
Sparse grid quadrature on products of spheres

Markus Heglanda, Paul Leopardia,∗

aCentre for Mathematics and its Applications, Australian National University.

Abstract

This paper examines sparse grid quadrature on weighted tensor products (wtp)
of reproducing kernel Hilbert spaces on products of the unit sphere S2. We
describe a wtp quadrature algorithm based on an algorithm of Hegland [10], and
also formulate a version of Wasilkowski and Woźniakowski’s wtp algorithm [21],
here called the ww algorithm. We prove that our algorithm is optimal and
therefore lower in cost than the ww algorithm, and therefore both algorithms
have the optimal asymptotic rate of convergence given by Theorem 3 of Wasil-
kowski and Woźniakowski [21]. Even so, the initial rate of convergence can be
very slow, if the dimension weights decay slowly enough.

Keywords: reproducing kernel Hilbert spaces, quadrature, tractability, sparse
grids, knapsack problems, spherical designs

1. Introduction

This paper examines sparse grid quadrature on weighted tensor products of
reproducing kernel Hilbert spaces (rkhs) on the unit sphere S2 ⊂ R3. As per
our previous paper on sparse grid quadrature on the torus [11], the empirical
rates of convergence of the quadrature rules constructed here are compared to
the theory of Wasilkowski and Woźniakowski [21].

The setting is the same as that used by Kuo and Sloan [15], and Hesse, Kuo
and Sloan [12] to examine quasi-Monte Carlo (qmc) quadrature on products of
the sphere S2, but here we examine quadrature with arbitrary weights.

As noted in our previous paper [11], rates of convergence and criteria for
strong tractability of quadrature with arbitrary weights are known in the case
of weighted Korobov spaces on the unit torus [13, 18]. As far as we know,
this paper is the first to examine the analogous questions for quadrature with
arbitrary weights on the corresponding spaces on products of spheres.

The algorithms we examine are an adaptation of the algorithm used in our
previous paper [10, 11], and an adaptation of the wtp algorithm of Wasil-
kowski and Woźniakowski [21]. We examine these algorithms theoretically, giv-
ing bounds for the asymptotic convergence rate of quadrature error in the worst

∗Corresponding author
Email address: paul.leopardi@anu.edu.au (Paul Leopardi)

Preprint submitted to Elsevier June 5, 2012

case. We also examine the algorithms empirically, via a small number of nu-
merical examples.

Arbitrary weight quadrature on products of spheres is interesting, not just
for purely theoretical reasons, such as comparison with the results for equal
weight quadrature, but also for practical reasons. Integration over products of
the unit sphere is equivalent to multiple integration over the unit sphere. Such
multiple integrals can be approximated in a number of ways, including Monte
Carlo methods.

Applications of tensor product spaces on spheres and approximate integra-
tion over products of spheres include quantum mechanics [23], and transport
and multiple scattering problems in various topic areas, including acoustics [17],
optical scattering problems [1, 19, 14], and neutron transport problems [20].

One prototypical problem to be solved is scattering by a sequence of spheres.
This can be modelled using a multiple integral of a function on the product of
the spheres. The decay in the weights of successive spheres could model the
decreasing influence of scattering on each successive sphere, as opposed to just
cutting off the calculation after an arbitrary number of scatterings.

The remainder of this paper is organized as follows. Section 2 describes
our weighted tensor product space setting in detail. Section 3 describes the
optimization problem involved in dimension adaptive sparse grid quadrature.
Section 4 introduces the dimension adaptive (da) algorithm and shows that it
is optimal in a certain sense. Section 5 analyses a version of the wtp algorithm of
Wasilkowski and Woźniakowski, and compares its theoretical rate of convergence
with that the da algorithm. Section 6 contains numerical results, comparing the
two algorithms, and showing how the da algorithm performs as the dimension
is increased.

2. Setting

The general setting used in our previous paper [11] applies equally well here.
We repeat it here, with corrections.

Let D ⊂ Rs+1 be a compact manifold with probability measure µ. It follows
that the constant function 1, with 1(x) = 1 for all x ∈ D, is integrable and∫
D 1(x) dµ(x) = 1. Then let H be a Hilbert space of functions f : D → R, with

inner product 〈·, ·〉H , and kernel K, with the following properties.

1. For every x ∈ D, the function kx ∈ H, given by kx(y) := K(x, y), satisfies

f(x) = 〈kx, f〉H , for all f ∈ H; (1)

2. Every f ∈ H is integrable and∫
D
f(x) dµ(x) = 〈1, f〉H . (2)

2

We recognize H as a reproducing kernel Hilbert space (rkhs). In this frame-
work, quadrature rules Q, defined by

Q(f) :=

n∑
i=1

wif(xi)

are continuous linear functionals and Q(f) = 〈q, f〉H with q =
∑n
i=1 wikxi .

We will assume that the quadrature points xi are given. An optimal choice
of weights wi minimizes the worst case quadrature error e(q), which is given by
the norm ‖1− q‖H . The optimal q∗ is thus defined as

q∗ := argminq {‖1− q‖H | q ∈ span{kx1 , . . . , kxn}} .

The weights of an optimal quadrature rule are thus obtained by solving a linear
system of equations with a matrix whose elements are the values of the repro-
ducing kernel K(xi, xj) = 〈kxi , kxj 〉H . The right-hand side of these equations is
a vector with elements all equal to one.

We now describe a special reproducing kernel Hilbert space H of functions
on D. The space H has a kernel K satisfying (1), but instead of (2), this special
space satisfies ∫

D
f(x) dµ(x) = 0, for all f ∈ H.

