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Abstract

Word match counts have traditionally been proposed as an alignment-
free measure of similarity for biological sequences. The D2 statistic, which
simply counts the number of exact word matches between two sequences,
is a useful test bed for developing rigorous mathematical results, which
can then be extended to more biologically useful measures. The distribu-
tional properties of the D2 statistic under the null hypothesis of identically
and independently distributed letters have been studied extensively, but no
comprehensive study of the D2 distribution for biologically more realistic
higher-order Markovian sequences exists. Here we derive exact formulae for
the mean and variance of the D2 statistic for Markovian sequences of any
order, and demonstrate through Monte Carlo simulations that the entire
distribution is accurately characterised by a Pólya-Aeppli distribution for
sequence lengths of biological interest. The approach is novel in that Marko-
vian dependency is defined for sequences with periodic boundary conditions,
and this enables exact analytic formulae for the mean and variance to be
derived. We also carry out an preliminary comparison between the theoret-
ical Markovian D2 distribution and an empirical D2 distribution from the
human genome.
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1 Introduction

The D2 statistic is defined as the number of short word matches of a given pre-
specified length k between two sequences of letters from a finite alphabet A. This
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statistic was first analysed in the precise form studied below by Lippert, Huang and
Waterman [17]. It was motivated by more general statistics based on word counts
proposed by Blaisdell [1], and by a statistic defined as a sum over word lengths of
weighted inner products of word counts, known as d2 [25, 12]. Such statistics have
been proposed as a measures of similarity between biological sequences in cases
where the more commonly used alignment methods may not be appropriate. A
review of word-based alignment-free sequence comparison measures in existence
at or about the time of the Lippert, Huang and Waterman paper (including angle
metrics [23, 24] which bear considerable similarity to D2) can be found in ref. [26].

In subsequent developments a number of variants of the D2 statistic have been
studied and analysed. A shortcoming of the D2 statistic, first noted in ref. [17],
is that the signal of biological sequence similarity one is trying to detect, namely
simultaneous over-representation of certain words in both sequences, is masked by
the natural variability of word counts in each of the two sequences. This is most
likely to be a problem for longer sequences, though perhaps not for sequences of
short to moderate length [3]. To address this problem, Reinert et al. [20] intro-
duced centred and standardised statistics, which were demonstrated to have higher
power to detect sequence similarity [27]. Other variations on the D2 statistic in-
clude allowing word matches up to a certain number of mismatches [4] for detecting
regulatory modules [8, 9, 11], and the introduction of weighting factors to acknowl-
edge chemically similar amino acids when studying protein sequences [13, 2].

The distributional properties of the D2 statistic under the null hypothesis of se-
quences composed of independently and identically distributed (i.i.d.) letters have
been studied extensively. Rigorous results for limiting asymptotic distributions are
known for D2 [17, 14] and for D2 with mismatches [4]. Exact analytic formulae
exist for the mean [28] and variance [14, 10] of D2, and of the weighted [13] and
centred [3] versions of D2. Accurate approximations to distribution of D2 and its
variants in terms of gamma and Pólya-Aeppli (or compound Poisson) distributions
have been demonstrated via Monte Carlo simulations [10, 9, 13, 3], allowing for fast
and practical calculations of approximate p-values under the i.i.d. null hypothesis.

However, analysis of the k-mer spectra of the genomes of several species pro-
vides strong evidence that genomic sequences are more appropriately modelled
as having a Markovian dependence [5], possibly up to fifth order. In the current
work we extend previous exact analytic results results for the mean, variance and
an empirical distribution of D2 for i.i.d. sequences to the case of Markovian se-
quences. A previous study of this problem, with some approximations, has been
carried out by Kantorovitz et al. [15] in the process of developing a method for
detecting regulatory modules in genomic sequences. The current study differs in
that we consider sequences with periodic boundary conditions (PBCs), for which
we introduce a new definition of Markovian sequences. For i.i.d. sequences we
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have found imposition of PBCs to be an approximation which works well for bi-
ologically realistic sequences [10]. The restriction to periodic sequences simplifies
calculations of the mean and variance, enabling an exact analytic formula for the
variance for Markovian sequences which is computable to double precision accu-
racy for arbitrary sequence lengths.

The layout of the paper is as follows. In Section 2 we define Markovian se-
quences of arbitrary order with periodic boundary conditions in terms of an algo-
rithm for generating such sequences. In Section 3 we define the D2 statistic and
derive exact analytic formulae for its mean and variance for Markovian sequences.
In Section 4 the accuracy of the mean and variance formulae are checked nu-
merically, and hypothesised asymptotic distributions are demonstrated to provide
accurate representations of the complete D2 distribution. These distributions are
compared with empirical distributions of D2 from the human genome. Conclusions
are drawn in Section 5. Technical details of the derivation of Var (D2) are given in
an appendix, and computer codes for evaluating the mean and variance are given
in the the Supplementary Material.

2 Definitions

Consider a sequence x = x1, x2 . . . of letters from an alphabet A of size d. We say
that x has periodic boundary conditions (PBCs) and is of length m if xi+m = xi
for all i = 1, 2, . . ..

A sequence X = X1, X2 . . . of random letters has an ω-th order Markovian
dependence if

Prob ((Xi+ω = b|(Xi, . . . , Xi+ω−1 = (a1, . . . , aω)) = M(a1, . . . , aω; b), (1)

for a specified dω × d matrix M satisfying

0 ≤M(a1, . . . , aω; b) ≤ 1;
∑
b∈A

M(a1, . . . , aω; b) = 1, (2)

for all a1, . . . , aω, b ∈ A. As a shorthand notation, we will write a string of length
ω with an arrow above:

~x = (x1, . . . xω), (3)

and write any substring of X of length ω in a similar fashion, labelled by the index
of the first element:

~Xi = (Xi, . . . Xi+ω−1), (4)

Thus Eq.(1) is written more compactly as

Prob (Xi+ω = b| ~Xi = ~a) = M(~a; b). (5)
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Following the notation of ref. [21], define a dω × dω square matrix M as

M(~a,~b) =

{
M(~a; bω) if (a2, . . . , aω) = (b1, . . . bω−1),

0 otherwise.
(6)

Then the Markovian dependency can be written as a first order Markovian depen-
dency as

Prob ( ~Xi+1 = ~b| ~Xi = ~a) = M(~a,~b). (7)

2.1 Markovian sequences with PBCs

Given an order ω Markovian matrix M, we first attempt to define a periodic
random sequence X = X1, X2 . . . , Xn of length n via the following algorithm:

Algorithm 1.

