# Twin bent functions and Clifford algebras

#### Paul Leopardi

Mathematical Sciences Institute, Australian National University.

For presentation at the University of Newcastle.

Originally presented at ADTHM, 8 July 2014.

25 September 2014



## Acknowledgements

Richard Brent, Padraig Ó Catháin, Bill Martin, Judy-anne Osborn.

National Computational Infrastructure.

Australian Mathematical Sciences Institute.

Australian National University.

## Restricted amicability/anti-amicability graphs

Let  $\Delta_m$  be the graph whose vertices are the  $n^2=4^m$  canonical basis matrices of the real representation of the Clifford algebra  $\mathbb{R}_{m,m}$ , with each edge having one of two colours, red and blue:

- ▶ Matrices  $A_j$  and  $A_k$  are connected by a red edge if they have disjoint support and are anti-amicable.
- Matrices  $A_j$  and  $A_k$  are connected by a blue edge if they have disjoint support and are amicable.
- ▶ Otherwise there is no edge between  $A_i$  and  $A_k$ .

We call  $\Delta_m$  the *restricted amicability / anti-amicability graph* of the Clifford algebra  $\mathbb{R}_{m,m}$ .

(L 2014)

## Results

#### Theorem 1

(L 2014)

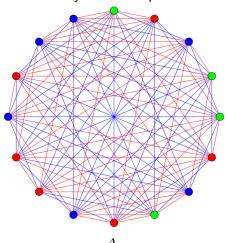
The graph of anti-amicability of the canonical basis matrices of the neutral Clifford algebra  $\mathbb{R}_{m,m}$  is strongly regular with parameters

$$(\nu, k, \lambda = \mu) = (4^m, 2^{2m-1} - 2^{m-1}, 2^{2m-2} - 2^{m-1}).$$

#### Theorem 2

The graph of amicability with disjoint support of the canonical basis matrices of the neutral Clifford algebra  $\mathbb{R}_{m,m}$  is also strongly regular with the same parameters as those in Theorem 1.

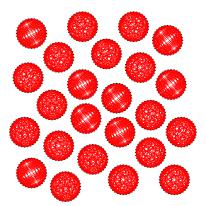
The graphs from Theorem 1 and Theorem 2 are the red and the blue subgraphs of  $\Delta_m$ . They are isomorphic.



## Overview

- ▶ What led to this investigation?
- Key concepts.
- Constructions.
- Proof of Theorem 2.
- ► Conclusion and open question.

## Motivation



Anti-amicability of  $4\times 4$  Hadamard matrices: 24 components. (L 2014)

## A long history and a deep literature

- Difference sets.
   Bruck (1955), Hall (1956), Menon (1960, 1962),
   Mann (1965), Turyn (1965), Baumert (1969),
   Dembowski (1969), McFarlane (1973), Dillon (1974),
   Kantor (1975, 1985), Ma (1994), ...
- ▶ Bent functions. Dillon (1974), Rothaus (1976), Canteaut et al. (2001), Canteaut and Charpin (2003), Dempwolff (2006), Tokareva (2011), . . .
- ► Strongly regular graphs.

  Brouwer, Cohen and Neumaier (1989), Ma (1994),
  Bernasconi and Codenotti (1999),
  Bernasconi, Codenotti and VanderKam (2001) . . .

#### Difference sets

The k-element set D is a  $(v,k,\lambda,n)$  difference set in an abelian group G of order v if for every non-zero element g in G, the equation  $g=d_i-d_j$  has exactly  $\lambda$  solutions  $(d_i,d_j)$  with  $d_i,d_j$  in D.

The parameter  $n := k - \lambda$ .

(Dillon 1974).

## Hadamard difference sets

A  $(v, k, \lambda, n)$  difference set with v = 4n is called a Hadamard difference set.

#### Lemma 3

(Menon 1962)

A Hadamard difference set has parameters of the form

$$(v, k, \lambda, n) = (4N^2, 2N^2 - N, N^2 - N, N^2)$$
  
or  $(4N^2, 2N^2 + N, N^2 + N, N^2)$ .

