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Abstract For the unit sphere Sd ∈ Rd+1, with d > 2, if 0 < s < d then an asymptot-
ically equidistributed sequence of spherical codes that is also well-separated yields a
sequence of Riesz s-energies that converges to the energy double integral, with the
rate of convergence depending on the spherical cap discrepancy [19]. In the more
general case of a smooth compact connected d-dimensional Riemannian manifold,
where the corresponding discrepancy is based on geodesic balls, the Riesz s-energy
also converges to the energy double integral, but the rate of convergence is not yet
known.
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1 Introduction and Main Results

This paper arises from an remark at the end of the related paper [19] on separation,
discrepancy and energy on the unit sphere, that the results of Blümlinger [3] could
be used to generalize the results on unit sphere. The main result of that related paper
is that, for the unit sphere Sd ∈ Rd+1, with d > 2, if 0 < s < d then an asymptoti-
cally equidistributed sequence of spherical codes that is also well-separated yields a
sequence of Riesz s-energies that converges to the energy double integral, with the
rate of convergence depending on the spherical cap discrepancy [19, Theorem 1.1].
Here, we generalize that result to the setting of the volume measure on a Riemannian
manifold, with a potential based on geodesic distance.

The relationships between discrepancy and energy of measures on a manifold
have been studied for a long time, in various settings, and there is an extensive lit-
erature, including works by Benko, Damelin, Dragnev, Hardin, Hickernell, Ragozin,
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Saff, Totik, Zeng and many others [1,15,20,9]. (See also the bibliography of the re-
lated work on the unit sphere [19] for further references specific to that setting.) Many
of these works have concentrated on equilibrium measure [1,20,9] and on manifolds
embedded in Euclidean space, with a potential based on Euclidean distance [1,15].
In contrast, this paper focuses on the volume measure on a Riemannian manifold,
with a potential based on geodesic distance. As a consequence, many results from
the literature, concerning, e.g. the support of an equilibrium measure [1] do not apply
here. Instead, this paper takes the approach of translating the methods used in [19] to
the setting of Riemannian geometry.

For d > 1 let M be a smooth connected d-dimensional Riemannian manifold,
without boundary, with metric g and geodesic distance dist, such that M is compact
in the metric topology of dist. Let diam(M) be the diameter of M, the maximum
geodesic distance between points of M. Let λM be the volume measure on M given
by the volume element corresponding to the metric g. Since M is compact, it has
finite diameter and finite volume. Let σM be the probability measure λM/λM(M) on
M. For the remainder of this paper, all compact connected Riemannian manifolds are
assumed to be finite dimensional, smooth and without boundary, unless otherwise
noted.

For any probability measure µ on M, the normalized ball discrepancy is

D(µ) := sup
x∈M, r>0

∣∣µ(B(x,r))−σM
(
B(x,r)

)∣∣ ,
where B(x,r) is the geodesic ball of radius r about the point x [3,8].

This paper concerns infinite sequences X := (X1,X2, . . .) of finite subsets of the
manifold M. Each such finite subset is called an M-code, by analogy with spherical
codes, which are finite subsets of the unit sphere Sd . A sequence (X1,X2, . . .) whose
corresponding sequence of cardinalities (|X1| , |X2| , . . .) diverges to +∞ is called a
preadmissible sequence of M-codes.

An M-code X with cardinality |X | has a corresponding probability measure σX
and normalized ball discrepancy D(X), where for any measurable subset S⊂M,

σX (S) := |S∩X |/ |X | ,

and

D(X) := D(σX ) = sup
y∈M, r>0

∣∣|B(y,r)∩X |/ |X |−σM
(
B(y,r)

)∣∣ .
It is easy to see D(X) > 1/ |X | , since for any x ∈ X , σM

(
B(x,r)

)
can be made arbi-

trarily small by taking r→ 0, while σX
(
B(x,r)

)
must always remain at least 1/ |X | ,

since the ball B(x,r) contains the point x ∈ X .
A preadmissible sequence X := (X1,X2, . . .), of M-codes with corresponding

cardinalities N` := |X`| is asymptotically equidistributed [8, Remark 4, p. 236], if the
normalized ball discrepancy is bounded above as per

