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Subjects with parallel 40+ year histories

Finite Element Method

M. Zlámal, On the finite element method. Numer. Math., 12,
1968, pp. 394-409.

Clifford analysis

D. Hestenes, Multivector calculus. J. Math. Anal. and Appl., 24:2,
1968, pp. 313-325.
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More recent developments

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior
calculus, homological techniques, and applications. Acta
Numerica, 15, 2006, pp. 1-155.

D. N. Arnold, R. S. Falk and R. Winther, Finite element exterior
calculus: from Hodge theory to numerical stability. Bull. Amer.
Math. Soc. 47, 2010, pp. 281-354.

M. Holst and A. Stern, Geometric variational crimes: Hilbert
complexes, Finite element exterior calculus, and problems on
hypersurfaces. Found. Comput. Math. 12, 2012, pp. 263-293.
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Finite Element Exterior Calculus

Finite Element Method

The Finite Element Method solves boundary value problems based
on partial differential equations.

The original problem in a Hilbert space of functions is put into
variational form, and is mapped into a problem defined on a finite
dimensional function space, whose basis consists of functions
supported in small regions, such as simplices.

(Iserles 1996; Braess 2001).
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Finite element exterior calculus (FEEC)

FEEC is based on the Finite Element Method over Hilbert
complexes. These are cochain complexes where the relevant vector
spaces are Hilbert spaces.

For the de Rham complex, FEEC uses Hodge decomposition, the
exterior derivative and differential forms.

The numerical stability of the FEEC discretization depends on the
existence of a bounded cochain projection from a Hilbert complex
to a subcomplex. FEEC uses smoothed projections to obtain this
numerical stability.

(Arnold, Falk and Winther 2006, 2010; Christiansen and Winther 2008)
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Hodge decomposition of differential forms

If (M, g) is an oriented, compact Riemannian manifold, then each space
of smooth k-forms has an L2-inner product,

〈u, v〉L2Ωk(M) =

∫
M

〈u, v〉g volg =

∫
M

u ∧ ?gv.

This gives an adjoint operator d∗k : Ωk(M)→ Ωk−1(M) for each k.

The Hodge decomposition says that each f ∈ L2Ωk(M) can be

orthogonally decomposed as f = dα+ d∗β + γ, where dγ = 0, d∗γ = 0.

(Arnold, Falk and Winther 2006, 2010)
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Hilbert complexes
Definition

A Hilbert complex (W, d) consists of:

I a sequence of Hilbert spaces W k, and

I closed, densely-defined linear maps
dk : V k ⊂W k → V k+1 ⊂W k+1, (possibly unbounded) such that
dk ◦ dk−1 = 0 for each k.

The complex is closed if each dk has closed image dkV k ⊂W k+1, and
bounded if dk ∈ L(W k,W k+1).

Definition

Given a Hilbert complex (W, d), the domain complex (V,d) consists of
the domains V k ⊂W k, endowed with the graph inner product

〈u, v〉V k = 〈u, v〉Wk + 〈dku,dkv〉Wk+1

(Arnold, Falk and Winther 2006, 2010)
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Hodge theory for closed Hilbert complexes
Definition

Given a Hilbert complex (W, d),

I Zk = kerdk (closed k-forms), Z∗k = kerd∗k (coclosed k-forms),

I Bk = dk−1V k−1 (exact k-forms), B∗k = d∗k+1V
∗
k+1 (coexact

k-forms),

I Hk = Zk ∩Bk⊥ = Zk ∩ Z∗k (harmonic k-forms) ∼= Zk/Bk (kth
cohomology)

Theorem (abstract Hodge decomposition)

If (W, d) is a closed Hilbert complex with domain complex (V,d), then

W k = Bk ⊕ Hk ⊕B∗k,

V k = Bk ⊕ Hk ⊕ Zk⊥.

(Arnold, Falk and Winther 2006, 2010)
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The abstract Poincaré inequality
Theorem
If (V, d) is a bounded, closed Hilbert complex, then there exists a Poincaré
constant cP such that

‖v‖V 6 cP

∥∥∥dkv
∥∥∥
V
,∀v ∈ Zk⊥.

Proof
The map dk is a V -bounded bijection from Zk⊥ to Bk+1, which are both
closed subspaces. The result follows by Banach’s bounded inverse theorem.

