arch using neo-Hookean material law)

ν Case I (α = 0) Case III Case IV (α = 0) Q1 Q1-P0

0.49000 -0.417 -0.417 -0.417 -0.396 -0.416

0.49900 -0.416 -0.417 -0.415 -0.231 -0.415

0.49990 -0.416 -0.417 -0.415 -0.069 -0.415

0.49999 -0.416 -0.417 -0.415 -0.032 -0.415

the plane x = 0, in y-direction in the plane y = 0 and in z-direction in
the plane z = 0. Geometrically nonlinear Saint-Venant Kirchhoff material is
considered with Young’s modulus E = 17N/m2, and Poisson’s ratio ν = 0.499.
The implementation is performed with six quasi-static steps. The deformed
meshes obtained using Case II of the mixed formulation and the standard Q1

formulation are shown in Figure 7. As expected the standard Q1 formulation
shows locking effect.

y

z

x

P
x

Fig. 7. Geometrical data (left), deformed shape with the mixed formulation Case-II
(middle) and deformed shape with the standard Q1 formulation (right) (torus under
compression)
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6.5 Example-V (Bending of a cylindrical shell)

In this example, the proposed three-field formulation is used to model a cylin-
drical shell pinched by a radial load along the outer edge, see also [28]. Taking
advantage of the symmetry of the problem, only one quarter of the cylinder
is modeled. In addition to the symmetric boundary conditions, the external
lower edge of the cylinder is fixed in y-direction. The load is applied as a uni-
formly distributed force on the upper longitudinal section. The geometrical
dimensions and material data used are given in Table 5.
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Fig. 8. Problem setting (left), deformed configuration (middle) and y-displacement
at C versus α

2 (right) (cylindrical shell)

Table 5
Geometrical and material data (cylindrical shell)

E 17853.6585 N/mm2

ν 0.4878

t 2mm

Ri 9mm − t/2

L 15mm

cm 0.2

Finite element analysis is performed using 24 quasi-static steps with an equal
load increment in each step resulting in a total load of P0 = 450N/mm2. The
study of convergence has been performed with a shell thickness of 2mm.

The numerical solution at C along the y-direction using neo-Hookean mate-
rial law are given in Tables 6 and 7 for Cases I (α = 0) and III, respectively,
whereas numerical results with Cases I (α = 0) and III with Mooney–Rivlin
material model (cm = 0.2) using different finite element meshes are presented
in Tables 8 and 9, respectively. The load factor γp is defined as γp = P/P0

20



with the applied load P . As in other examples, we can observe a good con-
vergence behavior for both material laws with both cases. We note that the
difference between Mooney–Rivlin and neo-Hookean material laws depends on
the material property. In the right picture of Figure 8, we show the absolute
value of the y-displacement at C with respect to α/2 using the space of stress
from Case I for neo-Hookean and Mooney–Rivlin material laws with the mesh
16 × 8 × 2. As in our other examples, the locking effect is more dominant for
larger α.

In all our numerical results, we get the locking-free response in the nearly
incompressible limit from all cases of our mixed formulations. In particular,
the space of stress from Case I shows better behavior in almost all considered
examples. However, more numerical experiments are necessary to test the per-
formance of our α-dependent mixed formulation for the general hyperelastic
model.

Table 6
Convergence of numerical results with Case I (neo-Hookean material law)

Mesh 8 × 4 × 2 12 × 6 × 2 16 × 8 × 2 20 × 10 × 2 24 × 12 × 2

Load factor γp

0.1667 -1.2193 -1.402 -1.470 -1.502 -1.521

0.3333 -2.6437 -3.066 -3.230 -3.311 -3.357

0.5000 -4.2480 -4.974 -5.272 -5.423 -5.510

0.6667 -5.9512 -7.046 -7.519 -7.765 -7.909

0.8333 -7.6452 -9.167 -9.852 -10.218 -10.435

1.0000 -9.2555 -11.252 -12.114 -12.698 -13.004

Table 7
Convergence of numerical results with Case III (neo-Hookean material law)

Mesh 8 × 4 × 2 12 × 6 × 2 16 × 8 × 2 20 × 10 × 2 24 × 12 × 2

Load factor γp

0.1667 -0.8396 -1.158 -1.342 -1.450 -1.517

0.3333 -1.7649 -2.497 -2.933 -3.193 -3.356

0.5000 -2.7872 -4.026 -4.782 -5.238 -5.523

0.6667 -3.9204 -5.732 -6.859 -7.534 -7.952

0.8333 -5.1755 -7.584 -9.091 -9.977 -10.521

1.0000 -6.5520 -9.535 -11.392 -12.474 -13.141
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Table 8
Convergence of numerical results with Case I (Mooney-Rivlin material law)

Mesh 8 × 4 × 2 12 × 6 × 2 16 × 8 × 2 20 × 10 × 2 24 × 12 × 2

Load factor γp

0.1667 -1.2318 -1.409 -1.476 -1.509 -1.527

0.3333 -2.6285 -3.040 -3.201 -3.281 -3.327

0.5000 -4.1948 -4.906 -5.197 -5.345 -5.431

0.6667 -5.8555 -6.931 -7.392 -7.634 -7.776

0.8333 -7.5121 -9.005 -9.673 -10.031 -10.243

1.0000 -9.0944 -11.044 -11.881 -12.450 -12.749

Table 9
Convergence of numerical results with Case III (Mooney-Rivlin material law)

Mesh 8 × 4 × 2 12 × 6 × 2 16 × 8 × 2 20 × 10 × 2 24 × 12 × 2

Load factor γp

0.1667 -0.8710 -1.189 -1.374 -1.482 -1.549

0.3333 -1.7959 -2.529 -2.965 -3.225 -3.388

0.5000 -2.8172 -4.056 -4.813 -5.269 -5.555

0.6667 -3.9484 -5.760 -6.889 -7.565 -7.985

0.8333 -5.2002 -7.609 -9.118 -10.006 -10.553

1.0000 -6.5717 -9.555 -11.413 -12.498 -13.164
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