D(X`)< δ (N`), (1)

where δ : N→ (0,1], is a positive decreasing function with δ (N)→ 0 as N→ ∞.
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By the minimum geodesic distance of a code X , we mean the minimum, over
all pairs (x,y) of distinct code points in X , of the geodesic distance dist(x,y). The
preadmissible sequences of M-codes of most interest for this paper are those such that
the minimum geodesic distance is bounded below by a positive decreasing function
∆ : N→ (0,∞),

dist(x,y)> ∆(N`) for all x,y ∈ X`. (2)

Flatto and Newman [12, Theorem 2.2], in the case where the manifold M is C4

rather than smooth, showed that there exists a positive constant γ, depending on M,

such that a sequence of M-codes exists with ∆(N`) = γN−1/d
` . In the case of smooth

manifolds, as treated here, we call such a sequence of M-codes well separated with
separation constant γ.

An easy area argument shows that the order O(N−1/d) is best possible, in the
sense that, for any sequence of M-codes, any applicable lower bound of the form (2)
is itself bounded above by

∆(N`) = O(N−1/d
` ), (3)

(as `→ ∞).
For the purposes of this paper, we define an admissible sequence of M-codes to

be a preadmissible sequence X , such that a discrepancy function δ , and a separation
function ∆ exist, satisfying the bounds (1) and (2) respectively.

For 0 < s < d, the normalized Riesz s-energy of an M-code X is EX U (s), where
EX is the normalized discrete energy functional

EX u :=
1

|X |2 ∑
x∈X

∑
y∈X
y6=x

u(dist(x,y)) ,

for u : (0,∞)→ R, and U (s)(r) := r−s, the Riesz potential function, for r ∈ (0,∞).
The corresponding normalized continuous energy functional is given by the dou-

ble integral [10,16]

EM u :=
∫

M

∫
M

u(dist(x,y))dσM(y)dσM(x).

The main result of this paper is the following theorem.

Theorem 1.1 Let M be a compact connected d-dimensional Riemannian manifold. If
0 < s < d then, for a well separated admissible sequence X of M-codes, the normal-
ized Riesz s-energy converges to the energy double integral of the normalized volume
measure σM as |X`| → ∞. That is,∣∣∣(EX`

−EM
)

U (s)
∣∣∣→ 0 as |X`| → ∞.

The proof of Theorem 1.1 is given in Section 3 below. This proof is similar to
that of Theorem 1.1 in the corresponding paper on the unit sphere [19], except for
two key points of difference:
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1. The normalized mean potential function

Φ
(s)
M (x) :=

∫
M

U (s) (dist(x,y))dσM(y)

may vary with x, unlike the case of the sphere, where the corresponding mean
potential function is a constant.

2. The volume of a geodesic ball in general does not behave in exactly the same way
as the volume of a spherical cap. Luckily the appropriate estimate is good enough
to obtain the result.

Blümlinger [3, Lemma 2] gives an estimate related to the Bishop-Gromov in-
equality [2, 11.10, pp. 253–257] [13, Lemma 5.3bis pp. 65–66] [14, Lemma 5.3bis
pp. 275–277]. In the notation used here, Blümlinger’s estimate states:

Let M be a compact connected d-dimensional Riemannian manifold. Then

λM
(
B(x,r)

)
Vd(r)

−1 = O(r2) (4)

(as r→ 0) uniformly in M, where x ∈ M and Vd(r) is the volume of the Euclidean
ball of radius r in Rd . That is, the unnormalized volume of a small enough geodesic
ball in M is similar to the volume of a ball of the same radius in Rd , to the order of
the square of the radius.

Remark 1.2 Flatto and Newman [12, Theorem 2.3 and Remarks] prove a similar re-
sult, with an estimate of order O(r) for C4 manifolds, and order O(r2) for C5 mani-
folds.

The proof of Lemma 2 in Blümlinger’s paper [3] makes it clear that the order
estimate is valid for r < R0, where R0 is the injectivity radius of M [2, Lemma 3,
Section 8.2, p. 153] [21, Definition 4.12, p. 110]. Thus, Blümlinger’s estimate can be
restated as the following result.