Example

Let U ⊂ Rn be bounded and connected with Lipschitz boundary, and take
V 0 = H1(U). Since Z0 ⊂ H1(U) consists of the constant functions, this
recovers the classical Poincaré inequality,

‖v‖H1(U) 6 cP

∥∥∥dkv
∥∥∥
L2(U)

,∀v ∈ H1(U) :

∫
U

v(x)dx = 0.

(Arnold, Falk and Winther 2006, 2010)
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The abstract Hodge Laplacian
The abstract Hodge Laplacian is the operator L = dd∗ + d∗d, which is
an unbounded operator W k →W k with domain

DL =
{
u ∈ V k ∩ V ∗k | du ∈ V ∗k+1,d

∗u ∈ V k−1
}
.

We wish to solve the problem Lu = f.

Example

For the de Rham complex on U ⊂ R3, we have the vector proxies:

L0 = 0− div grad,

L1 = −grad div + curl curl,

L2 = curl curl− grad div,

L3 = −div grad + 0.

(Arnold, Falk and Winther 2006, 2010)
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Variational problem for the abstract Hodge Laplacian

If u ∈ DL solves Lu = f, then it satisfies the variational principle

〈du,dv〉+ 〈d∗u,d∗v〉 = 〈f, v〉, ∀v ∈ V k ∩ V ∗k .

It can be hard to construct finite elements for the intersection space
V k ∩ V ∗k , and there is also an existence and uniqueness problem.
If v ∈ Hk, then

〈du,dv〉+ 〈d∗u,d∗v〉 = 0,

so a solution exists only if f⊥Hk. Also, for any q ∈ Hk,

〈d(u+ q), dv〉+ 〈d∗(u+ q),d∗v〉 = 〈du,dv〉+ 〈d∗u,d∗v〉,

so the solution is not unique when Hk 6= {0}.
Therefore, we solve the problem:

σ = d∗u, dσ + d∗du+ p = f, p ∈ Hk, u ∈ Hk⊥.

(Arnold, Falk and Winther 2006, 2010)
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Mixed variational problem for the abstract Hodge Laplacian

Find (σ, u, p) ∈ V k−1 × V k × Hk satisfying

〈σ, τ〉 − 〈u,dτ〉 = 0, ∀v ∈ V k−1,

〈dσ, v〉+ 〈du,dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V k,
〈u, q〉 = 0, ∀q ∈ Hk.

The solution computes the Hodge decomposition,

f = dσ + d∗du+ p.

Theorem (Arnold, Falk, Winther, 2010, Th. 3.1)

Let (W,d) be a closed Hilbert complex with domain complex (V, d). The
mixed formulation of the abstract Hodge Laplacian is well-posed, i.e., the
unique solution (σ, u, p) satisfies

‖σ‖V + ‖u‖V + ‖p‖W 6 c ‖f‖W .

(Arnold, Falk and Winther 2006, 2010)
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The problem on a finite-dimensional subcomplex

A Hilbert subcomplex Vh ⊂ V is a sequence of Hilbert subspaces
V h
h ⊂ V k, such that the inclusions ikh : V k

h → V k are unitary and
commute with the differentials. We also assume that these are
equipped with bounded projections, πkh : V k → V k

h , which also
commute with the differentials.
Find (σh, uh, ph) ∈ V k−1

h × V k
h × Hk

h satisfying

〈σh, τ〉 − 〈uh, dτ〉 = 0, ∀v ∈ V k−1
h ,

〈dσh, v〉+ 〈duh, dv〉+ 〈ph, v〉 = 〈f, v〉, ∀v ∈ V k
h ,

〈uh, q〉 = 0, ∀q ∈ Hk
h.

(Arnold, Falk and Winther 2006, 2010)
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Error estimate for the Hodge–Laplace problem

Theorem (Arnold, Falk, Winther, 2006, Th. 7.4)

If (σ, u, p) is the solution of the continuous problem, and
(σh, uh, ph) is the solution of the discrete problem, and if the
projections πh are V -bounded uniformly, independently of h, then
the error can be estimated by

‖σ − σh‖V + ‖u− uh‖V + ‖p− ph‖W

6 C

(
inf
τ∈Vh

‖σ − τ‖+ inf
v∈Vh

‖u− v‖+ inf
q∈Vh

‖p− q‖W + µ inf
v∈Vh

‖PBu− v‖
)
,

where µ := supr∈H,‖r‖=1 ‖(1− πh)r‖ , and where C depends only on
the Poincaré constant cP .