Step 0: Choose a probability distribution on the set of strings of length ω:
Prob ( ~X1 = ~x) = π(~x), where 0 ≤ π(~x) ≤ 1 and

∑
~x∈Aω π(~x) = 1.

Step 1: Generate ~X1 = X1, . . . Xω from this distribution.

Step 2: Generate Xω+1, . . . , Xω+n using Eq. (7).

Step 3: If ~Xn+1 = ~X1, accept the sequence X = X1, X2 . . . , Xn, otherwise repeat
from Step 1 until an accepted sequence is obtained.

Clearly this algorithm entails that

Prob (X = x) =
π(~x1)M(~x1, ~x2),M(~x2, ~x3) . . .M(~xn, ~x1)∑

~u1,...,~un∈Aω π(~u1)M(~u1, ~u2),M(~u2, ~u3) . . .M(~un, ~u1)
. (8)

The idea behind PBCs is that there should be no privileged position along the
sequence from which to begin numbering. Thus we further impose a condition that
the sequence should have no privileged starting point, that is, for each i = 1, . . . , n,

Prob (X = xi+1xi+2 . . . xnx1 . . . xi) = Prob (X = x). (9)

Eqs. (8) and (9) imply that π(~xi+1) = π(~x1) for each i and for every sequence
x ∈ An, which can only happen if

π(~x) =
1

dω
∀~x ∈ Aω. (10)

This leads to the following definition:
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Definition 2.1. Given a Markovian matrix M of order ω, a random Markovian
sequence with PBCs of length n is one generated by Algorithm 1 with the inital
distribution π in Step 0 equal to the uniform distribution Eq. (10).

It follows from Eq. (8) that for a random Markovian sequence X of length n,
the probability of the configuration x = (x1 . . . , xm) occuring is

Prob (X = x) =
M(~x1, ~x2)M( ~x2, ~x3) . . .M(~xm, ~x1)

tr (Mm)
. (11)

The distribution Eq. (11) has also been proposed by Percus and Percus [18],
who made an extensive study of the probability distribution of words on periodic
sequences, which they refer to as rings. Our approach is novel in that it gives an
algorithm which can be implemented in practice to generate an ensemble of such
sequences.

3 The D2 statistic

3.1 Definition of D2

Definition 3.1. Given two random sequences X and Y with PBCs of length m
and n respectively, the D2 statistic is defined as the number of k-word matches,
including overlaps, between X and Y:

D2 =
m∑
i=1

n∑
j=1

Iij, (12)

where

Iij =

{
1 if (Xi, . . . , Xi+k−1) = (Yj, . . . , Yj+k−1),

0 otherwise.
(13)

is the word match indicator random variable for words length k positioned at site
i in sequence X and site j in sequence Y.

Two Markovian sequences X and Y of order ω generated by the dω× d matrix
M define a random variable D2(k,M). By Eq. (7), an equivalent specification
of this situation is a pair of first order Markovian sequences X and Y consisting
of letters of an alphabet of size dω generated by the square matrix M defined
by Eq. (6). The sparse structure of M ensures that the set of possible sequence
pairs (X,Y) is in one-to-one correspondence with the set of possible sequence pairs
(X,Y), and furthermore, for k ≥ ω, a word match of length k between X and Y
is equivalent to a word match of length k−ω+1 between X and Y. It follows that
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the distributional properties of D2 for Markovian sequences can be determined in
terms of the properties of D2 for an equivalent first order system:

D2(k,M) ≡ D2(k − ω + 1,M), k ≥ ω. (14)

3.2 D2 mean for arbitrary ω

Below we derive an exact formula for E(D2) for arbitrary order Markovian se-
quences. In principle, the mean for any k ≥ ω case can be derived in terms of an
equivalent ω = 1 case. However here we give an ab initio proof for any ω, noting
that, for k ≥ ω, the result is consistent with Eq. (14).

Define the Hadamard product A ◦ B of two matrics A and B as the matrix
whose (α, β)-th element is

(A ◦ B)αβ = AαβBαβ. (15)

The mean of D2 is

E(D2(k,M)) =
mn

tr (Mm)tr (Mn)
tr [(Mm−k+ω ◦Mn−k+ω)(M ◦M)k−ω] if k ≥ ω,

mn
tr (Mm)tr (Mn)

∑
u,v∈Aω−k

∑
w∈Ak Mm((wu), (wu))Mn((wv), (wv)) if k < ω,

(16)

where M is defined by Eq. (6), (wu) means the ω-tuple (w1 . . . wku1 . . . uω−k), and
similarly for (wv).

Proof. We have that

E(D2) =
m∑
i=1

n∑
j=1

E(Iij) =
m∑
i=1

n∑
j=1

Prob (Iij = 1), (17)

where

Prob (Iij = 1) =
∑
w∈Ak

Prob (Xi . . . Xi+k−1 = w)Prob (Yj . . . Yj+k−1 = w). (18)

To calculate Prob (Xi . . . Xi+k−1 = w) we must consider separately the cases k ≥ ω
and k < ω

Consider first the case where k ≥ ω. The required probability is calcu-
lated by summing Eq.(11) over all sequences x subject to the restriction that
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(xi . . . xi+k−1) = w. The definition of the matrix M, Eq.(6), ensures that it is
sufficient to restrict only those ω-tuples ~xi located within the word w, since con-
tributions to the sum from any partially overlapping ω-tupes will be zero unless
the overlap letters letters match those of w (see Fig. 1(a)). Thus

Prob (Xi . . . Xi+k−1 = w) =
Mm−k+ω(~wk−ω+1, ~w1)M(~w1, ~w2) . . .M(~wk−ω, ~wk−ω+1)

tr (Mm)
.