Thus the function 1 is not an element of this special space.
We now extend H into the space Hγ , which consists of all functions of the

form g = a1 + f , where a ∈ R, and f ∈ H with the norm ‖ · ‖Hγ defined by

‖g‖2Hγ = |a|2 +
1

γ
‖f‖2H .

It is easily verified that Hγ is an rkhs with reproducing kernel

Kγ(x, y) = 1 + γK(x, y),

where K is the reproducing kernel of H. In particular, the space Hγ with kernel
Kγ satisfies both properties (1) and (2).

For functions on the domain Dd we consider the tensor product space Hd :=⊗d
k=1Hγk where 1 > γ1 · · · > γd > 0. This is an rkhs of functions on Dd with

reproducing kernel Kd(x, y) :=
∏d
k=1(1+γk K(xk, yk)) where xk, yk ∈ D are the

components of x, y ∈ Dd. Moreover, one has∫
Dd
f(x) dµd(x) = 〈1, f〉Hd ,

where µd is the product measure, 〈·, ·〉Hd is the scalar product on the tensor
product space Hd, and 1 is the constant function on Dd with value 1.

The specific setting for this paper is that of Kuo and Sloan [15], with s := 2.
We now describe this setting. We take our domain D to be the unit sphere

3

S2 := {x ∈ R3 | x21 + x22 + x23 = 1}, and consider the real space L2(S2). We use
a basis of real spherical harmonics Y`,m(x), ` = 0, . . . ,∞, m = −`, . . . , `. For
f ∈ L2(S2), we expand f in the Fourier series

f(x) = f̂0,0 +

∞∑
`=1

∑̀
m=−`

f̂`,mY`,m(x).

For a positive weight γ, we define the rkhs

H(r)
1,γ := {f : S2 → R | ‖f‖H(r)

1,γ
<∞},

where

〈f, g〉H(r)
1,γ

:= f̂0,0 ĝ0,0 + γ−1
∞∑
`=1

∑̀
m=−`

(
`(`+ 1)

)r
f̂`,m ĝ`,m.

Kuo and Sloan [15] show that the reproducing kernel of H(r)
1,γ is

K
(r)
1,γ(x, y) := 1 + γAr(x · y), where for z ∈ [−1, 1],

Ar(z) :=

∞∑
`=1

2`+ 1(
`(`+ 1)

)rP`(z),
where P` is the Legendre polynomial of degree `. Convergence of Ar needs
r > 3/2.

For γ := (γd,1, . . . , γd,d), we now define the tensor product space

H(r)
d,γ :=

d⊗
k=1

H(r)
1,γd,k

.

This is a weighted rkhs on (S2)d, with reproducing kernel

K
(r)
d,γ(x, y) :=

d∏
k=1

K
(r)
1,γd,k

(xk, yk).

Kuo and Sloan [15] studied equal weight (qmc) quadrature on the space

H(r)
d,γ , and found that it is strongly tractable if and only if

∑d
k=1 γd,k < ∞ as

d→∞. Hesse, Kuo and Sloan [12] constructed sequences of qmc rules on this
space, and proved that their worst case error converges at least as quickly as
the Monte Carlo error rate of O(n−1/2), where n is the cost of the quadrature
rule in terms of the number of points.

The work of Hickernell and Woźniakowski [13], and Sloan and Woźnia-
kowski [18], on the weighted Korobov space of periodic functions on the unit
cube, and the work of Wasilkowski and Woźniakowski [21] on wtp quadrature
on non-periodic functions on the unit cube, suggests bounds on the worst case

4

error for our case of quadrature with arbitrary weights on the space H(r)
d,γ . We

might expect quadrature with arbitrary weights on this space to be strongly
tractable if and only if

∑d
k=1 γd,k <∞ as d→∞, and, in the case of exponen-

tially decreasing weights, as studied here, we might therefore expect the optimal
worst-case error to have an upper bound of order O(n−r), and a lower bound
of order Ω(n−r), for r > 3/2.

Our analysis below shows that these expectations for quadrature with arbi-

trary weights on H(r)
d,γ can be met, and specifically, that our algorithm satisfies

the upper bound suggested here.

3. Optimization Problem

We first describe the optimization problem in the general rkhs setting, as
given in Section 2.

We assume that a sequence of quadrature points x1, x2, . . . ∈ D, and a
sequence of positive integers n0 < n1 < . . . are given and are the same for all
spaces Hγ . The quadrature rules for Hγ are then defined as some element of
V γj := span{kγx1

, . . . , kγxnj
} ⊂ Hγ . We denote the optimal rule in V γj by qγj . Now

define the pair-wise orthogonal spaces Uγj by Uγ0 := V γ0 , and by the orthogonal
decomposition V γj+1 = V γj ⊕ U

γ
j+1. Using the fact that the qγj are optimal, one

can see that

δγj+1 := qγj+1 − q
γ
j ∈ U

γ
j+1

and δ0 := qγ0 ∈ U
γ
0 = V γ0 . Note that one has

Uγj+1 6= span{kx1+nj
, . . . , kxnj+1

}.

This is the fundamental reason why one needs the admissibility condition dis-
cussed in later this section.

We use the notation J := Nd, treating elements of J as indices, with a partial
order such that for i, j ∈ J, i 6 j if and only if ih 6 jh for all components.

For a index i ∈ J, let ↓ i denote the down-set of i, defined by ↓ i := {j ∈
J | j 6 i} [6, p. 13]. Subsets of J are partially ordered by set inclusion. For a
subset I ⊂ J, let ↓ I denote the down-set of I, defined by ↓ I :=

⋃
i∈I ↓ i. Then

↓ I is the smallest set J ⊇ I such that if i ∈ J and j 6 i then j ∈ J . Thus
↓ ↓ I = ↓ I.