(Arnold, Falk and Winther 2006, 2010)



Hodge–Dirac discretization

Discretization of the Hodge–Dirac operator

An abstract Hodge–Dirac problem: setting

Let (W, d) be a closed Hilbert complex with domain complex
(V,d). In V, we use the inner product

〈u, v〉V := 〈u, v〉+ 〈du,dv〉.

We use the orthogonal Hodge decomposition

W = B⊕ H⊕B∗,

u = uB ⊕ uH ⊕ uB∗ , ∀u ∈W.

where V ∈W is the domain of d, B is the range of d,
and Z is the null space of d.
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An abstract Hodge–Dirac problem

We want to solve the problem (d + d∗)u = f − fH, where d + d∗ is
the abstract Hodge–Dirac operator.
Consider the following mixed variational problem:
Find (u, p) ∈ V × H satisfying

〈du, v〉+ 〈u,dv〉+ 〈p, v〉 = 〈f, v〉, ∀v ∈ V, (1)

〈u, q〉 = 0, ∀q ∈ H.

To show that this problem is well-posed, it suffices to prove the
inf-sup condition for the symmetric bilinear form

B(u, p; v, q) := 〈du, v〉+ 〈u,dv〉+ 〈p, v〉+ 〈u, q〉

on V × H.



Hodge–Dirac discretization

Discretization of the Hodge–Dirac operator

The problem is well-posed

Theorem

There exists a constant γ > 0, depending only on the Poincaré
constant cP , such that for all non-zero (u, p) ∈ V × H, there exists
non-zero (v, q) ∈ V × H such that

B(u, p; v, q) ≥ γ(‖u‖V + ‖p‖)(‖v‖V + ‖q‖).

Proof (hint). Consider the test functions

v := ρ+ p+ du, q := uH,

where ρ ∈ Z⊥ is the unique element such that dρ = uB.
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A corresponding discrete problem

Suppose Vh ⊂ V is a Hilbert subcomplex, with a bounded cochain
projection πh : V → Vh.

Consider the discrete problem:

Find (uh, ph) ∈ Vh × Hh satisfying

〈duh, vh〉+ 〈uh, dvh〉+ 〈ph, vh〉 = 〈f, vh〉, ∀vh ∈ Vh, (2)

〈uh, qh〉 = 0, ∀qh ∈ Hh.

This problem is well-posed, with a discrete inf-sup condition, where
the constant γh depends only on cP and the norm ‖πh‖.
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An error estimate

Theorem

Let (u, p) be the solution to (1) and (uh, ph) be the solution to
(2). If the projections πh are V -bounded uniformly, independently
of h, then the error can be estimated by

‖u− uh‖V + ‖p− ph‖

6 C

(
inf
v∈Vh

‖u− v‖+ inf
q∈Vh

‖p− q‖+ µ inf
v∈Vh

‖PBu− v‖
)
,

where

µ := sup
r∈H,‖r‖=1

‖(1− πh)r‖ ,

and where C depends only on the Poincaré constant cP .



Hodge–Dirac discretization

Discretization of the Hodge–Dirac operator

Relationship to the discrete Hodge Laplacian

We can solve the discrete Hodge–Laplace equation by first
obtaining the solution (uh, ph) ∈ Vh × Hh of the Hodge–Dirac
equation for f , then obtaining the solution (wh, 0) ∈ Vh × Hh of
the Hodge–Dirac equation for uh.

Corollary

Convergence of solution of discrete Hodge–Laplace equation.
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Further considerations

Arnold, Falk and Winther define finite dimensional k-form spaces
based on polynomials defined piecewise on simplices of the
appropriate dimension. For Clifford-valued functions, we would use
the direct sum of the appropriate spaces selected from those of
Arnold, Falk and Winther.

Finite element exterior calculus uses bounded cochain projections
to map from the continuous problem to the discrete problem. We
would use the corresponding direct sum of these same projections.

On an embedded Riemannian manifold, subdivision into Euclidean
simplices may introduce geometric errors. Holst and Stern (2012)
have addressed this issue with their work on geometric variational
crimes. This idea should also apply to various Dirac operators on
Riemannian manifolds, but is yet to be tried.
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