(19)
where the ω-tuples ~x1, . . . , ~xi−1, ~xi+k−ω+1, . . . , ~xm have been summed over. Simi-
larly we have

Prob (Yj . . . Yj+k−1 = w) =
Mn−k+ω(~wk−ω+1, ~w1)M(~w1, ~w2) . . .M(~wk−ω, ~wk−ω+1)

tr (Mn)
.

(20)
The definition Eq. (6) of the matrix M ensures that the sum over the k-word w in
Eq. (18) is equivalent to a sum over a set of independent ω-tuples ~w1, . . . , ~wk−ω+1.
Thus subsitituting Eqs. (19) and (20) into Eq. (18) gives

Prob (Iij = 1) =
tr [(Mm−k+ω ◦Mn−k+ω)(M ◦M)k−ω]

tr (Mm)tr (Mn)
(21)

Eq. (17) then gives the required result for the case k ≥ ω.
For the case k < ω, the Prob (Xi . . . Xi+k−1 = w) is again calculated by sum-

ming Eq.(11) over all sequences x such that (xi . . . xi+k−1) = w. In this case
it is sufficient to restrict any one of the ω-tuples overlapping w to equal w on
the overlap, and the structure of M will ensure that only terms in which the
other overlapping ω-tuples match w will contribute to the sum. Accordingly set
~xi = (w1 . . . wku1 . . . uω−k), where the u1 . . . uω−k are not fixed (see Fig. 1(b)).
Then

Prob (Xi . . . Xi+k−1 = w) =
1

tr (Mm)

∑
u∈Aω−k

Mm((wu), (wu)), (22)

and similarly

Prob (Yj . . . Yj+k−1 = w) =
1

tr (Mn)

∑
v∈Aω−k

Mn((wv), (wv)). (23)

Substituting these two probabilities into Eqs.(18) and (17) gives the required result.

3.3 D2 variance for k ≥ ω

For k ≥ ω, Eq. (14) ensures that any ω > 1 case can be reduced to an equivalent
ω = 1 case via the relation

Var (D2(k,M)) = Var (D2(k − ω + 1,M)), k ≥ ω, (24)
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Figure 1: Covering of the sequence X with ω-mers for the calculation of
Prob (Xi . . . Xi+k−1 = w) (a) in the case where k ≥ ω, and (b) in the case where
k < ω.

where M is a square first order Markov matrix. Even for ω = 1 the exact variance
of D2 for Markovian sequences with PBCs requires an extensive calculation. Here
we give a summary of the ω = 1 result, and leave the technical details of the
derivation to the Appendix. The case k < ω remains intractable.

For the remainder of this section we take M to be a square d × d first order
Markov matrix. We have

Var (D2) = E(D2
2)− E(D2)

2. (25)

The second term can be calculated from Eq.(16). The first term is a sum of
contributions obtained from Eq.(12) by partitioning a sum over words beginning
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–k + 1,     …      , –1,  0,   1,      …       , k – 1  
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Figure 2: Contributions to Var (D2) via the sum in Eq. (26). The left-hand diagram
shows the (i′, j′)-plane for a fixed value of (i, j), shown as the black square. The
right-hand diagram is an expanded view of the ‘accordion’ region −k + 1 ≤ s, t ≤
k − 1, where t = i′ − i and s = j′ − j up to PBCs (see Eqs. (40) and (41)).

at positions i and i′ in sequence X and beginning at j and j′ in sequence Y,

E(D2
2) =

m∑
i,i′=1

n∑
j,j′=1

E(IijIi′j′)

=
m∑

i,i′=1

n∑
j,j′=1

Prob (Iij = 1, Ii′j′ = 1)

= V0 + V1 + V2 + V3 + V4. (26)

The partitioning reflects the degree of overlap between words in each of the two
sequences, and is illustrated in Fig. 2. We assume m,n ≥ 2k, which will almost
certainly be the case in any biological application.

We will write a Hadmard product of q factors, M ◦ . . .◦M , using the shorthand
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notation M◦q. With this notation, the contributions to E(D2
2) are:

V0 =
mn

tr (Mm)tr (Mn)
×

m−2k∑
r=0

n−2k∑
s=0

tr
[
(M r+1 ◦M s+1)(M ◦M)k−1(Mm−2k−r+1 ◦Mn−2k−s+1)(M ◦M)k−1

]
,

(27)

V1 =
mn

tr (Mm)tr (Mn)
×{

n−2k∑
s=0

[
tr {[(M ◦M ◦M)k−1 ◦ (M s+1)T ](Mm−k+1 ◦Mn−2k−s+1)}

+ 2
k−1∑
r=1

tr {(M ◦M)r[(M ◦M ◦M)k−r−1 ◦ (M s+1)T ]×

(M ◦M)r(Mm−k−r+1 ◦Mn−2k−s+1)
}]

+ the same with m and n interchanged.

}
, (28)

V2 =
mn

tr (Mm)tr (Mn)
×{

tr [(Mm−k+1 ◦Mn−k+1)(M ◦M)k−1]

+ 2
k−1∑
t=1

tr [(Mm−k−t+1 ◦Mn−k−t+1)(M ◦M)k+t−1]

}
, (29)

V3 =
2mn

tr (Mm)tr (Mn)

k−1∑
t=1

t−1∑
s=0

tr
[
(M ◦M)sQ(M ◦M)s

×(Mm−k−t+1 ◦Mn−k−s+1 +Mn−k−t+1 ◦Mm−k−s+1)
]
, (30)

where

ν =

⌊
k − s
t− s

⌋
, ρ = (k − s) mod (t− s), (31)

and

Q =

{
(M◦(2ν+3))ρ−1 ◦ [(M◦(2ν+1))t−s−ρ+1]T if ρ > 0,

(M◦(2ν+1))t−s−1 ◦ (M◦(2ν−1))T if ρ = 0.
(32)