A sparse grid quadrature rule is then of the form

q ∈ VI :=
∑
j∈I

d⊗
k=1

V
γd,k
jk

for some index set I. From the orthogonal decomposition V γj =
⊕j

i=1 U
γ
i one

derives the multidimensional orthogonal decomposition

VI =
⊕
j∈↓ I

d⊗
k=1

U
γd,k
jk

.

5

One can then show that an optimal q ∈ VI is obtained as

q∗I =
∑
j∈↓ I

d⊗
k=1

δ
γd,k
jk

.

Thus both VI and q∗I are obtained in terms of the down-set ↓ I, effectively
restricting the choice of the set I to index sets which are also down-sets.

This leads us to defining the concept of an optimal index set. An optimal
index set is one which minimizes the error for a given cost, or minimizes the
cost for a given error. Here, the cost is the number of quadrature points, which
is the dimension of VI .

We now make this definition precise. We first define ν
(k)
jk

:= dimU
γd,k
jk

and

δ
(k)
jk

:= δ
γd,k
jk

. For the remainder of this section, we use ε ∈ (0, 1) to denote the
required upper bound on quadrature error. The optimization problem then uses
the following definitions.

Definition 1. For index j ∈ J, define

νj :=

d∏
k=1

ν
(k)
jk
, ∆j :=

d⊗
k=1

δ
(k)
jk
, pj := ‖∆j‖2 , rj := pj/νj .

For subset I ⊂ J, define

ν(I) :=
∑
j∈I

νj , p(I) :=
∑
j∈I

pj .

Also, define P := 1− ε2.

Here, jk is the kth component of the index j.

Due to the properties of ν
(k)
jk

and ∆j , ν and p satisfy

νj , ν(I) ∈ N+, 0 < pj < 1, 0 < p(I) < 1, p(J) = 1. (3)

We now consider the following optimization problem, posed as a minimiza-
tion problem on the variable I ⊂ J.

Optimization Problem 1.

Minimize ν(↓ I), subject to p(I) > P,

for some 0 < P < 1, where ν and p satisfy (3).

6

In other words, given a required upper bound ε on the quadrature error, the
problem is to find the subset I ⊂ J with the smallest cost ν(↓ I) =

∑
j∈↓ I νj ,

satisfying the constraint 1−
∑
j∈I pj 6 ε

2.
Optimization Problem 1 can have multiple solutions, since for H, I, J ⊂ J

if J = ↓H = ↓ I and both p(H) > P and p(I) > P then both I and J are
solutions to Optimization Problem 1. The following problem breaks this tie.

Optimization Problem 2.

Maximize p(I) subject to I solving Optimization Problem 1.

The solution of Optimization Problem 2 satisfies an admissibility condition.

Lemma 1. If I is a solution of Optimization Problem 2, then

I = ↓ I. (4)

Proof. Let J = ↓ I, where I is a solution of Optimization Problem 2, and
therefore of Optimization Problem 1. Then I ⊂ J and thus J satisfies the
constraints of Optimization Problem 1, since pi > 0. Therefore J is also a
solution of Optimization Problem 1, since ν(↓ J) = ν(↓ I). If I (J, it follows
from pi > 0 that p(J) > p(I), and so I cannot be optimal. Therefore I = J .

In view of the admissibility condition, we reformulate Optimization Prob-
lem 2 as:

Optimization Problem 3.

Minimize ν(I), subject to I = ↓ I, and p(I) > P,

for some 0 < P < 1, where ν and p satisfy (3).

As pointed out by (e.g.) Griebel and Knapek [9], some sparse grid problems
can be formulated and solved as knapsack problems. The resulting solution is
optimal in terms of estimated profit for a given “weight”.

We call Optimization Problem 3 a down-set-constrained binary knapsack
problem. Each item in the knapsack is a product difference rule. The profit
for each item is just the squared norm of a product difference rule, and this
can be calculated precisely. The “weight” of each item is the number of extra
points the product difference rule contributes to the overall quadrature rule,
assuming that the admissibility condition applies. The relationships between
Optimization Problem 3 and other more well-known knapsack problems are
described in more detail in Section 4.

4. Algorithm

The dimension adaptive (da) algorithm to choose the set I for D = S1,
described in [11] is quite general, and applies equally well to the case here,

7

Algorithm 1: The dimension adaptive (da) algorithm.

Data: error ε, incremental rules ∆j and their costs νj for j ∈ J
Result: ε approximation q and index set I
I := {0}; q := ∆0;
while ‖1− q‖ > ε do

j := argmaxi{ri | i /∈ I and I ∪ {i} is a down-set};
I := I ∪ {j}; q := q + ∆j ;

where D is S2. For the sake of completeness, we repeat the algorithm here, with
a slight change in notation, as Algorithm 1.

This is a greedy algorithm for Optimization Problem 3.
Under certain conditions on ν and p, Algorithm 1 solves Optimization Prob-

lem 3. To see this, consider monotonicity with respect to the lattice partial
ordering of J.

Definition 2. The function p ∈ RJ
+ is monotonically decreasing if i < j implies

that pi > pj. If i < j implies that pi > pj, then p ∈ RJ
+ is strictly decreas-

ing. The definitions of “monotonically increasing” and “strictly increasing” are
similar.

Using Definition 2, the following theorem holds.

Theorem 2. If p ∈ RJ
+ is strictly decreasing and ν ∈ NJ

+ is monotonically
increasing, then Algorithm 1 yields a quadrature rule q and index set I such
that I solves the down-set-constrained knapsack Optimization Problem 3, for
P = p(I) = ‖1− q‖2.

The proof of Theorem 2 presented below proceeds in these stages.

1. We introduce a related binary knapsack problem, and show that if I is a
solution of the binary knapsack problem, and I is also a down-set, then I
is a solution of Optimization Problem 3.