(Menon 1962, Dillon 1974).

## Hadamard transforms

 $H_m$ , the Sylvester Hadamard matrix of order  $2^m$ , is defined by

$$H_1:=\left[\begin{array}{cc} 1 & 1 \\ 1 & - \end{array}\right]; \quad H_m:=H_{m-1}\otimes H_1, \quad \text{for } m>1.$$

For a boolean function  $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ , define the vector [f] by

$$[f] = [(-1)^{f(0)}, (-1)^{f(1)}, \dots, (-1)^{f(2^m - 1)}]^T,$$

where f(i) uses the binary expansion of i.

The *Hadamard transform* of f is the vector  $H_m[f]$ .

(Dillon 1974)

## Bent functions

The Boolean function  $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$  is **bent** 

if its Hadamard transform has constant magnitude:

$$|H_m[f]| = C[1, \dots, 1]^T$$
 for some constant  $C$ .

Each bent function f on  $\mathbb{Z}_2^m$  has a  $\operatorname{dual}$  function  $\widetilde{f}$  given by

$$(H_m[f])_i =: 2^{m/2} (-1)^{\widetilde{f}(i)}.$$

(Dillon 1974, Tokareva 2011)

## Bent functions and Hadamard difference sets

## Lemma 4

(Dillon 1974, Theorem 6.2.2)

The Boolean function  $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$  is bent if and only if the set  $f^{-1}(1)$  is a Hadamard difference set.

#### Lemma 5

(Dillon 1974, Remark 6.2.4)

Bent functions exist on  $\mathbb{Z}_2^m$  only when m is even.

(Dillon 1974)

## Strongly regular graphs

A simple graph  $\Gamma$  of order v is *strongly regular* with parameters  $(v,k,\lambda,\mu)$  if

- ▶ each vertex has degree k,
- lacktriangle each adjacent pair of vertices has  $\lambda$  common neighbours, and
- ightharpoonup each nonadjacent pair of vertices has  $\mu$  common neighbours.

(Brouwer, Cohen and Neumaier 1989)

## Bent functions and strongly regular graphs

The *Cayley graph* of a binary function  $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$  is the undirected graph with adjacency matrix F given by  $F_{i,j} = f(g_i + g_j)$ , for some ordering  $(g_1, g_2, \ldots)$  of  $\mathbb{Z}_2^m$ .

#### Lemma 6

(Bernasconi and Codenotti 1999, Lemma 12) The Cayley graph of a bent function on  $\mathbb{Z}_2^m$  is a strongly regular graph with  $\lambda = \mu$ .

#### Lemma 7

(Bernasconi, Codenotti and VanderKam 2001, Theorem 3) Bent functions are the only binary functions on  $Z_2^m$  whose Cayley graph is a strongly regular graph with  $\lambda = \mu$ .

# The groups $\mathbb{G}_{1,1}$ and $\mathbb{Z}_2^2$

The  $2 \times 2$  orthogonal matrices

$$\mathbf{e}_1 := \left[ \begin{array}{cc} \cdot & - \\ 1 & \cdot \end{array} \right], \quad \mathbf{e}_2 := \left[ \begin{array}{cc} \cdot & 1 \\ 1 & \cdot \end{array} \right]$$

generate the group  $\mathbb{G}_{1,1}$  of order 8, an extension of  $\mathbb{Z}_2$  by  $\mathbb{Z}_2^2$ , with  $\mathbb{Z}_2\simeq\{I,-I\},$  and cosets

$$\begin{aligned} 0 &\leftrightarrow 00 &\leftrightarrow \{\pm I\}, \\ 1 &\leftrightarrow 01 &\leftrightarrow \{\pm e_1\}, \\ 2 &\leftrightarrow 10 &\leftrightarrow \{\pm e_2\}, \\ 3 &\leftrightarrow 11 &\leftrightarrow \{\pm e_1 e_2\}. \end{aligned}$$

# The groups $\mathbb{G}_{m,m}$ and $\mathbb{Z}_2^{2m}$

For m > 1, the group  $\mathbb{G}_{m,m}$  of order  $2^{2m+1}$  consists of matrices of the form  $g_1 \otimes g_{m-1}$  with  $g_1$  in  $\mathbb{G}_{1,1}$  and  $g_{m-1}$  in  $\mathbb{G}_{m-1,m-1}$ .