10



Finally,

V4 =
2mn

tr (Mm)tr (Mn)

k−1∑
r,t=1

trU, (33)

where

ν =

⌊
k

r + t

⌋
, ζ = k mod (r + t), (34)

and

U =

{
(M◦(2ν+1))t−1 ◦ (Mm−k−t+1)T

}
M◦2ν

×
{

(M◦(2ν+1))r−1 ◦ (Mn−k−r+1)T
}
M◦2ν if ζ = 0,{

(M◦(2ν+1))r−ζ+1 ◦Mm−k−t+1
}

(M◦(2ν+2))ζ−1

×
{

(M◦(2ν+1))t−ζ+1 ◦Mn−k−r+1
}

(M◦(2ν+2))ζ−1 if 0 < ζ ≤ r, t,{
(M◦(2ν+3))ζ−r−1 ◦ (Mm−k−t+1)T

}
(M◦(2ν+2))r

×
{

(M◦(2ν+1))t−ζ+1 ◦Mn−k−r+1
}

(M◦(2ν+2))r if r < ζ ≤ t,

as above with m and n interchanged

and r and t interchanged if t < ζ ≤ r,{
(M◦(2ν+3))ζ−r−1 ◦ (Mm−k−t+1)T

}
(M◦(2ν+2))t+r−ζ+1

×
{

(M◦(2ν+3))ζ−t−1 ◦ (Mn−k−r+1)T
}

(M◦(2ν+2))t+r−ζ+1 if r, t < ζ.

(35)

A full derivation of these contributions is given in the appendix.

4 Numerical Results

4.1 Computer implementation of the mean and variance.

In the supplementary material we provide an R implementation [19] ofE(D2(k,M))
for arbitrary k and of Var (D2(k,M)) for k ≥ ω using the formulae derived above.
The k > ω means and variances are calculated by reducing the problem to the
equivalent ω = 1 calculation with effective dω×dω Markov matrix M and effective
word length k − ω + 1 (see Eq. (24)).

The computationally expensive parts of the computation of Var (D2) are the
sums over r and s occurring in Eqs. (27) and the first line of Eq. (28). These
sums are facilitated for large sequence lengths m and n by storing powers of M
out to convergence and by making use of the fact that the summand is essentially
constant over parts of the domain of summation for which these matrix powers
have converged. Although the programs are not yet fully optimised, they calculate
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Var (D2) in about 30 seconds on a standard laptop computer for an alphabet of
size d = 4, Markovian order ω = 3, word lengths up to k = 20 and arbitrarily large
sequence lengths m and n. The variance program slows considerably for higher
order Markov models as the size of M grows exponentially with ω. Considerable
gains are possible for the case k = ω, as the terms V2, V3 and V4 in the equivalent
ω = 1 calculation are automatically zero, and double sum in the term V0 can be
computed more efficiently by using the identity

m−2∑
r=0

n−2∑
s=0

tr
[
(Mr+1 ◦Ms+1)(Mm−r−1 ◦Mn−s−1)

]
=

dω∑
i,j=1

(
m−2∑
r=0

(Mr+1)ij(Mm−r−1)ji

)(
n−2∑
s=0

(Ms+1)ij(Mm−s−1)ji

)
. (36)

Also included in the supplementary material is a test program which gener-
ates the complete distribution of D2 for short sequences for a randomly chosen
Markovian model created by by choosing each matrix element from a uniform dis-
tribution on the interval [0, 1] and then normalising each row sum to 1. Using this
program we have confirmed the accuracy of the above mean and variance formulae
to 13 significant figures for sequences up to length m = n = 10 for various values
of values of the alphabet size d, Markov order ω and word length k. Two examples
of the exact D2 distribution for short sequences are shown in Figure 3.

For the case of sequences composed of i.i.d. letters certain rigorous results are
known for the asymptotic distribution of D2 as the sequence lengths m,n → ∞.
For m = n, it has been shown that the limiting distribution is normal in the
regime k < 1/2 logb n + const. [4] and Pólya-Aeppli in the regime k > 2 logb n +
const. [17]. Here b = 1/

∑
a∈A p

2
a where pa is the probability of occurrence of letter

a. A Pólya-Aeppli random variable is the sum of a Poisson number of geometric
random variables, and is therefore an example of a compound Poisson random
variable. It often arises in the study of random word counts as a Poisson number
of clumps of overlapping words, each clump containing a geometric number of k-
words [21]. In earlier work on i.i.d. sequences [3], we have found in general that, for
simulations of D2 for moderate to long sequences, the gamma distribution provides
a good interpolation between the normal and Pólya-Aeppli regimes. Although the
asymptotic results for D2 are not proved for Markovian sequences, it is a reasonable
experiment to compare our numerical simulations with these distributions as they
may potentially provide an accurate estimate of p-values in biological applications.

One would not expect the asymptotic distributions to be an accurate fit for
the short sequences considered in Figure 3. Nevertheless we have added the Pólya-
Aeppli distribution function with the mean and variance adjusted to their theoreti-
cal values to the plots, and find it to be a surprisingly close fit. Disagreement arises
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Figure 3: The exact distribution of the D2 statistic for short sequences of length
m, n and words of length k from a Markov models of order ω and alphabet of size
d. The Markov matrix M has been generated randomly in each case. Also shown
(dashed curve) is the cumulative distribution of the Pólya-Aeppli distribution with
mean and variance set to the theoretical values using the formulae of Section 3.

in the tail of the distribution because, for combinatoric reasons, certain values of
D2 within the range 0 to mn do not occur, whereas the Pólya-Aeppli has support
over the whole range (and also out to ∞, albeit with very low probability).
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Order
0 1 2 3

Lower 95% 18.84 24.70 27.66 28.84
Mean Theoretical 18.92 24.73 27.79 28.97

Empirical 18.95 24.83 27.80 29.00
Upper 95% 19.07 24.96 27.95 29.15
Lower 95% 32.89 43.23 53.06 59.01

Variance Theoretical 33.24 44.69 55.56 60.53
Empirical 33.81 44.44 54.54 60.65
Upper 95% 34.77 45.70 56.09 62.37

Table 1: Mean and variance of D2 calculated from the theoretical formulae derived
in Section 3, and estimated from synthetically generated data (10 000 sequence
pairs) for Markov models of order ω = 0, 1, 2 and 3 using Markov matrices esti-
mated from human chromosome 1 [6]. Word length k = 8, alphabet size d = 4,
sequence lengths m = n = 1000.