2. We define the efficiency ri, describe a greedy algorithm for the binary
knapsack problem (Algorithm 2 below), and show that if the efficiency is
strictly decreasing, then each set I produced by the greedy algorithm is a
solution of the binary knapsack problem, and I is also a down-set, and is
therefore also a solution of Optimization Problem 3.

3. We show that if the efficiency is strictly decreasing, then Algorithm 2
produces the same sequence of sets as Algorithm 1.

A binary (0/1) knapsack problem [5] related to the Optimization Problem 3
is:

Optimization Problem 4.

Minimize ν(I), subject to p(I) > P,

for some 0 < P < 1, where ν and p satisfy (3).

8

Usually a binary knapsack problem is posed as a maximization problem,
where the selection is from a finite set of items. Here we have a minimization
problem and a countably infinite set. A finite minimization problem can always
be posed as an equivalent maximization problem [16, p. 15]. In the case of
Problem 4 this cannot be done, because the quantity to be maximized (the sum
of the costs of the elements not in the knapsack) would be infinite. Instead, we
must deal directly with the minimization form.

We now formulate a converse of Lemma 1.

Lemma 3. If I is a solution of the Optimization Problem 4, and I also sat-
isfies the admissibility condition I = ↓ I, then I is a solution of Optimization
Problem 3.

Proof. I satisfies the admissibility condition ↓ I = I and consequently p(I) >
P . It follows that I satisfies the constraints of Optimization Problem 3 and
thus minimizes p under these constraints, i.e., is a solution of Optimization
Problem 3.

This justifies our calling Optimization Problem 3 a down-set-constrained
knapsack problem.

If, in Optimization Problem 4 we identify each set I ⊂ J with its indicator
function I ∈ {0, 1}J, where Ii = 1 if and only if i ∈ I, we obtain a more usual
formulation of the binary knapsack problem:

Optimization Problem 5.

Minimize
∑
i∈J

νi Ii, subject to
∑
i∈J

pi Ii > P, I ∈ {0, 1}J,

for some 0 < P < 1, where ν and p satisfy (3).

Solving the binary knapsack problem is hard in general, but for certain values
of the constraint P , a greedy algorithm yields the solution. These values are
exactly the values for which the solution of the binary knapsack problem equals
the solution of the continuous knapsack problem, which uses the same objective
function ν as Optimization Problem 5, and relaxes the constraints Ii ∈ {0, 1}
to Ii ∈ [0, 1]. Dantzig [5] gives a graphical proof of this for the classical binary
knapsack problem – the finite maximization problem. Martello and Toth [16,
Theorem 2.1, p. 16] give an explicit solution for the continous problem, and a
more formal proof.

The greedy algorithm for Optimization Problem 4 is based on the efficiency
rj := pj/νj . The algorithms generates the initial values of an enumeration j(t)

of J, t ∈ N+, satisfying

rj(t) > rj(t+1) .

The algorithm recursively generates I(t) from I(t−1), until for some T the con-
dition

p(I(T−1)) < P 6 p(I(T))

9

holds, where

I(t) :=

t⋃
s=1

j(s).

The greedy algorithm is therefore as follows.

Algorithm 2: The greedy algorithm for Optimization Problem 4.

Data: error ε, incremental rules ∆j and their costs νj for j ∈ J
Result: ε approximation q and index set I
I := {0}; q := ∆0;
while ‖1− q‖ > ε do

j := argmaxi{ri | i /∈ I};
I := I ∪ {j}; q := q + ∆j ;

This algorithm has the following properties.

Lemma 4. For any 0 < P < 1, Algorithm 2 terminates for some t = T.
For each t > 1, the set generated by Algorithm 2, I(t) is the solution to

Optimization Problem 4 for P = p(I(t)).

Proof. The algorithm terminates because j(t) is an enumeration of J and there-
fore

∑∞
t=1 pj(t) = 1, since

∑∞
t=1 ∆j(t) = 1, but P < 1.

When p(I(t)) = P the constraints of Optimization Problem 4 are satisfied.
Furthermore, as the method used the largest ri, the objective function ν is min-
imised for Optimization Problem 4. A more detailed proof can be constructed
along the lines of the proof of Theorem 2.1 of Martello and Toth [16].

The construction of the enumeration used in Algorithm 2 requires sorting
an infinite sequence and is thus not feasible in general, but, in the case where
p is strictly decreasing and ν is monotonically increasing, the enumeration can
be done recursively in finite time.

Here and in the following we say that i is a minimal element of a subset of J
if there are no elements j < i in that subset. The minimum is thus with respect
to the lattice defined by the partial order in J.

Lemma 5. If p is strictly decreasing and ν is monotonically increasing, at each
step t > 1 of Algorithm 2, the index j(t) produced by the algorithm is a minimal
element of the set IC(t−1) := J\I(t). Also j(1) = 0, and therefore I(t) is a down-set.

Proof. If p is strictly decreasing and ν is monotonically increasing, then r is
monotonically decreasing. By construction, rj(t−1) > rj(t) , so the enumeration

must have j(t−1) < j(t). It follows that j(1) = 0.
For t > 1, since j(t) is an enumeration of J, no element occurs twice, and so

j(t) ∈ IC(t−1). Any later element j(t+s) in the enumeration cannot be smaller than

10

j(t), so j(t) is a minimal element of IC(t−1). Since all elements smaller than j(t)

occur earlier in the enumeration, we must have ↓ j ⊂ I(t−1) ∪ {j(t)}. Therefore,
if I(t−1) is a down-set, then so is I(t). Since I(t−1) = {0}, by induction, I(t) is
always a down-set.

