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Restricted amicability /anti-amicability graphs

Let A,, be the graph whose vertices are the n? = 4™ canonical
basis matrices of the real representation of the Clifford algebra
Ryn,m, with each edge having one of two colours, red and blue:

» Matrices A; and A}, are connected by a red edge if they have
disjoint support and are anti-amicable.

» Matrices A; and Ay are connected by a blue edge if they have
disjoint support and are amicable.

» Otherwise there is no edge between A; and Aj.

We call A, the restricted amicability / anti-amicability graph of
the Clifford algebra Ry, .

(L 2014)
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Results

Theorem 1

(L 2014)
The graph of anti-amicability of the canonical basis matrices of the
neutral Clifford algebra R,,, ,, is strongly regular with parameters

(l/, k‘, A= #) —_ (4m, 22m—1 _ 2m—1’ 22m—2 _ Qm—l)‘

Theorem 2

The graph of amicability with disjoint support of the canonical
basis matrices of the neutral Clifford algebra Ry, ,,, is also strongly
regular with the same parameters as those in Theorem 1.
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The graphs from Theorem 1 and Theorem 2 are
the red and the blue subgraphs of A,,.
They are isomorphic.
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Overview

v

What led to this investigation?
» Key concepts.

Constructions.

v

Proof of Theorem 2.

v

v

Conclusion and open question.
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Motivation

Anti-amicability of 4 x 4 Hadamard matrices: 24 components.

(L 2014)
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A long history and a deep literature

» Difference sets.
Bruck (1955), Hall (1956), Menon (1960, 1962),
Mann (1965), Turyn (1965), Baumert (1969),
Dembowski (1969), McFarlane (1973), Dillon (1974),
Kantor (1975, 1985), Ma (1994), ...

» Bent functions.
Dillon (1974), Rothaus (1976), Canteaut et al. (2001),
Canteaut and Charpin (2003), Dempwolff (2006),
Tokareva (2011), ...

» Strongly regular graphs.
Brouwer, Cohen and Neumaier (1989), Ma (1994),
Bernasconi and Codenotti (1999),
Bernasconi, Codenotti and VanderKam (2001) ...
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Difference sets

The k-element set D is a (v, k, A\,n) difference set in an abelian
group G of order v if for every non-zero element g in G,
the equation g = d; — d; has exactly X solutions (d;, d;)

with d;, d; in D.

The parameter n := k — \.

(Dillon 1974).
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Hadamard difference sets

A (v, k, A\, n) difference set with v = 4n is called a
Hadamard difference set.

(Menon 1962)

A Hadamard difference set has parameters of the form

(v,k, A\, n) = (4N%,2N2 — N,N% — N, N?)
or (4N?,2N? + N,N? + N,N?).

(Menon 1962, Dillon 1974).
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Hadamard transforms

H,,, the Sylvester Hadamard matrix of order 2™, is defined by

Hl;:|:1 i:|, H, :=H,_1® Hy, form>1.

For a boolean function f : Z5* — Z, define the vector [f] by
A= (=170, (=10, .., (-1 e DT,
where f(i) uses the binary expansion of .
The Hadamard transform of f is the vector Hy,|[f].

(Dillon 1974)
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Bent functions

The Boolean function f : Z5* — Zs is bent
if its Hadamard transform has constant magnitude:
|H,[f]] = CI[1,...,1]T for some constant C.
Each bent function f on Z3' has a dual function fgiven by

(Hplf])i =: 2™/2(=1)70),

(Dillon 1974, Tokareva 2011)
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Bent functions and Hadamard difference sets

Lemma 4

(Dillon 1974, Theorem 6.2.2)

The Boolean function f : 75' — Zs is bent
if and only if the set f~*(1) is a Hadamard difference set.

Lemma 5
(Dillon 1974, Remark 6.2.4)

Bent functions exist on Z3' only when m is even.

(Dillon 1974)
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Strongly regular graphs

A simple graph I' of order v is strongly regular with parameters
(v, k, A, ) if
> each vertex has degree k,

» each adjacent pair of vertices has A common neighbours, and

» each nonadjacent pair of vertices has 1 common neighbours.

(Brouwer, Cohen and Neumaier 1989)
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Bent functions and strongly regular graphs

The Cayley graph of a binary function f : Z5' — Zo is
the undirected graph with adjacency matrix F' given by
F; ; = f(9i + gj), for some ordering (g1, g2, ...) of Z3".

Lemma 6

(Bernasconi and Codenotti 1999, Lemma 12)
The Cayley graph of a bent function on Z3* is
a strongly regular graph with A = pu.