4.2 Comparison with simulated distributions

For sequences of realistic biological length composed of the 4-letter nucleotide
alphabet it is necessary to resort to Monte Carlo simulations to investigate the D2

probability distribution.
We used a combination of R scripts and the SAFT program (Sequence Alignment-

Free Tool, under development) to further verify the formulae for the mean and
variance, and to compare the empirical distribution of the D2 statistic with the
conjectured asymptotic normal, Pólya-Aeppli and gamma distributions. For this
purpose, as well as using randomly generated Markov matrices, we used matrices
obtained from DNA sequences occurring in nature. The supplementary material
to Chor et al. [5] contains maximum likelihood estimates of Markov matrices for
a number of species and for different regions within the human genome. As an
example, we used the Markov matrices for human chromosome 1, with Markov
orders 0, 1, 2 and 3 [6]. For each of these matrices, we used an R script that
implements Algorithm 1, using the built-in random number generator of R, via
the function sample.int(), to generate 20 000 sequences of length 1000, arranged
as 10 000 pairs of cyclic sequences. The SAFT program calculated the D2 statistic
for each of these 10 000 pairs. We then used a second R script, based on the code
in the supplementary material, to compare the mean and variance of the empirical
distribution of the D2 statistic with the theoretical values given by (16) and (25)
to (35), to compare the empirical cumulative distribution of the D2 statistic with
known distributions, and to plot results.
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Table 1 presents the results for the mean and variance for Markov orders 0 to 3.
For the mean, the row labelled “Theoretical” is calculated from the corresponding
Markov matrix using formula (16), the row labelled “Empirical” is estimated from
the 10 000 values of D2 obtained via SAFT, and the rows labelled “Lower 95%”
and “Upper 95%” are obtained from the confidence interval returned by the R
function t.test() that implements Student’s t-test. For the variance σ2 , the row
labelled “Theoretical” is calculated from the corresponding Markov matrix using
formulae (25) to (35), the row labelled “Empirical” is estimated from the 10 000
values of D2 obtained via SAFT, and the rows labelled “Lower 95%” and “Upper
95%” are obtained via the χ2 distribution, using the R quantile function qchisq

and the inequality [22, (5.10.2), p. 74]

(N − 1)s2/χ2
0.025 6 σ2 6 (N − 1)s2/χ2

0.975,

where N = 10 000 in this case, and s2 is the sample variance. In these and in a
number of other simulations we have performed (data not shown) we find that in
roughly the expected proportion of times the mean and variance calculated from
the formulae of Section 3 lie within the 95% confidence intervals computed from
the ensemble.

As a general rule, and as can be seen from Table 1, we observe that both
the mean and variance of D2 increase markedly as the Markov order increases for
fixed word length k and sequence lengths m and n. The difference between the
empirical cumulative distribution functions for the different Markov orders for the
parameters of Table 1 is further illustrated in Figure 4.

We compared the empirical distribution of D2 for each Markov order with
conjectured asymptotic distributions based on the theoretical mean and variance
calculated via (16) and (25) to (35). For Markov order 3, this is illustrated by
Figure 5. Here the cumulative Gamma and Normal distributions are plotted using
the built-in R functions pgamma() and pnorm(), respectively, and the cumulative
Pólya-Aeppli distribution is plotted using the function pPolyaAeppli() included
in the Supplementary Materials. We observe that for these parameter values the
three conjectured distributions do not differ greatly from one another, though the
Pólya-Aeppli clearly gives the best fit, particularly in the important tail of the
distribution relevant to estimating p-values. This trend is also observed for other
parameter values. For parameters leading to large values of E(D2), the continuous
normal and gamma distributions are more readily computable than the Pólya-
Aeppli, and of these two the gamma is invariably observed to give a better fit.

4.3 Comparison with chromosomal DNA

Ultimately one hopes to use D2 or similarly defined statistics as an alignment-free
tool to assess the relatedness of sections of genomic sequences. To this end, it
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Figure 4: Comparison of empirical cumulative distribution function for simulated
D2 using Markov matrices for human chromosome 1 from Chor et al. [6], for orders
ω = 0, 1, 2 and 3. 10 000 pairs per order, word length k = 8, alphabet size d = 4,
sequence lengths m = n = 1000.

is helpful to know to what extent genomic sequences can be modelled as Marko-
vian sequences for the purpose of defining a null-hypothesis distribution for the
D2 statistic. With this in mind, we have performed some exploratory compar-
isons between the D2 distributions obtained via simulating the Markov processes
using maximum likelihood estimates of Markov matrices and the D2 distribution
obtained by sampling original DNA data, for example the DNA sequence from
human chromosome 1 [29].

Figure 6 illustrates the comparison between the density of Gamma distribu-
tions adjusted to the theoretical means and variances from Section 3 with the
empirical density of the D2 distribution obtained from chromosome 1. To obtain
the empirical density we took the soft masked DNA sequence for human chromo-
some 1 from Ensembl [29], and took uniform random samples of subsequences of
length 1000, according to Knuth’s Algorithm S [16, Section 3.4.2], but avoiding
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butions with empirical cumulative distribution function for simulated D2 using
Markov order 3 matrix for human chromosome 1 from Chor et al. [6]. 10 000
pairs, word length k = 8, sequence lengths m = n = 1000.

all ambiguous and masked regions. Ensembl’s masking removes repetitive regions
including tandem repeats. This data source and procedure correspond to those
described by Chor et al. [5] except that the Markov matrices have been estimated
from Ensembl’s ‘soft-masked’ sequences with the repeat regions (i.e. the lower case
letters) ignored, whereas Chor et al. include the repeat regions. We find that, as
expected, including the repeat regions leads to a skewed D2 distribution with an
extremelty heavy right-hand tail.