Corollary 6. For each t > 1, the set generated by Algorithm 2, I(t) is the
solution to Optimization Problem 3 for P = p(I(t)).

Proof. This is an immediate consequence of Lemmas 3, 4 and 5.

The set M(t) of minimal elements of IC(t) is finite. One can thus find j(t+1) =
i with largest ri in this set. This is how Algorithm 1 finds the index j :=
argmaxi{ri | i /∈ I and I ∪ {i} is a down-set}, even in the case where the
efficiency r is not strictly decreasing.

In the case where r is strictly decreasing, we have the following result.

Lemma 7. If the efficiency r is strictly decreasing, then Algorithm 2 produces
the same sequence of sets I as Algorithm 1.

Proof. From the proof of Lemma 5, we have that if r is strictly decreasing, then
for t > 1, j(t) as per Algorithm 2 is always the element of M(t) which maximizes
r. This is exactly j := argmaxi{ri | i /∈ I and I ∪ {i} is a down-set}, as per
Algorithm 1. For both algorithms, I(1) = {0}.

All the pieces are now in place for the main proof of this Section.

Proof of Theorem 2. From Lemma 5 we see that if the efficiency r is strictly
decreasing, then each set I produced by the greedy algorithm (Algorithm 2) is a
solution of Optimization Problem 3. From Lemma 7 we see that if the efficiency
r is strictly decreasing, then Algorithm 2 produces the same sequence of sets I
as Algorithm 1.

If p is strictly decreasing and ν is monotonically increasing, then since rj =
pj/νj then r is strictly decreasing. Therefore each set I in the sequence produced
by Algorithm 1 is a solution of Optimization Problem 3. �

It remains to show how to construct the set of minimal elements of IC(t). To

do so, we define S(i), the forward neighbourhood of i ∈ J [8, p. 71] as

S(i) := {j ∈ J | i < j and (i 6 ` < j ⇒ ` = i)} ,

that is, S(i) is the set of minimal elements of {j ∈ J | i < j}.
Let e be the standard basis of RJ. To construct M(t), start with M(1) =

S(i(1)) = S(0) = {e1, . . . , ed}. Then given M(t−1) and i(t), one obtains M(t) =(
M(t−1) \ {i(t)}

)
∪ S(i(t)).

Note that(
M(t−1) \ {i(t)}

)
∪ S(i(t)) =

(
M(t−1) ∪ S(i(t))

)
\ {i(t)}.

As the minimal elements of IC(t) are either elements of M(t−1) (but not i(t)) or

elements of S(i(t)) we see that this set is equal to M(t).

11

5. Error bounds

We will now describe a second variant of wtp quadrature, q(WW) on H(r)
d,γ ,

identical to the sequence of quadrature rules q(DA) described in Section 3 above,
except that the order in which the incremental rules are added to this second
variant is essentially the order used by Wasilkowski and Woźniakowski [21, Sec-
tion 5]. This variant uses criteria similar to those used by Wasilkowski and
Woźniakowski [21, Theorem 3], but adapted to our setting. These criteria are

‖qj − qj−1‖H(r)
1,γ
6
√
γCDj , for all j > 1. (5)

(corresponding to Wasilkowski and Woźniakowski [21, (39)]), and

(j + 1) Djρ 6 1, for all j > 1, (6)

(corresponding to Wasilkowski and Woźniakowski [21, (36)]),
for some D ∈ (0, 1) and some positive C and ρ.

As a consequence of (5), we have

‖∆j‖H(r)
d,γ

=

d∏
k=1

∥∥∥δ(k)jk

∥∥∥
H(r)

1,γd,k

6 b(d, j), where

b(d, j) :=

d∏
k=1

(√
γd,k CD

jk
)1−δ0,jk .

Let (ξd,k), k = 1, . . . , d, be a sequence of positive numbers. In contrast to
Wasilkowski and Woźniakowski [21, Section 5], we do not stipulate that ξd,k = 1.
Define

ξ(d, j) :=

d∏
k=1

ξ
1−δ0,jk
d,k . (7)

We therefore have b(d, j)/ξ(d, j) → 0 as ‖j‖1 → ∞. We order the incre-
mental rules in order of non-decreasing b(d, j)/ξ(d, j) for each index j, cre-
ating an order on the indices j(WW)(h) . We adjust ξ(d, k) so that this or-
der agrees with the lattice partial ordering of the indices. We now define

I
(WW)
N := {j(WW)(1), . . . , j(WW)(N)}, and define the quadrature rule

q
(WW)
N :=

∑
j∈I(WW)

N

∆j .

To obtain a quadrature error of at most ε ∈ (0, 1), we set

N(ε, d) :=
∣∣∣{j | b(d, j)/ξ(d, j) > (ε/C1(d, η)

)1/(1−η)}∣∣∣ ,
12

where η ∈ (0, 1) and

C1(d, η) :=

√√√√ξ
2(1−η)
d,1

1−D2

d∏
k=2

(
1 + (C2γd,k)ηξ

2(1−η)
d,k

D2η

1−D2η

)
.

Finally, we define

q
(WW)
ε,d :=

(WW)∑
j∈IN(ε,d)

∆j . (8)

We can now present our version of Wasilkowski and Woźniakowski’s main
theorem on the error and cost of wtp quadrature [21, Theorem 3].

