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Outline of talk

EQ codes: The Recursive Zonal Equal Area spherical codes,

EQP(d, N ) ⊂ S
d , with |EQP(d, N )| = N .

• Overview of properties of the EQ codes
• Some precedents
• Definitions: coordinates, partitions, diameter bounds
• The Recursive Zonal Equal Area (EQ) partition
• Details of properties of the EQ codes
• Separation and discrepancy bounds imply energy bounds
• Separation and diameter bounds imply energy bounds
• More details of properties (if time permits)

Spherical codes with good separation, discrepancy and energy – p. 2/27



The spherical code EQP(2,33) on S
2 ⊂ R

3
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Geometric properties of the EQ codes

For EQP(d, N )

Good:
• Centre points of regions of diameter= O(N −1/d) ,

• Mesh norm (covering radius)= O(N −1/d) ,

• Minimum distance and packing radius= Ω(N −1/d) .

Bad:
• Mesh ratio= Ω(

√
d) ,

• Packing density6 πd/2

2d Γ(d/2+1)
asN → ∞ .
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Approximation properties of the EQ codes

Not so bad?
• Normalized spherical cap discrepancy= O(N −1/d) ,
• Normalizeds -energy

Es =


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Is ± O(N −1/d) 0 < s < d − 1

Is ± O(N −1/d log N ) s = d − 1

Is ± O(N s/d−1) d − 1 < s < d

O(log N ) s = d

O(N s/d−1) s > d.

Ugly:
• Cannot be used for polynomial interpolation:

proven for large enoughN , conjectured for smallN .
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Relationships between properties of EQ codes
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Some precedents

The EQ partition is based on Zhou’s (1995) construction forS
2 as

modified by Saff, and on Sloan’s sketch of a partition ofS
3 (2003).

Separation without equidistribution: Hamkins (1996) and Hamkins
and Zeger (1997) constructedSd codes with asymptotically optimal
packing density.

Equidistibution without separation: Many constructions for S
2 , eg.

mapped Hammersley, Halton,(t, s) etc. sequences.
Feige and Schechtman (2002) constructed a diameter boundedequal
area partition ofSd . Put one point in each region.
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Equal-area partitions of S
d ⊂ R

d

An equal area partitionof S
d ⊂ R

d is a finite setP of Lebesgue
measurable subsets ofS

d , such that
⋃

R∈P

R = S
d,

and for eachR ∈ P ,

σ(R) =
σ(Sd)

|P| ,

whereσ is the Lebesgue area measure onS
d .
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Diameter bounded sets of partitions

Thediameterof a regionR ⊂ R
d+1 is defined by

diam R := sup{‖x − y‖ | x, y ∈ R}.

A set Ξ of partitions ofSd ⊂ R
d+1 is diameter-boundedwith

diameter boundK ∈ R+ if for all P ∈ Ξ , for eachR ∈ P ,

diam R 6 K |P|−1/d .
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Key properties of the EQ partition of S
d

EQ(d, N ) is therecursive zonal equal areapartition of S
d into

N regions.

The set of partitionsEQ(d) := {EQ(d, N ) | N ∈ N+} .

The EQ partition satisfies:

Theorem 1. For d > 1 , N > 1 , EQ(d, N ) is an equal-area
partition.

Theorem 2. For d > 1 , EQ(d) is diameter-bounded.
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Spherical polar coordinates on S
d

Spherical polar coordinatesdescribex ∈ S
d ⊂ R

d+1 by one
longitude,ξ1 ∈ R (modulo2π ), andd − 1 colatitudes,
ξj ∈ [0, π] , for j ∈ {2, . . . , d} .

The spherical polar to Cartesian coordinate map
⊙ : R × [0, π]d−1 → S

d ⊂ R
d+1 is

⊙(ξ1, ξ2, . . . , ξd) = (x1, x2, . . . , xd+1),

where x1 := cos ξ1

d
∏

j=2

sin ξj, x2 :=
d

∏

j=1

sin ξj,

xk := cos ξk−1

d
∏

j=k

sin ξj, k ∈ {3, . . . , d + 1}.
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Spherical caps, zones, and collars

Thespherical capS(p, θ) ⊂ S
d is

S(p, θ) :=
{

q ∈ S
d | p · q > cos(θ)

}

.

For d > 1 , azonecan be described by

Z(τ, β) :=
{⊙(ξ1, . . . , ξd) ∈ S

d | ξd ∈ [τ, β]
}

,

where0 6 τ < β 6 π .

Z(0, β) is a North polar cap andZ(τ, π) is a South polar cap.