Lemma 1.3 Let M be a compact connected d-dimensional Riemannian manifold,
and let R0 be the injectivity radius of M. There exists a real positive constant C0 such
that for r ∈ (0,R0) and any x ∈M,∣∣∣∣∣λM

(
B(x,r)

)
Vd(r)

−1

∣∣∣∣∣6C0r2. (5)

2 Notation and results used in the proof of Theorem 1.1

The proof of Theorem 1.1 needs some notation and a few results, which are stated
here.

Firstly note that this paper, in common with the previous paper [19] uses “big-Oh”
and “big-Omega” notation with inequalities in a somewhat unusual way, to avoid a
proliferation of unknown constants. For upper bounds, when we say that

f (n)6 g(n)+O
(
h(n)

)
as n→ ∞,
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we mean that there exist positive constants C and M such that

f (n)6 g(n)+C
(
h(n)

)
for all n > M.

For lower bounds, when we say that

f (n)> g(n)+Ω
(
h(n)

)
as n→ ∞,

we mean that there exist positive constants C and M such that

f (n)> g(n)+C
(
h(n)

)
for all n > M.

If more than one O or Ω expression is used in an inequality, the implied constants
may be different from each other.

The next two results follow from Blümlinger’s estimate.

Lemma 2.1 Let M be a compact connected d-dimensional Riemannian manifold.
There is a radius R1 > 0 and parameters 0 < CL < CH , depending on R1, such that
for all x ∈M and all r ∈ (0,R1),

CL rd 6 σM (B(x,r))6CH rd . (6)

The ratio CH/CL can be made arbitrarily close to 1 by taking R1 arbitrarily close to
0.

Proof Let R0 > 0 be the injectivity radius of M, so that Blümlinger’s estimate (5)
holds for r ∈ (0,R0). Note that for each d, Vd(r) = cdrd , where cd := Vd(1) > 0. It
follows that for all r ∈ (0,R0) the estimate

cdrd(1−C0r2)6 λM
(
B(x,r)

)
6 cdrd(1+C0r2) (7)

holds for some C0 > 0. Let R1 ∈ (0,R0) satisfy C0R2
1 < 1 so that the lower bound in

the estimate (7) is positive for r ∈ (0,R1). It follows that for all r ∈ (0,R1),

0 <
cd(1−C0R2

1)

λM(M)
rd 6 λM

(
B(x,r)

)
6

cd(1+C0R2
1)

λM(M)
rd .

The estimate (6) therefore holds for R1 as above, CL := cd(1−C0R2
1)/λM(M), and

CH := cd(1+C0R2
1)/λM(M). In this case,

CH

CL
=

1+C0R2
1

1−C0R2
1
→ 1, as R1→ 0. ut

Lemma 2.2 Let M be a compact connected d-dimensional Riemannian manifold.
For x ∈M and real r > t > 0 let nM(x,r, t) be the maximum number of geodesic balls
of radius t that can be contained in the ball B(x,r). Then there is a radius R2 and a
constant C2 such that for all x ∈M, r ∈ (0,R2), and q ∈ (0,r),

nM(x,r+q/2,q/2)6C2 (r/q)d . (8)
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In other words, for small enough real positive r, for 0 < q < r, the maximum number
of geodesic balls of radius q/2 that can be contained in a geodesic ball of radius
r+q/2 is of order O(r/q)d , uniformly in M.

Proof The total volume of the small balls cannot be greater than the volume of the
large ball containing them. Using Lemma 2.1, it therefore holds for 0< q< r 6 2R1/3
that

nm(x,r+q/2,q/2)6
maxy∈M σM

(
B(y,r+q/2)

)
minz∈M σM

(
B(z,q/2)

)
6 2d CH

CL

(
1+

q
2r

)d
(r/q)d 6 3d CH

CL
(r/q)d .

Thus (8) holds with R2 := 2R1/3 and C2 := 3dCH/CL. ut

The remaining lemmas in this Section as well as the proof of Theorem 1.1 make
use of the following definitions.

For x ∈M, real radius r > 0, and integrable f : B(x,r)→ R, the normalized inte-
gral of f on the geodesic ball B(x,r) is

IB(x,r) f :=
∫

B(x,r)
f (y)dσM(y).

For integrable f : M→ R the mean of f on M is

IM f :=
∫

M
f (y)dσM(y).

For a function f : M→ R that is finite on the M-code X , the mean of f on X is

IX f :=
∫

M
f (y)dσX (y) =

1
|X | ∑y∈X

f (y).