Theorem 8. Let η ∈ (0, 1). Assume that a sequence of quadrature points
x1, x2, . . . ∈ S2, and a sequence of positive integers n0 < n1 < . . . are given such

that the corresponding optimal weight quadrature rules qj := q1j ∈ H(r)
1,1 satisfy

(5) and (6) for some D ∈ (0, 1) and some positive C and ρ. Then the quadrature

rule q
(WW)
ε,d defined by (8) has worst-case quadrature error e(q

(WW)
ε,d) 6 ε, and

its cost (in number of quadrature points) is bounded by

cost(q
(WW)
ε,d) 6 C(d, ε)

(
1

ε

)ρ/(1−η)
,

where

C(d, ε) :=
ξρd,1

∏d
k=2

(
1 + Cργ

ρ/2
d,k /ξ

ρ
d,k g(k, ε)

)
f(k, ε)ρ

(1−Dρ)(1−D2)ρ/(2(1−η))
,

f(i, ε) :=

(
1 + C2ηγηd,iξ

2(1−η)
d,i

D2η

1−D2η

)1/(2(1−η))

,

g(k, ε) :=

 log

(
Cγ

1/2
d,k /(ξd.k(1−D2))1/(2(1−η))

∏k
i=2

(
f(i, ε)

)
ε−1/(1−η)

)
logD−1

+

.

By bxc+, we mean max(0, x).

Wasilkowski and Woźniakowski’s proof, with s := 2, α := 1, applies directly
to our Theorem 8, once the change in ξd,1 is taken into account.

Corollary 1 of Wasilkowski and Woźniakowski [21, p. 434] presents a simpler
bound for the cost of their wtp algorithm, and their simplification also applies
here.

13

Corollary 9. For every positive δ there exists a positive c(d, δ) such that the

cost of the quadrature rule q
(WW)
ε,d defined by (8) is bounded by

cost(q
(WW)
ε,d) 6 c(d, δ)

(
1

ε

)ρ+δ
.

For exponentially decreasing dimension weights γd,k, Theorem 4 of Wasil-
kowski and Woźniakowski [21] shows that the q(WW) rules are strongly polyno-
mial.

Our sequence of rules q(DA) is more efficient than q(WW), in the sense that
q(DA) is based on the optimal solution of the corresponding down-set-constrained
continuous knapsack problem, as explained in Section 4. As a direct consequence
of Theorem 8 and Corollary 9, we therefore have the following result.

Theorem 10. Let η ∈ (0, 1). Assume that a sequence of quadrature points
x1, x2, . . . ∈ S2, and a sequence of positive integers n0 < n1 < . . . are given such

that the corresponding optimal weight quadrature rules qj := q1j ∈ H(r)
1,1 satisfy

(5) and (6) for some D ∈ (0, 1) and some positive C and ρ. Let I(t), q
(DA)
(t)

be the index set and corresponding quadrature rule generated by iteration t of
Algorithm 1, based on the rules qj , for sufficiently small error ε = ε0.

Then the quadrature rule q
(DA)
(t) has worst-case quadrature error e(q

(DA)
(t)) =

ε(t) :=
√

1− p(I(t)), and its cost ν(I(t)) is bounded by

ν(I(t)) 6 C(d, ε(t))

(
1

ε(t)

)ρ/(1−η)
,

where C(d, ε(t)) is defined as per Theorem 8. As a consequence, for every positive

δ there exists a positive c(d, δ) such that the cost of the quadrature rule q
(DA)
(t) is

bounded by

ν(I(t)) 6 c(d, δ)

(
1

ε(t)

)ρ+δ
.

6. Numerical results

With the estimates given by our analysis in hand, we now compare these to
our numerical results.

Since our underlying domain D is S2 rather than S1, we need to change
some of the details of the algorithm in comparison to the algorithm used for
the torus [11]. Specifically, we need a sequence of rules on a single sphere,
which yields “good enough” worst case quadrature error with optimal weights.
Our choice of points for our numerical examples is a sequence of point sets,
consisting of unions of spherical designs with increasing numbers of points, and
non-decreasing strengths.

14

For the unit sphere S2, a spherical design [7] of strength t and cardinality
m is a set of m points X = {x1, . . . , xm} ⊂ S2 such that the equal weight
quadrature rule

QX(p) :=
1

m

m∑
h=1

p(xh)

is exact for all spherical polynomials p of total degree at most t.
One difference between the constructions for S1 and S2 is that the nesting of

spherical designs is not efficient. The union of two spherical designs of strengths
t1 and t2 is in general, a spherical design whose strength is the minimum of t1
and t2. In the case of our numerical examples, the first design of strength 0 is
a single point. The next design of strength 1 consists of two antipodal points,
so nesting is possible in this case. After this, the resulting unions of spherical
designs, in general, have strength no greater than 1.

For the numerical examples, a combination of (approximate) extremal (E)
and low cardinality (L) spherical designs are used, according to Table 1. These
approximate spherical designs were all provided by Womersley [4, 22].

Index j 0 1 2 3 4 5 6 7 8 9 10 11
Type L L E L E L E L E L E L

Strength t 0 1 1 3 3 7 7 15 15 31 31 63
Cardinality m 1 2 4 8 16 32 64 129 256 513 1024 2049

Table 1: Strength and cardinality of approximate spherical designs used with Algorithm 1 in
the numerical examples.

If we let mj := |Xj |, the cardinality of Xj , and let tj be the strength of Xj ,
then, for the sequence of spherical designs chosen for our numerical examples,
the extremal spherical designs have mj = (tj + 1)2, and the low cardinality
spherical designs have mj = (tj + 1)2/2 or mj = (tj + 1)2/2 + 1, and in all
cases tj >

√
mj − 1. It is not yet known a sequence of spherical designs sat-

isfying this lower bound on strength can be extended indefinitely, but there is
rigorous computational proof for tj up to 100 [3]. Also, it is now known that
an infinite sequence of spherical designs exists with the required asymptotic or-
der of strength, that is, there is a sequence of spherical designs of cardinality
mj = O(t2j), [2] but the proof is not constructive and the corresponding implied
constant is still unknown.