Lemma 7

(Bernasconi, Codenotti and VanderKam 2001, Theorem 3)
Bent functions are the only binary functions on Z3"
whose Cayley graph is a strongly regular graph with A\ = p.
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The groups G;; and Z3

The 2 x 2 orthogonal matrices

am|; ]|t

generate the group G1,1 of order 8,
an extension of Zy by Z2, with Zg ~ {I, —I},
and cosets

04> 00 <+ {£I},
1401 <> {£e1},
2 <> 10 <> {*ea},
3> 11 <> {tejen}.

(L 2005)
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The groups G,,,, and Z3"

For m > 1, the group G,y ;, of order 22m+1 consists of matrices of
the form 91 ® gm—1 with g1 in Gl,l and Jm—1 in Gm—l,m—l-

This group is an extension of Zg ~ {+I} by Z3™ :

22m

0« 00..
1+ 00..

2+ 00..

-1 11..

.00 <> {£1},
1o {HIG" Y @erl,
10 {1

11 ¢ {£(ere0)®™}.

(L 2005)
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Canonical basis matrices of R,, ,,

A canonical ordered basis of the matrix representation
of the Clifford algebra R,;, ,,, is given by
an ordered transversal of Zy ~ {£I} in Z3™.

For example, (I,e1,ea,e1e2) is one such ordered basis.
We define a function 7, : Zo2m — Gy to choose
the corresponding canonical basis matrix for R, ,,

for some transversal, and use binary expansion
to get a function on Z3™.

For example, 71 (1) = 71(01) := €.

(L 2005)
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The sign function s; on Z, and Zg

We use the function ~; to define the sign function sy :

(i) = Lo m(i)? =1
T T Voo =1,

for all i in Z3.
Using our vector notation, we see that [s;] = [1,—1,1,1].

(L 2014)
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The sign function s,, on Zym» and Z3™

We use the function ~,, to define the sign function s, :

(i) == I "Ym(i)2 =-1I
T 06 gm? =1,

for all i in Z3™.

(L 2014)
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Properties of the sign function s,

If we define © : Zgy x ng—2 — Z%m as concatenation,
e.g.. 01 ® 1111 := 011111, it is easy to verify that
Sm (i1 @ im—1) = $1(i1) + Sm—1(im-1)
for all 41 in Zo and %,,—1 in ng—z’ and therefore
[sm] = [s1] ® [sm—1]-

Also, since each 7,,, (i) is orthogonal,

Sm (1) = 1 if and only if v,,(7) is skew.

(L 2014)
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The symmetry function t,, on Zym» and Z3"

For i in

For 7 in

73:

2m—2.
ZQ .

. 1 if Y1 (’L) = €9,
tl(l) = i
0 otherwise.

tm (00 © 7) := ty—1(1),

tm (01 ©4) == Spm—1(17),
tn(10 @ 4) := syt (d) + 1,
tm(11 © 1) = ty—1(4)

where ® denotes concatenation.
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Properties of the symmetry function ¢,

It is easy to verify that ¢,,(¢) = 1 if and only if ,,(¢) is symmetric
but not diagonal.

This can be checked directly for ¢;.

For m > 1 it results from properties of the Kronecker product:
» (A B)T = AT @ BT.
» A ® B is diagonal if and only if both A and B are diagonal.
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Proof of Theorem 2: ¢,, is bent

Lemma 8

(Tokareva, 2011 Theorem 1; Canteaut and Charpin, 2003
Theorem 2; Canteaut et al., 2001, Theorem V.4)

If a binary function f on Z2™ can be decomposed into four
functions fy, f1, f2, f3 on ng_Q as

f00@1) = fo(i),  f(01O1)=: f(i),
FA0G) = fo(i), (11O =: f3(i),

vl/hereNaII fqur fu~nctions are bent, with dual functions such that
fo+ fi+ fo+ fs =1, then f is bent.
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Proof of Theorem 2: ¢,, is bent

In Lemma 8, set fo = f3:=tm—_1,f1 = Sm—-1, fo = Sm—1+ 1.
Clearly, fo = f~3. Also, fg = fl + 1, since Hm_l[fg] = _Hm—l[fl]-
Therefore fg + fl + fg + f3 =1.

Thus, these four functions satisfy the premise of Lemma 8,
as long as both s,,—1 and t,,_1 are bent.

| have already shown that s, is bent for all m.
It is easy to show that ¢; is bent, directly from its definition.

Therefore t,, is bent.
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The graphs from Theorem 1 and Theorem 2 are
the red and the blue subgraphs of A,,.
They are isomorphic.
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Open question

For which m is there an isomorphism of 4,, that
swaps all red and blue edges?
Isomorphisms have been constructed for m = 1,2, 3 so far.

(L 2014)
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