For an M-code X , a point x ∈M and a measurable subset S ⊂M, the punctured
normalized counting measure of S with respect to X, excluding x is

σ
[x]
X (S) := |S∩X \{x}|/ |X | ,

and for a function f : M→ R that is finite on X \ {x}, the corresponding punctured
mean is

I
[x]

X f :=
∫

M
f (y)dσ

[x]
X (y) =

1
|X | ∑y∈X

y6=x

f (y).

Note the division by |X | rather than |X |−1.
The kernel U (s)

(
dist(x,y)

)
= dist(x,y)−s is called the Riesz s-kernel. For a

point x ∈M, define the function U (s)
x : M \{x}→ R as

U (s)
x (y) :=U (s)(dist(x,y)).
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The mean Riesz s-potential at x with respect to M is then

Φ
(s)
M (x) = IMU (s)

x , (9)

and the normalized energy of the Riesz s-potential on M is

EM U (s) = IMΦ
(s)
M =

∫
M

∫
M
dist(x,y)−s dσM(y)dσM(x).

For an M-code X , the mean Riesz s-potential at x with respect to X but excluding
x is

Φ
(s)
X (x) := I

[x]
X U (s)

x ,

the normalized energy of the Riesz s-potential on X is

EX U (s) = IX Φ
(s)
X =

1

|X |2 ∑
x∈X

∑
y∈X
y6=x

dist(x,y)−s,

and the mean on X of the mean Riesz s-potential is

IX Φ
(s)
M =

1
|X | ∑x∈X

∫
M
dist(x,y)−s dσM(y).

The following bound is used in the proof of Theorem 1.1.

Lemma 2.3 Let M be a compact connected d-dimensional Riemannian manifold.
Then for the radius R1 as per Lemma 2.1, there is a constant C3 such that for all
x ∈M and r ∈ (0,R1), the normalized integral of the function U (s)

x is bounded as

IB(x,r)U
(s)
x 6C3rd−s. (10)

Proof Fix x ∈M, and let VM(r) := σM
(
B(x,r)

)
. Then for r ∈ (0,R1), the following

equations and inequality hold,

IB(x,r)U
(s)
x =

∫
B(x,r)

dist(x,y)−s dσM(y) =
∫ r

0
t−s dVM(t)

= r−sVM(r)+ s
∫ r

0
t−s−1VM(t)dt

6C1rd−s + s
∫ r

0
C1td−s−1 dt =C1

d
d− s

rd−s,

where the inequality is a result of Blümlinger’s estimate. Thus the estimate (10) is
satisfied for C3 =C1 d/(d− s). ut

The proof of Theorem 1.1 uses the continuity of the mean Riesz s-potential, as
shown by the following lemma.

Lemma 2.4 Let M be a compact connected d-dimensional Riemannian manifold.
Then for s ∈ (0,d), the mean Riesz s-potential Φ

(s)
M defined by (9) is continuous on

M.
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Proof We show that the mean Riesz s-potential Φ
(s)
M is continuous by using the

method of proof of Kellogg [17, p. 150-151].
Let x ∈ M and recall that Φ

(s)
M (x) = IMU (s)

x . Let x′ be another point of M and
consider the ball B′r := B(x′,r), for some r ∈ (0,R1/3) where R1 is a suitable radius
as per Lemma 2.1. Consider Φ

(s)
B′r
(x) := IB′rU

(s)
x . Either dist(x,x′) 6 2r, in which

case x′ ∈ B(x,2r) so that

IB′rU
(s)
x < IB(x,3r)U

(s)
x 6 3d−s C3 rd−s

as per Lemma 2.3, or dist(x,x′)> 2r, so that

IB′rU
(s)
x 6 (2r)−s CHrd = 2−s CHrd−s,

as per Lemma 2.1. Therefore Φ
(s)
B′r
→ 0 uniformly on M as r→ 0.

So, given ε > 0 we can take r small enough that Φ
(s)
B′r
(x)< ε/2 for all x ∈M, and

therefore Φ
(s)
B′r
(x′)< ε/2, so∣∣∣IB′r

(
U (s)

x −U ′(s)x

)∣∣∣< ε/2.