We now turn to estimates for rules on a single sphere, in order to use them
with Theorem 8. On a single unit sphere, our sparse grid quadrature rule is
an optimal weight rule qj = qγr (Sj), based on an increasing union of spherical

designs, Sj :=
⋃j
i=0Xi. Its worst case error is therefore smaller than that of the

optimal weight rule qγr (Xj) based on Xj , the largest spherical design contained
in the union, which is, in turn no greater than the worst case error of the equal

15

weight rule q
γ,(QMC)
r (Xj) based on Xj , with weights 1/|Xj |,

e2(qj) < e2
(
qγr (Xj)

)
6 e2

(
qγ,(QMC)
r (Xj)

)
.

According to Hesse, Kuo and Sloan [12, Theorem 4], for γ = 1, we have the
bound

e2
(
q1,(QMC)
r (Xj)

)
6 ct−2rj ,

and therefore

e2
(
q1r(Xj)

)
6 c(
√
mj − 1)−2r 6 C1m

−r
j ,

for some C1 > 0.
For general γ, as per Kuo and Sloan [15], we have

e2
(
qγ,(QMC)
r (Xj)

)
= −1 +

1

m2
j

mj∑
h=1

mj∑
i=1

K
(r)
1,γ(xj,h, xj,i)

= γ
1

m2
j

mj∑
h=1

mj∑
i=1

Ar(xj,h · xj,i) 6 γC1m
−r
j . (9)

For the sequence of spherical designs chosen for our numerical examples, we
also have 2j 6 mj 6 2j + 1. We therefore have

e2(qj) 6 γC2 2−rj , (10)

for some C2 > 0.
Recall that

e2(qj) = 1− ‖qj‖2H(r)
1,γ

= 1− ‖qj−1‖2H(r)
1,γ
− ‖qj − qj−1‖2H(r)

1,γ

= e2(qj−1)− ‖qj − qj−1‖2H(r)
1,γ
,

for j > 1, since qj − qj−1 is orthogonal to qj−1. Therefore

e2(qj−1) = e2(qj) + ‖qj − qj−1‖2H(r)
1,γ
.

Since e2(qj) > 0, using (10) we obtain ‖qj − qj−1‖2H(r)
1,γ
6 γC2 2−rj−1 This, in

turn implies that

‖qj − qj−1‖2H(r)
1,γ
6 γC3 2−rj ,

where C3 = 2−rC2.
All the approximate spherical designs listed in Table 1 have one point in

common, the “north pole” (0, 0, 1). Therefore, in our numerical examples, the

16

number of points nj = |Sj | satisfies nj = 1+
∑j
i=0(mi−1) = −j+

∑j
i=0mi. Since

2i 6 mi ≤ 2i + 1, we have 2j+1 − j − 1 6 nj 6 2j+1, and so mj 6 nj 6 mj+1,
for j > 0. Also, our numerical examples obtain a value for C3 of approximately
1.453. In view of (9), and the preceding argument, criteria (5) and (6) hold
with D = 2−r/2, C = C3 ∼ 1.453 as above, and ρ = 2/r.

Our numerical examples use r = 3 and γk = gk, for g = 0.1, 0.5, and 0.9, to
see how our rules q(DA) and q(WW) behave as the decay of the dimension weights
is varied. For the q(WW) rules, we use ξd,k := CD, with C and D defined as
above.

For the da and ww weighted tensor product algorithms, each program run
uses r = 3 ; g = 0.1 , 0.5, or 0.9; a particular dimension d, from d = 1 to 16; a
particular maximum 1-norm for indices, typically 20; and a particular maximum
number of points, up to 100 000. The numerical results are potentially affected
by three problems. First, if γ is close to zero, and the number of points is large,
then the matrix used to compute the weights becomes ill-conditioned, and the
weights may become inaccurate. In this case, a least squares solution is used
to obtain a best approximation to the weights. Second, if the current squared
error is close to zero, and the squared norm for the current index is close to
machine epsilon, then severe cancellation may occur. Third, the sequence of
spherical designs used in our numerical examples is finite, so it is quite possible
that our algorithm generates an index corresponding to a spherical design which
is not included in our finite set. In these last two cases, the calculation of the
quadrature rule is terminated.

Figure 1 displays the typical convergence behaviour of the da and ww rules
for the cases examined. The particular case shown is that of (S2)4, r = 3 ,
γ4,k = 0.5k. The number of points used varies from n = 1 to 100 000. The cost
axis is horizontal and the error axis is vertical, to match the figures shown in
the torus paper [11]. The curve in Figure 1 labelled “ww bound” is actually
the minimum of the bounds given by Theorem 8, as the parameter η is varied
over a finite number of values between 0 and 1.

In general, the da algorithm has a cost no greater than that of the ww algo-
rithm. Both are bounded by the ww bound of Theorem 8. The ww cost bound
itself has an asymptotic rate of convergence of O(ε−ρ) = O(ε−2/r) = O(ε−2/3)
for all of our cases. In other words, the asymptotic bound has quadrature error
of order O(n−3/2). Judging from Figure 1, the rates of convergence of both
algorithms appear consistent with that of the bound, but the asymptotic rate
is not achieved by either algorithm or by the bound itself, for the number of
quadrature points displayed in the plot.

For γd,k = 0.1k, Figure 2 shows how the convergence rate of the error of the
da quadrature rules varies with dimension d, for d = 1 , 2, 4, 8, and 16. The
curve for d = 1 appears consistent with the asymptotic error rate ε = O(N−3/2).
The cases d = 8 and d = 16 are almost indistinguishable on this Figure. This is
an example of the convergence in dimension.