The resulting sample mean and variance, together with the theoretical values,
are shown in Table 2. In general, agreement between the Markovian model and
the empirical distribution improve as the Markovian order increases. For higher
orders the Markovian mean overshoots slightly. The Markovian variance, on the
other hand, severely underestimates the empirical variance at any order. This
is consistent with earlier observations [7] that genomic word count distributions
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Theoretical values Sample
ω = 0 1 2 3 4 5 estimate

m = n = 1000, k = 8
Mean 19.08 24.74 26.90 27.55 28.30 28.74 27.66

Variance 33.58 44.62 50.99 52.19 54.37 56.01 181.1
Std. Dev. 5.795 6.680 7.141 7.224 7.373 7.484 13.46

m = n = 300, k = 5
Mean 101.1 117.4 122.4 123.5 124.3 124.3 120.7

Variance 216.6 254.4 307.5 307.8 315.6 321.9 1,258.
Std. Dev. 14.71 15.95 17.53 17.55 17.77 17.94 35.47

Table 2: Empirical estimates of the mean and variance of D2 from human chromo-
some 1 sample data [29] (right hand column), compared to the theoretical mean
and variance based on Markov models of various orders using estimated Markov
matrices for human chromosome 1.

tend to have heavier tails than that predicted by Markovian models, or, to put it
another way, certain k-mers are ‘under-’ or ‘over-represented’ within genomes.

Note also that the Markovian plots in Figure 6 suggest that ω = k may be in
some sense a limiting case. Recall that the formula for the mean takes a different
form for ω > k (see Eq. (16)) and that the formula derived for the variance is only
valid for ω ≤ k and remains intractable for ω > k. We suspect that this is related
to the fact that, for sufficiently long sequences, ω-mer frequencies are determined
by the stationary eigenvector of the Markov matrix, and that the statistics of
k-mers for k < ω is implicit with the statistics of ω-mers.

5 Discussion

The primary purpose of this paper is to demonstrate that it is possible to con-
struct accurate representations of the distribution of the D2 statistic under the null
hypothesis of Markovian sequences without the need to resort to computationally
expensive Monte Carlo simulations or to asymptotic approximations valid only
when log n >> k. We have demonstrated that, for sequences of moderate length
of up to only a few hundred letters, and for which log n ≈ k, the Pólya-Aeppli
distribution with parameters determined by the exact formulae for the mean and
variance developed herein accurately represents the true MarkovianD2 distribution
of any order (see Fig. 5). For comparatively longer sequences with higher E(D2),
for which evaluating the Pólya-Aeppli distribution may be slow, the gamma dis-
tribution provides an acceptable approximation which is more accurate than the
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normal distribution.
It is known that the D2 statistic itself, if used directly as a measure of se-

quence similarity, may perform poorly as the signal of over-representation of the
same words in the query and target sequences is masked by the natural variability
of word counts in each of the two sequences [17]. Variations on the theme of the D2

statistic, such as the weighted, centred statistic D∗2 studied in ref. [20] have been
developed to circumvent this problem. In earlier work we have extended calcula-
tions of the exact mean and variance for i.i.d. sequences to weighted and centred
versions of D2 [2, 3], and expect that the analogous calculation for Markovian
sequences will be entirely feasible.

The secondary purpose of this paper is a preliminary comparison of the Marko-
vian D2 distribution with an empirical genomic D2 distribution. As a test example
we have considered the empirical distribution of the D2 statistic between randomly
chosen segments of a single human chromosome, avoiding highly repetitive parts of
the chromosome such as stretches of tandem repeats. In general, we find that the
empirical distribution has much heavier tails than the Markovian distribution of
any order up to ω = 5 (see Fig. 6). We interpret this as a signal that the chromo-
some, taken as a whole, contains a number of strongly over- and under-represented
k-mers, relative to a Markovian sequence. Thus one is tempted to conclude that
a Markov model will tend to overestimate significance and give an inflated false
positive rate when attempting to detect relatedness of genomic sequences.

However, this test is preliminary, and takes no account of the structure of
the genome. In particular, we have not restricted ourselves to non-protein-coding
segments. As current opinion is that even the non-coding part of the genome may
be up to 80% functional, the possibility exists that the over- and under-represented
words are restricted to segments of genome with specific, possibly yet unknown,
functions. Thus the potential exists, for instance, to useD2 as an exploratory probe
to detect structure within the non-coding part of the genome: Using a randomly
generated Markovian probe sequence (a random probe of length m = 10, 000, say,
would contain almost all 6-mers), one could calculate D2 between the probe and a
moving window running along the genome. This exercise would expose whether,
for instance, the genome consists of a sea of ‘null hypothesis’ Markovian sequence
containing islands of repeated motifs, or whether the genome is uniformly peppered
with a particular set over-expressed words. The ability to easily calculate the null
D2 distribution as a function of sequence and word lengths enables the experiment
to be performed readily at different resolutions. Furthermore, the property of D2

that it is dominated by the natural variability in either of the two sequences being
compared becomes an advantage. If a subset of words is over-represented within
the moving window at a specific location in the genome, provided that subset
contains some words also present in the probe sequence, its over-representation
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within the window will manifest as an extreme D2.

Appendix: Contributions to Var (D2).

We derive the contributions V0 to V4 to Var (D2) when ω = 1 given in Section 3.3.
These contributions are the partial sums

∑
i,i′,j,j′ Prob (Iij = 1, Ii′j′ = 1) contribut-

ing to Eq. (26) where, for given (i, j), the indices (i′, j′) range over the regions
shown in Fig. 2. The event “Iij = 1, Ii′j′ = 1” means that the k-words beginning
at sites i and i′ in sequence X match the k-words beginning at sites j and j′ in
sequence Y respectively.