With B′r fixed, there is a distance t > 0 such that when dist(x,x′)6 t, we have∣∣∣U (s)
x (y)−U ′(s)x (y)

∣∣∣= ∣∣dist(x,y)−s−dist(x′,y)−s∣∣6 ε/2

for all y ∈M \B′r. In this case∣∣∣IM\B′r

(
U (s)

x −U ′(s)x

)∣∣∣6 IM\B′r

∣∣∣U (s)
x −U ′(s)x

∣∣∣< ε/2.

Therefore
∣∣∣IM

(
U (s)

x −U ′(s)x

)∣∣∣6 ε whenever dist(x,x′)6 t. ut

3 Proof of Theorem 1.1

Fix the manifold M and therefore fix d. Fix s ∈ (0,d), and drop all superscripts (s)
from the notation, where this does not cause confusion. Fix a sequence X having the
required properties. Fix `, drop all subscripts `, and examine the spherical code X :=
{x1, . . . ,xN}, so that |X | = N. The notation of the proof also uses the abbreviations
∆ := ∆(N), δ := δ (N).

The first observation is that(
EX`
−EM

)
U = IX ΦX −IMΦM

= (IX ΦX −IX ΦM)+(IX ΦM−IMΦM)

= IX (ΦX −ΦM)+(IX −IM)ΦM.

Since ΦM is continuous on M as per Lemma 2.4, and since the sequence X is asymp-
totically equidistributed, the term (IX −IM)ΦM converges to 0 as N→ ∞.
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The remainder of the proof concentrates on the convergence to 0 of the term
IX (ΦX −ΦM). Since

IX (ΦX −ΦM) =
1
N ∑

x∈X
(ΦX (x)−ΦM(x)) (11)

the proof proceeds by placing a uniform bound on the net mean potential ΦX (x)−
ΦM(x) at x∈ X . We express this net mean potential as a difference between Riemann-
Stieltjes integrals, then integrate by parts.

Fix x∈X . The volume of the ball B(x,r) with respect to the punctured normalized
counting measure σ

[x]
X is

V
[x]

X := σ
[x]
X (B(x,r)) =

|B(x,r)∩X |−1
N

.

Using VM(r) := σM
(
B(x,r)

)
to denote the volume of B(x,r) with respect to the mea-

sure σM, and integrating by parts, yields

ΦX (x)−ΦM(x) = I
[x]

X Ux−IMUx

=
∫

M
U (dist(x,y)) dσ

[x]
X (y)−

∫
M

U (dist(x,y)) dσM(y).

=
∫

∞

0
r−s dV

[x]
X (r)−

∫
∞

0
r−s dVM(r)

=
∫

∞

0
sr−s−1 V

[x]
X (r)dr−

∫
∞

0
sr−s−1 VM(r)dr

=
∫

∞

0
sr−s−1 (V [x]

X (r)−VM(r)
)

dr. (12)

The next step consists of bounding V
[x]

X (r)−VM(r) above and below. Each of
V

[x]
X (r) and VM(r) have a number of bounds that apply for different values of r.

For VM(r), since σM is a probability measure on M, VM(r)= 1 when r > diam(M).
For r < R1, the bounds given by Lemma 2.1 apply.

For V
[x]

X (r), since σX is also a probability on M, V
[x]

X (r) = (N−1)/N when r >
diam(M). and since the minimum distance between points of X is bounded below by
∆ , V

[x]
X (r) = 0 when r < ∆ . For r ∈

[
∆ ,diam(M)

)
, the properties of X yield bounds

on V
[x]

X (r).

Upper bound

Because the minimum distance between points of X is bounded below by ∆ , each
point of X can be placed in a ball of radius ∆/2, with no two balls overlapping.
Lemma 2.2 then implies that for r < R2,

|B(x,r)∩X |= nM(x,r+∆/2,∆/2)6C2 (r/∆)d ,
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and so

V
[x]

X (r)6C2 ∆
−dN−1rd−N−1. (13)

Since the normalized spherical cap discrepancy D(X) is bounded above by δ , it
is also true that for 0 < r < diam(X),

−δ 6 V
[x]

X (r)−VM(r)+N−1 6 δ ,

and, for 0 < r < R1, as a result of Lemma 2.1,

V
[x]

X (r)6CH rd +δ −N−1. (14)

Let ρ denote the radius where the two upper bounds (13) and (14) are equal. Thus
ρ is the solution of the equation

C2 ∆
−dN−1

ρ
d−N−1 =CH ρ

d +δ −N−1.