This group is an extension of  $\mathbb{Z}_2 \simeq \{\pm I\}$  by  $\mathbb{Z}_2^{2m}$ :

$$0 \leftrightarrow 00 \dots 00 \leftrightarrow \{\pm I\},$$

$$1 \leftrightarrow 00 \dots 01 \leftrightarrow \{\pm I_{(2)}^{\otimes (m-1)} \otimes e_1\},$$

$$2 \leftrightarrow 00 \dots 10 \leftrightarrow \{\pm I_{(2)}^{\otimes (m-1)} \otimes e_2\},$$

$$\dots$$

$$2^{2m} - 1 \leftrightarrow 11 \dots 11 \leftrightarrow \{\pm (e_1 e_2)^{\otimes m}\}.$$

(L 2005)

## Canonical basis matrices of $\mathbb{R}_{m,m}$

A canonical ordered basis of the matrix representation of the Clifford algebra  $\mathbb{R}_{m,m}$  is given by an ordered transversal of  $\mathbb{Z}_2 \simeq \{\pm I\}$  in  $\mathbb{Z}_2^{2m}$ .

For example,  $(I, e_1, e_2, e_1e_2)$  is one such ordered basis.

We define a function  $\gamma_m: \mathbb{Z}_{2^{2m}} \to \mathbb{G}_{m,m}$  to choose the corresponding canonical basis matrix for  $\mathbb{R}_{m,m}$  for some transversal, and use binary expansion to get a function on  $\mathbb{Z}_2^{2m}$ .

For example, 
$$\gamma_1(1) = \gamma_1(01) := e_1$$
.

(L 2005)

# The sign function $s_1$ on $\mathbb{Z}_4$ and $\mathbb{Z}_2^2$

We use the function  $\gamma_1$  to define the *sign function*  $s_1$ :

$$s_1(i) := \begin{cases} 1 \leftrightarrow \gamma_1(i)^2 = -I \\ 0 \leftrightarrow \gamma_1(i)^2 = I, \end{cases}$$

for all i in  $\mathbb{Z}_2^2$ .

Using our vector notation, we see that  $[s_1] = [1, -1, 1, 1]^T$ .

# The sign function $s_m$ on $\mathbb{Z}_{2^{2m}}$ and $\mathbb{Z}_2^{2m}$

We use the function  $\gamma_m$  to define the sign function  $s_m$ :

$$s_m(i) := \begin{cases} 1 \leftrightarrow \gamma_m(i)^2 = -I \\ 0 \leftrightarrow \gamma_m(i)^2 = I, \end{cases}$$

for all i in  $\mathbb{Z}_2^{2m}$ .

(L 2014)

## Properties of the sign function $s_m$

If we define  $\odot: \mathbb{Z}_2 \times \mathbb{Z}_2^{2m-2} \to \mathbb{Z}_2^{2m}$  as concatenation,

e.g..  $01 \odot 1111 := 0111111$ , it is easy to verify that

$$s_m(i_1 \odot i_{m-1}) = s_1(i_1) + s_{m-1}(i_{m-1})$$

for all  $i_1$  in  $\mathbb{Z}_2$  and  $i_{m-1}$  in  $\mathbb{Z}_2^{2m-2}$ , and therefore

$$[s_m] = [s_1] \otimes [s_{m-1}].$$

Also, since each  $\gamma_m(i)$  is orthogonal,

 $s_m(i) = 1$  if and only if  $\gamma_m(i)$  is skew.