Figure 3 shows the equivalent results for the da quadrature rules for γd,k =
0.9k. The curve for d = 1 again appears consistent with the asymptotic error
rate ε = O(N−3/2), but as d increases to 16, the initial rate of convergence to

17

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

Cost (number of quadrature points, n)

Q
u

a
d

ra
tu

re
er

ro
r,
ε

DA
WW

WW bound

Figure 1: Error of da and ww rules vs ww bound for (S2)4, r = 3 , γ4,k = 0.5k.

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

Cost (number of quadrature points, n)

Q
u

ad
ra

tu
re

er
ro

r,
ε

d = 1
d = 2
d = 4
d = 8
d = 16

Figure 2: Error of da rules for (S2)d, d = 1, 2, 4, 8, 16 ; r = 3 , γd,k = 0.1k.

zero of the error becomes much slower than that for γd,k = 0.1k. This behaviour
is expected, given the ww bound.

18

100 101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

100

Cost (number of quadrature points, n)

Q
u

a
d

ra
tu

re
er

ro
r,
ε

d = 1
d = 2
d = 4
d = 8
d = 16

Figure 3: Error of da rules for (S2)d, d = 1, 2, 4, 8, 16 ; r = 3 , γd,k = 0.9k.

Acknowledgements

Thanks to Rob Womersley for the spherical designs, and to Gary Froyland
for discussions on precedence-constrained knapsack problems. The hospitality
of the Hausdorff Research Institute for Mathematics (HIM) in Bonn is much
appreciated. The support of the Australian Research Council under its Centre
of Excellence program is gratefully acknowledged.

References

[1] K. Altmann, Space-time distortion of laser pulses due to multiple scattering
in particulate media, Applied Optics 27 (1988) 2451–2460.

[2] A. Bondarenko, D. Radchenko, M. Viazovska, Optimal asymptotic bounds
for spherical designs, 2011. ArXiv:1009.4407v3 [math.MG].

[3] X. Chen, A. Frommer, B. Lang, Computational existence proofs for spheri-
cal t-designs, Numerische Mathematik 117 (2011) 289–305. 10.1007/s00211-
010-0332-5.

[4] X. Chen, R. Womersley, Existence of solutions to underdetermined equa-
tions and spherical designs, SIAM Journal of Numerical Analysis 44 (2006)
2326–2341.

[5] G.B. Dantzig, Discrete-variable extremum problems, Operations Research
5 (1957) 266–277.

19

[6] B. Davey, H.A. Priestley, Introduction to Lattices and Order, Cambridge
University Press, Cambridge, 1990.

[7] P. Delsarte, J.M. Goethals, J.J. Seidel, Spherical codes and designs, Ge-
ometriae Dedicata 6 (1977) 363–388.

[8] T. Gerstner, M. Griebel, Dimension-adaptive tensor product quadrature,
Computing 71 (2003) 65–87.

[9] M. Griebel, S. Knapek, Optimized general sparse grid approximation spaces
for operator equations, Mathematics of Computations 78 (2009) 2223–2257.
Also available as SFB611 preprint No 402.

[10] M. Hegland, Adaptive sparse grids, ANZIAM Journal 44 (E) (2003) C335–
C353.

[11] M. Hegland, P.C. Leopardi, The rate of convergence of sparse grid quadra-
ture on the torus, in: W. McLean, A.J. Roberts (Eds.), Proceedings of
the 15th Biennial Computational Techniques and Applications Conference,
CTAC-2010, volume 52 of ANZIAM J., pp. C500–C517.

[12] K. Hesse, F.Y. Kuo, I.H. Sloan, A component-by-component approach to
efficient numerical integration over products of spheres, Journal of Com-
plexity 23 (2007) 25–51.

[13] F.J. Hickernell, H. Woźniakowski, Tractability of multivariate integration
for periodic functions, Journal of Complexity 17 (2001) 660–682.

[14] B. Kaplan, G. Ledanois, B. Drévillon, Mueller matrix of dense polystyrene
latex sphere suspensions: Measurements and monte carlo simulation, Ap-
plied Optics 40 (2001) 2769–2777.

[15] F.Y. Kuo, I.H. Sloan, Quasi-Monte Carlo methods can be efficient for inte-
gration over products of spheres, Journal of Complexity 21 (2005) 196–210.

[16] S. Martello, P. Toth, Knapsack problems, Wiley-Interscience Series in Dis-
crete Mathematics and Optimization, John Wiley & Sons Ltd., Chichester,
1990.

[17] H. Sato, Is the single scattering model invalid for the coda excitation at
long lapse time?, Pure And Applied Geophysics 128 (1988) 43–47.

[18] I.H. Sloan, H. Woźniakowski, Tractability of multivariate integration for
weighted Korobov classes, Journal of Complexity 17 (2001) 697–721.

[19] A.V. Starkov, M. Noormohammadian, U.G. Oppel, A stochastic model
and a variance-reduction Monte-Carlo method for the calculation of light
transport, Applied Physics B: Lasers and Optics 60 (1995) 335–340.

[20] G.H. Vineyard, Multiple scattering of neutrons, Physical Review 96 (1954)
93–98.

20

[21] G.W. Wasilkowski, H. Woźniakowski, Weighted tensor product algorithms
for linear multivariate problems, Journal of Complexity 15 (1999) 402–447.

[22] R.S. Womersley, Spherical designs with close to the minimal number of
points, Applied Reports AMR09/26, The University of New South Wales,
2009. Preprint submitted to Elsevier.

[23] S. Zakowicz, Z. Harman, N. Grün, W. Scheid, Angular distribution of hy-
persatellite and satellite radiation emitted after resonant transfer and ex-
citation into u91+ ions, Physical Review A 68 (2003) 042711.

21

	Introduction
	Setting
	Optimization Problem
	Algorithm
	Error bounds
	Numerical results