Non-overlapping words in both sequences: V0

Taking into account the PBCs, these are the contributions from the cases for which
both k ≤ |i′− i| ≤ m− k and k ≤ |j′− j| ≤ n− k occur simultaneously. Consider
the situation

i′ = (i+ k + r) mod m, r = 0, . . . ,m− 2k,

j′ = (j + k + s) mod n, s = 0, . . . , n− 2k,

shown in Fig. 7(a). Since the two sequences are independent, applying Eq. (11)
gives

Prob (Iij = 1, Ii′j′ = 1)

=
∑

w,v∈Ak
Prob (Xi . . . Xi+k−1 = w)Prob (X ′i . . . Xi′+k−1 = v)

×Prob (Yj . . . Yj+k−1 = w)Prob (Y ′j . . . Yj′+k−1 = v)

=
1

tr (Mm)tr (Mn)
×∑

w,v∈Ak
(Mm−2k−r+1)vkw1Mw1w2 . . .Mwk−1wk(M

r+1)wkv1Mv1v2 . . .Mvk−1vk

×(Mn−2k−s+1)vkw1Mw1w2 . . .Mwk−1wk(M
s+1)wkv1Mv1v2 . . .Mvk−1vk

=
tr
[
(M r+1 ◦M s+1)(M ◦M)k−1(Mm−2k−r+1 ◦Mn−2k−s+1)(M ◦M)k−1

]
tr (Mm)tr (Mn)

.

(37)

Summing over r and s, and including a factor of mn to account for the sum over
i and j then gives Eq. (27).
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Overlaps in one sequence only: V1

These are cases for which either k ≤ |j′ − j| ≤ n− k and |i′ − i| < k or > m− k
(overlaps in X but not in Y), or k ≤ |i′ − i| ≤ m− k and |j′ − j| < k or > n− k
(overlaps in Y but not in X). This region is referred to as the ‘crabgrass’ in
ref. [28]. Fig. 7(b) shows the case of overlaps in X but not Y, where we have set

r =

{
i′ − i if |i′ − i| < k,

i′ − i−m if |i′ − i| > m− k,
j′ = (j + k + s) mod n,

for r = −k+ 1, . . . , 0, . . . , k− 1 and s = 0, . . . , n− 2k. We split the common word
beginning at i and j into a piece a of length r and a piece b of length k − r, and
split the common word beginning at i′ and j′ into the piece b and a piece c of
length r.

Then

V1 = mn

{
n−2k∑
s=0

k−1∑
r=−k+1

∑
a∈Ar

∑
b∈Ak−r

∑
c∈Ar

Prob (configuration in Fig. 7(b))

+ a similar sum with the roles of X and Y interchanged

}
, (38)

where the sums over r and s arise from sums over i′ and j′ for fixed i and j, and
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the factor of mn arises from the outer sum over i and j. Using Eq. (11),∑
a∈Ar

∑
b∈Ak−r

∑
c∈Ar

Prob (configuration in Fig. 7(b))

=
1

tr (Mm)tr (Mn)
×∑

a,b,c

Ma1a2 . . .Mar−1arMarb1Mb1b2 . . .Mbk−r−1bk−rMbk−rc1 ×

Mc1c2 . . .Mcr−1cr(M
m−k−r+1)cra1 ×

Ma1a2 . . .Mar−1arMarb1Mb1b2 . . .Mbk−r−1bk−r(M
s+1)bk−rb1 ×

Mb1b2 . . .Mbk−r−1bk−rMbk−rc1Mc1c2 . . .Mcr−1cr(M
n−2k−s+1)cra1

=
∑

a1,b1,bk−r,cr

[(M ◦M)r]a1b1 [(M ◦M ◦M)k−r−1]b1bk−r [(M ◦M)r]bk−rcr ×

(M s+1)bk−rb1(M
m−k−r+1)cra1(M

n−2k−s+1)cra1

= tr {(M ◦M)r[(M ◦M ◦M)k−r−1 ◦ (M s+1)T ]×
(M ◦M)r(Mm−k−r+1 ◦Mn−2k−s+1)

}
, (39)

where the superscript T indicates the matrix transpose. Eqs. (38) and (39) combine
to give the crabgrass contribution Eq. (28).

Overlaps in both sequences

The set of configurations for which the words at positions i, i′, j and j′ overlap in
both sequences simultaneously are referred to as the ‘accordion’ in ref. [28]. For
convenience we define the folowing overlap distances (illustrated in Fig. 7(c)):

t =

{
i′ − i if |i′ − i| < k,

i′ − i−m if |i′ − i| > m− k,
(40)

in sequence X and

s =

{
j′ − j if |j′ − j| < k,

j′ − j − n if |j′ − j| > n− k,
(41)

in sequence Y. These definitions ensure that −k+1 ≤ t, s ≤ k−1. The remaining
three contributions are from the accordion.

24



Diagonal part of the accordion: V2

This is the contribution from those cases with s = t, in which case Fig. 7(c)
becomes a match between the (k + |t|)-letter word at position i in X and the
(k + |t|)-letter word at position j in Y. Noting that the probability of this match
is independent of i and j, we have

V2 = mn
k−1∑

t=−k+1

Prob ((Xi . . . Xi+k+|t|−1) = (Yj . . . Yj+k+|t|−1)), (42)

where, by analogy with Eq. (21),

Prob ((Xi . . . Xi+k+|t|−1) = (Yj . . . Yj+k+|t|−1))

=
tr [(Mm−k−t+1 ◦Mn−k−t+1)(M ◦M)k+t−1]

tr (Mm)tr (Mn)
. (43)

Combining Eqs. (42) and (43) gives Eq. (29).

Off-diagonal part of the accordion: subcases contributing to V3

The off-diagonal part of the accordion is divided into a number of subcases. Con-
sider first the contribution from the four subcases making up the region V3 in
Fig. 2:

3(i): 0 ≤ s < t ≤ k − 1;

3(ii): −k + 1 ≤ s < t ≤ 0;

3(iii): −k + 1 ≤ t < s ≤ 0 and

3(iv): 0 ≤ t < s ≤ k − 1.