This is given by

ρ =

(
1

C2−CH ∆ dN

)1/d

δ
1/d

∆N1/d . (15)

It follows from Lemma 2.1 and the proof of Lemma 2.2 that C2 > 3d . From Lemma 2.1
it also follows that

CL ∆
d 6 2d

σM
(
B(x,∆/2)

)
for all x ∈ X , and so

CL ∆
dN 6 2d

∑
x∈X

σM
(
B(x,∆/2)

)
6 2d

σM(M) = 2d ,

since the N balls of radius ∆/2 do not overlap. By making R1 small enough, CH/CL
can be made arbitrarily close to 1, and then C2 −CH ∆ dN is positive. Since C2 −
CH ∆ dN <C2 and since ∆ d N = O(1), this results in the order estimate

ρ =Θ
(

δ
1/d ). (16)

Therefore since δ → 0, this implies that ρ → 0. Thus it is possible to set R1 small
enough that the estimates used in (15) are valid for large enough N. Also, δ N is at
least Ω(1). Therefore 0 < ∆ < ρ < R1, for N sufficiently large.

The upper bounds for V
[x]

X (r)−VM(r) therefore split into the cases

V
[x]

X (r)−VM(r)6


−CLrd , r ∈ [0,∆ ],

(C2 ∆−dN−1−CL)rd−N−1, r ∈ (∆ ,ρ),

δ −N−1, r ∈ [ρ,diam(M)),

−N−1, r > diam(M).
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Substitution back into (12) results in the upper bound

ΦX (x)−ΦM(x) =
∫

∞

0
sr−s−1 (V [x]

X (r)−VM(r)
)

dr

6−CL s
∫

∆

0
rd−s−1 dr + (C2 ∆

−dN−1−CL) s
∫

ρ

∆

rd−s−1 dr

+δ

∫ diam(M)

ρ

sr−s−1 dr − N−1
∫

∞

∆

sr−s−1 dr

=−CL
s

d− s
∆

d−s +
(

C2 ∆
−dN−1−CL

) s
d− s

(
ρ

d−s−∆
d−s
)

+δ
(
ρ
−s−diam(M)−s)−N−1

∆
−s.

Substituting the order estimate for ρ from (16) and noting that ∆ d N = O(1) and
δ N is at least Ω(1), results in the upper bound

ΦX (x)−ΦM(x)6 O(∆ d−s)+O(δ 1−s/d) = O(δ 1−s/d). (17)

Lower bound

Define the radius τ by CLτd = δ +N−1. Since δ >N−1 and since δ N is at least Ω(1),

τ =Θ
(

δ
1/d ). (18)

Since ∆ = O(N−1/d) and since δ → 0, we must therefore have

0 < ∆ < τ < diam(M),

for N sufficiently large.
Using arguments similar to those for the upper bound results in the cases

V
[x]

X (r)−VM(r)>


−CHrd , r ∈ [0,τ],
−δ −N−1, r ∈ (τ,diam(M)),

−N−1, r > diam(M).

This lower bound is independent of the code point x. Substitution back into (12)
results in the lower bound

ΦX (x)−ΦM(x) =
∫

∞

0
sr−s−1 (V [x]

X (r)−VM(r)
)

dr

>−CH s
∫

τ

0
rd−s−1 dr+δ

∫ diam(M)

τ

sr−s−1 dr−N−1
∫

∞

τ

sr−s−1 dr

=−CH
s

d− s
τ

d−s +δ
(
τ
−s−diam(M)−s)−N−1

τ
−s.

Similarly to the argument for the upper bound, and using (18), this results in the lower
bound

ΦX (x)−ΦM(x)>−
(

O(τd−s)+O(N−1
τ
−s)
)
=−

(
O(δ 1−s/d)

)
. (19)
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Final result

When the upper bound (17) is combined with the lower bound (19), this results in the
overall order estimate

|ΦX (x)−ΦM(x)|6 O(δ 1−s/d).