If 0 < τ < β < π , Z(τ, β) is acollar.
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EQ(3,99) Steps 1 to 2
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Centre points of regions of EQ(d, N )

The placement of the centre pointa = ⊙(α) of a region

R = ⊙ (

[τ1, β1] × . . . × [τd, βd]
)

is

α1 :=

{

0 β1 = τ1 (mod2π)

(τ1 + β1)/2 (mod2π) otherwise,

and for j > 1 ,

αj :=











0 τj = 0

π βj = π

(τj + βj)/2 otherwise.
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Minimum distance and packing radius

Theminimum distanceof X := {x1, . . . , xN} ⊂ S
d is

min distX := min
x6=y∈X

‖x − y‖ ,

and thepacking radiusof X is

pradX := min
x6=y∈X

cos−1(x · y)/2.

It can be shown that min distEQP(d, N ) = Ω(N −1/d),

and therefore pradEQP(d, N ) = Ω(N −1/d).
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Minimum distance of EQP(4) codes
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Normalized spherical cap discrepancy

We use the probability measure∗σ := σ/σ(Sd) .

For X := {x1, . . . , xN} ⊂ S
d thenormalized spherical cap

discrepancyis

discX := sup
y∈Sd

sup
θ∈[0,π]

∣

∣

∣

∣

|X ∩ S(y, θ)|
N − ∗

σ
(

S(y, θ)
)

∣

∣

∣

∣

.

It can be shown that

disc EQP(d, N ) = O(N −1/d).
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Normalized s-energy

For X := {x1, . . . , xN} ⊂ S
d , s ∈ R ,

thenormalizeds -energyis

Es(X) := N −2

N
∑

i=1

∑

xi 6=xj∈X

‖xi − xj‖−s ,

and thenormalized energy double integralfor 0 < s < d is

Is :=

∫

Sd

∫

Sd

‖x − y‖−s d
∗
σ(x)d

∗
σ(y).
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Separation and discrepancy imply energy

Theorem 3.

Let (X1, X2, . . .) be a sequence ofSd codes for which there exist
c1, c2 > 0 and 0 < q < 1 such that each
XN = {xN,1, . . . , xN,N} satisfies

‖xN,i − xN,j‖ > c1 N −1/d, (i 6= j)

discXN 6 c2 N −q.

Then for the normalizeds energy for0 < s < d , we have for
somec3 > 0 ,

Es(XN) 6 Is + c3 N (s/d−1)q.
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Separation and diameter imply energy

Theorem 4.

Let ((X1, P1), (X2, P2), . . .) be a sequence of pairs ofS
d codes

and equal area partitions such that|XN | = |PN | = N , each
xN,i ∈ XN lies in RN,i ∈ PN , and such that(X1, X2, . . .) is
well separated and(P1, P2, . . .) is diameter bounded.

Then for the normalizeds energy we have

Es(XN) =


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



Is ± O(N −1/d) 0 < s < d − 1

Is ± O(N −1/d log N ) s = d − 1

Is ± O(N s/d−1) d − 1 < s < d

O(log N ) s = d

O(N s/d−1) s > d.
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Comparison to minimum energy

For s > d − 1 , Theorem 4 yields energy bounds of the same order
asEs(N ) , the minimum normalizeds energy forN points onS

d .

Es(N ) =


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

Is − Θ(N s/d−1) 0 < s < d

(Wagner;
Rakhmanov, Saff & Zhou;
Brauchart)

O(log N ) s = d (Kuijlaars & Saff)
O(N s/d−1) s > d (Hardin & Saff).
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d − 1 energy of EQP(2), EQP(3), EQP(4)
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2d energy of EQP(2), EQP(3), EQP(4)
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Mesh norm (covering radius)

Themesh normof X := {x1, . . . , xN} ⊂ S
d is

mesh normX := sup
y∈Sd

min
x∈X

cos−1(x · y).

SinceEQ(d) is diameter bounded,

mesh normEQP(d, N ) = O(N −1/d).
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Mesh ratio and packing density

Themesh ratioof X := {x1, . . . , xN} ⊂ S
d is

mesh ratioX := mesh normX / pradX.

Thepacking densityof X is

pdensX := N ∗
σ(S

(

x, pradX)
)

.

Regions ofEQ(d, N ) near equators→ cubic asN → ∞ , so

mesh ratioEQP(d, N ) = Ω(
√

d), and

pdensEQP(d, N ) 6
πd/2

2d Γ(d/2 + 1)
asN → ∞.
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Packing density of EQP(4) codes
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For EQSP Matlab code

See SourceForge web page for EQSP:

Recursive Zonal Equal Area Sphere Partitioning Toolbox:

http://eqsp.sourceforge.net
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