# The symmetry function $t_m$ on $\mathbb{Z}_{2^{2m}}$ and $\mathbb{Z}_2^{2m}$

For i in  $\mathbb{Z}_2^2$ :

$$t_1(i) := \begin{cases} 1 & \text{if } \gamma_1(i) = e_2, \\ 0 & \text{otherwise.} \end{cases}$$

For i in  $\mathbb{Z}_2^{2m-2}$ :

$$t_m(00 \odot i) := t_{m-1}(i),$$
  

$$t_m(01 \odot i) := s_{m-1}(i),$$
  

$$t_m(10 \odot i) := s_{m-1}(i) + 1,$$
  

$$t_m(11 \odot i) := t_{m-1}(i).$$

where  $\odot$  denotes concatenation.

## Properties of the symmetry function $t_m$

It is easy to verify that  $t_m(i)=1$  if and only if  $\gamma_m(i)$  is symmetric but not diagonal.

This can be checked directly for  $t_1$ .

For m > 1 it results from properties of the Kronecker product:

- $(A \otimes B)^T = A^T \otimes B^T.$
- $lackbox{ }A\otimes B$  is diagonal if and only if both A and B are diagonal.

## Proof of Theorem 2: $t_m$ is bent

#### Lemma 8

(Tokareva, 2011 Theorem 1; Canteaut and Charpin, 2003 Theorem 2; Canteaut et al., 2001, Theorem V.4)

If a binary function f on  $\mathbb{Z}_2^{2m}$  can be decomposed into four functions  $f_0, f_1, f_2, f_3$  on  $\mathbb{Z}_2^{2m-2}$  as

$$f(00 \odot i) =: f_0(i),$$
  $f(01 \odot i) =: f_1(i),$   
 $f(10 \odot i) =: f_2(i),$   $f(11 \odot i) =: f_3(i),$ 

where all four functions are bent, with dual functions such that  $\tilde{f}_0 + \tilde{f}_1 + \tilde{f}_2 + \tilde{f}_3 = 1$ , then f is bent.

## Proof of Theorem 2: $t_m$ is bent

In Lemma 8, set 
$$f_0 = f_3 := t_{m-1}, f_1 = s_{m-1}, f_2 = s_{m-1} + 1$$
.

Clearly, 
$$\tilde{f}_0=\tilde{f}_3.$$
 Also,  $\tilde{f}_2=\tilde{f}_1+1,$  since  $H_{m-1}[f_2]=-H_{m-1}[f_1].$ 

Therefore 
$$\tilde{f}_0 + \tilde{f}_1 + \tilde{f}_2 + \tilde{f}_3 = 1$$
.

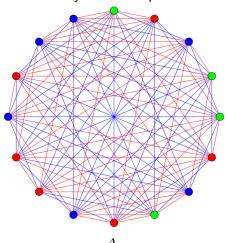
Thus, these four functions satisfy the premise of Lemma 8, as long as both  $s_{m-1}$  and  $t_{m-1}$  are bent.

I have already shown that  $s_m$  is bent for all m.

It is easy to show that  $t_1$  is bent, directly from its definition.

Therefore  $t_m$  is bent.

The graphs from Theorem 1 and Theorem 2 are the red and the blue subgraphs of  $\Delta_m$ . They are isomorphic.



## Open question

For which m is there an isomorphism of  $\Delta_m$  that

swaps all red and blue edges?

Isomorphisms have been constructed for m=1,2,3 so far.

(L 2014)

## References

- [1] Anne Canteaut, Claude Carlet, Pascale Charpin, and Caroline Fontaine. "On cryptographic properties of the cosets of R(1,m)." IEEE Transactions on Information Theory, 47.4 (2001): 1494-1513.
- [2] Anne Canteaut and Pascale Charpin. "Decomposing bent functions." IEEE Transactions on Information Theory, 49.8 (2003): 2004-2019.
- [3] Natalia Tokareva. "On the number of bent functions from iterative constructions: lower bounds and hypotheses." Adv. in Mathematics of Communications (AMC) 5.4 (2011): 609-621.