Therefore, recalling the sum (11), this shows that IX (ΦX −ΦM) converges to 0 as
N → ∞. Since it has already been established that (IX −IM)ΦM converges to 0 as
N→ ∞, this proves Theorem 1.1. ut

4 Discussion

Theorem 1.1 demonstrates the convergence of the normalized Riesz s-energy of a
well separated, equidistributed sequence of M-codes on a compact connected d-dim-
ensional Riemannian manifold M to the energy given by the double integral of the
normalized volume measure on M, if 0 < s < d, but it does not give an estimate of the
rate of convergence. If the manifold M had a Koksma-Hlawka-type inequality for the
ball discrepancy δ with a function space FM containing the function ΦM, the estimate

|(IX −IM)ΦM|6 δ V
(
ΦM
)

would hold for some appropriate functional V on the space FM. Unfortunately, not
much is known about Koksma-Hlawka type inequalities for geodesic balls on com-
pact connected Riemannian manifolds, with the exception of the sphere Sd [6, Section
3.2, p. 490] [7, Proposition 20].

The papers by Brandolini et al. [4,5] examine Koskma-Hlawka type inequalities
on compact Riemannian manifolds. The main results of these two papers concern
discrepancies which are not in general the same as the geodesic ball discrepancy, but
they do suggest directions for further research.

Further research could address the following questions.

1. For a compact connected Riemannian manifold M, without boundary, for what
linear spaces FM does a Koksma-Hlawka type inequality

|(IX −IM) f |6 D(X) V ( f ) (20)

hold for all f ∈FM, where the relevant discrepancy in the inequality is the geodesic
ball discrepancy?

2. What is the appropriate functional V in (20)? Is V a norm or a semi-norm on the
function space FM?

3. For which compact connected Riemannian manifolds M does the Koksma-Hlawka
function space FM contain the mean potential function ΦM?

4. Is there another approach to bounding the rate of convergence of the term (IX −
IM)ΦM that does not involve generalizations of the Koksma-Hlawka inequality?
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Finally, no mention has yet been made of constructions for, or even the existence
of, well separated, admissible sequences on compact connected Riemannian mani-
folds.

The case of the unit sphere Sd has been well studied [19] and a number of con-
structions are known, including one that uses a partition of the sphere into regions of
equal volume and bounded diameter [18].

Damelin et al. have studied the discrepancy and energy of finite sets contained
within measurable subsets of Hausdorff dimension d embedded in a higher dimen-
sional Euclidean space, where the energy and discrepancy are both defined via an
admissible kernel [9]. One of their key results is to express the discrepancy of a fi-
nite set with respect to an equilibrium measure as the square root of the difference
between the energy of the finite set and the energy of the equilibrium measure [9,
Corollary 10]. They have also studied the special case where both the measurable
subset and the kernel are invariant under the action of a group [9, Section 4.3]. This
case includes compact homogenous manifolds [10].

The methods of Damelin et al. might be used to prove the equidistibution of a
sequence of M-codes X ∗, where each code X∗` has the minimum Riesz s-energy of
all codes of cardinality

∣∣X∗` ∣∣ . Much care must be taken: although their definition of
an admissible kernel includes the Riesz s-kernels as defined in this paper [9, Section
2.1], their definitions and results are framed in terms of sets embedded in Euclidean
space, their definition of discrepancy is given in terms of a norm depending on the
kernel [9, (8)], the measure used in their Corollary 10 is the equilibrium measure,
not the uniform measure, and their definition of energy includes the diagonal terms
excluded in this paper, so that the energy of the Riesz s-kernel on a finite set is infi-
nite [9, (5) and Section 3].

Brandolini et al. [4, p. 2] give an example where the existence of a partition of
the manifold M into N regions, each with volume N−1 and diameter at most cN−1/d ,
yields an M-code X obtained by selecting one point from each region, and this gives a
bound on the quadrature error of the code X with respect to bounded functions on the
manifold M. Such a partition might be constructed by adapting the modified Feige-
Schechtman partition algorithm for the unit sphere [11] [18, 3.11.4, pp. 145-148].
Care must be taken to adapt the algorithm, in particular to choose an appropriate
radius for the initial saturated packing of the manifold M by balls of a fixed radius.
Also, it would need to be proven that the adapted algorithm works for all compact
connected Riemannian manifolds and all cardinalities N.

In any case, the existence and construction of equidistributed sequences is only
one part of the problem. The sequences relevant to Theorem 1.1 must also be well
separated. Further research is needed to address this.
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