By symmetry, each subcase makes an equivalent contribution to the variance.
Subcase 3(i) is shown in Fig. 8, and the required contribution takes the form

V3 = 2mn
k−1∑
t=1

t−1∑
s=0

∑
a,b∈As

∑
c∈Aρ

∑
d∈Aσ

[
Prob (configuration shown in Fig. 8) +

Prob (same configuration with m and n interchanged)
]
. (44)

To calculate the probability of the configuration, the overlapping words have
been divided into repeating independent elements. Elements a and b are the non-
overlapping parts of length s at either end of the words at j and j′ in Y. The
non-overlapping part of the words at i and i′ in X are segmented into elements
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Figure 8: Arrangements of word matches contributing to subcase 3(i) when ρ =
(k − s) mod (t− s) > 0 (upper figure) and ρ = 0 (lower figure).

(acd) and (dcb) shown in the upper part of Fig. (8). The segment (cd) repeats an
integer number ν times within the overlapping part in sequence Y, with a segment
c of length ρ left over. We set the length of element d equal to σ. Thus

ν =

⌊
k − s
t− s

⌋
, ρ = (k − s) mod (t− s), and σ = t− s− ρ. (45)

When ρ = 0 the element c does not occur (lower part of Fig. (8)).
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Using arguments similar to those for the crabgrass contribution, we have, for
ρ > 0,∑

a,b∈As

∑
c∈Aρ

∑
d∈Aσ

Prob (configuration shown in Fig. 8) =

1

tr (Mm)tr (Mn)

∑
a1,as,b1,bs,c1,cρ,d1,dσ∈A

[(M ◦M)s−1]a1as(M ◦M)asc1 [(M
◦(2ν+3))ρ−1]c1cρ ×

(M◦(2ν+1))cρd1 [(M
◦(2ν+1))σ−1]d1dσ(M◦(2ν+1))dσc1 ×

(M ◦M)cρb1 [(M ◦M)s−1]b1bs(M
m−k−t+1 ◦Mn−k−s+1)bsa1

=
1

tr (Mm)tr (Mn)
tr
[
(M ◦M)s

{
(M◦(2ν+3))ρ−1 ◦ [(M◦(2ν+1))σ+1]T

}
×

(M ◦M)s(Mm−k−t+1 ◦Mn−k−s+1)
]
, (46)

while for ρ = 0 we have∑
a,b∈As

∑
c∈Aρ

∑
d∈Aσ

Prob (configuration shown in Fig. 8) =

1

tr (Mm)tr (Mn)

∑
a1,as,b1,bs,d1,dσ∈A

[(M ◦M)s−1]a1as(M ◦M)asd1 [(M
◦(2ν+1))t−s−1]d1dσ(M◦(2ν−1))dσd1 ×

(M ◦M)dσb1 [(M ◦M)s−1]b1bs(M
m−k−t+1 ◦Mn−k−s+1)bsa1

=
1

tr (Mm)tr (Mn)
tr
[
(M ◦M)s

{
(M◦(2ν+1))t−s−1 ◦ (M◦(2ν−1))T

}
×

(M ◦M)s(Mm−k−t+1 ◦Mn−k−s+1)
]
, (47)

Combining Eqs. (44), (45), (46) and (47) gives Eqs. (30) to (32).

Off-diagonal part of the accordion: subcases contributing to V4

These are contributions from the subcases

4(i): 1 ≤ t ≤ k − 1, −k + 1 ≤ s ≤ −1; and

4(ii): 1 ≤ s ≤ k − 1, −k + 1 ≤ t ≤ −1
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labelled V4 in Fig. 2. In these cases either t or s is negative. By symmetry, each of
these two subcases makes an equivalent contribution to V4, so we consider subcase
4(i) and for convenience set r = −s (see Fig. 7(d)). Then

V4 = 2mn
k−1∑
r,t=1

Prob
[
(Xi . . . Xi+k−1) = (Yj . . . Yj+k−1),

(Xi+t . . . Xi+t+k−1) = (Yj−r . . . Yj−r+k−1)
]
, (48)

where the factor mn arises from a sum over i and j, and we make use of the the
fact that for periodic Markovian sequences the summand is independent of i and
j.

It is convenient to define

ν =

⌊
k

r + t

⌋
, ζ = k mod (r + t). (49)

Here ν is the integer number of times the complete repeat unit (Yj . . . Yj+r+t−1)
fits inside the k-word (Yj . . . Yj+k−1), and ζ is the number of letters remaining
(see Figs. 9 and 10). Calculation of the probability occurring in Eq. (48) then
proceeds in a similar fashion to that for V3 by dividing the overlapping words
into independent non-overlapping elements. It turns out that the configuration
of elements depends on the relationship between ζ, r and t. The complete set of
configurations is enumerated in Figs. 9 and 10, with the repeated elements labelled
a, b, etcetera. The calculation is lengthy and repetitive but straightforward, and
yields Eqs. (33) and (35) after recombining cases which give the same algebraic
formula.
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[7] M. Csűrös, L. Noé, and G. Kucherov. Reconsidering the significance of ge-
nomic word frequencies. Trends in Genetics, 23:543–546, 2007.

30

http://www.ebi.ac.uk/goldman-srv/ChorEtAlSpectra/Spectra/HumanChromosomes/chr1/
http://www.ebi.ac.uk/goldman-srv/ChorEtAlSpectra/Spectra/HumanChromosomes/chr1/


[8] S. Forêt, M. R. Kantorovitz, and C. J. Burden. Asymptotic behaviour and
optimal word size for exact and approximate word matches between random
sequences. BMC Bioinformatics, 7 Suppl 5:S21, 2006.

[9] S. Forêt, S. R. Wilson, and C. J. Burden. Characterizing the D2 statistic:
Word matches in biological sequences. Stat. Appl. Genet. Mo. B., 8(1):Article
43, 2009.

[10] S. Forêt, S. R. Wilson, and C. J. Burden. Empirical distribution of k-word
matches in biological sequences. Pattern Recogn., 42:539–548, 2009.
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