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Abstract

1 Methods for the solution of the parameter estimation problem in
ordinary differential equations fall into two categories (a) the simulta-
neous method in which the objective function (for example the sum
of squares of residuals) is minimised subject to the differential system
as imposed constraints, and (b) the embedding method in which aux-
iliary conditions are adjoined to take up the extra degrees of freedom
in the differential system. If this is chaotic then the imposition of ini-
tial conditions in the embedding method becomes suspect. However,in
[1] it is shown that provided system structure and data format can be
married appropriately, a non-trivial condition, then a technique known
as synchronization can be used successfully to overcome the disconnect
between the initial conditions and the chaotic trajectory. This tech-
nique has a close similarity to the more familiar continuation methods.
However, typically the form of data resembles multi point boundary
conditions suggesting that a boundary value context would be more ap-
propriate. Here we illustrate the inherent instability of the IVP formu-
lation in chaotic dynamical systems, then show how to choose appropri-
ate boundary conditions, and finally demonstrate the greater power and
flexibility of the boundary value formulation in the estimation problem
in this context.
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1 Introduction

The basic problem considered is given the system of differential equations of
order p

dx

dt
= f (t,x,β) , (1.1)

where β ∈ Rq is an unknown vector of parameters, estimate β given observa-
tional data

yi = O (x∗ (ti,β
∗)) + εi, i = 1, 2, · · · , n (1.2)

where yi ∈ Rs is vector of observations made on the system at ti, O is the vector
of linear functionals of the solution measured at ti, and εi can be considered
the corresponding measurement error, i = 1, 2, · · · , n. Here x∗ (t,β∗) is the
(unknown) exact solution.

The family of methods considered are the embedding methods. The idea
is to impose auxilliary conditions

B (x) = b,b ∈ Rp, (1.3)

to take up the intrinsic degrees of freedom in the differential equation solution.
Here b is a vector of additional parameters which are to be determined as part
of the estimation process. The particular form assumed for the estimation
problem is

min
β,b

F (x,β,b) , (1.4)

F (x,β,b) =
1

2
Σn

i=1r
2
i , (1.5)

ri = yi −O (x (ti,β,b)) . (1.6)

The purpose of this investigation is to consider the implication of the choice of
B (x) for the estimation process when the initial value problem B (x) = x (0)
for (1.1) is chaotic. Equation (1.1) supports chaotic trajectories if there exist
trajectories x (t) such that the associated fundamental matrix X (t) for the
linearized equation

dX

dt
= ∇xf (t,x,β)X,X (0) = I, (1.7)

has the property that

Λ = lim
t→∞

(
XTX

)1/2t
has eigenvalues exp(λi), i = 1, 2, · · · , p, where the λi are called Lyapunov expo-
nents, and λ1 = maxi λi > 0. The implications are that the variational equa-
tion (1.7) has unbounded solutions to the initial value problem while (1.1) has
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bounded unstable solutions with the property of essentially forgetting their
initial conditions corresponding to a form of capture by an attractor. This
suggests that the initial value choice B (x) = x (0) would be unsuitable for
the estimation problem when the data is derived from observations made on
chaotic system trajectories. This is confirmed in the next section, in partic-
ular by figure 2, where an example is given of the extreme instability of the
response surface for the optimization problem (1.5) in this case.

An ingenious method for working around this form of initial value insta-
bility is given in [1]. This approach requires that (1.1) be decomposable into
drive and response subsystems, that the drive equations which determine the
positive Lyapunov exponents be capable of being made stable by adding ap-
propriate penalty terms, and that the estimation problem formulation include
information that permits the system trajectory to be steered by the observed
data. This steering process is called synchronisation. The estimation problem
is then solved by relaxing the penalty terms to zero in a controlled fashion
corresponding to a form of continuation. The method has a further disadvan-
tage beyond the requirement that the system be drive decomposable because
it requires the form of the observed data be compatible with this structure.
In contrast, one advantage of our approach is there are no formal, a priori
constraints imposed by the algorithm on the structure of the observed data.

Our approach has been to consider a boundary value form for the adjoined
conditions.

B (x) = B0x (t1) +B1x (tn) . (1.8)

This would seem to make sense for many applications as the form of the ob-
served data does have some similarity to conditions appropriate for a multi-
point form of boundary problem. Practical application requires the construc-
tion of appropriate boundary matrices B0, B1, and an approach which has
proved successful [8] is discussed. It is of interest that, in the case of the
Mattheij equation, our natural conditions are close numerically to conditions
formulated by de Hoog and Mattheij [5] in order to demonstrate the possibil-
ity of relatively well conditioned problems in the class of possible solutions to
strongly dichotomic system.

In the final section numerical examples are presented which permit direct
comparison with problems considered in [1]. The results confirm the advan-
tages claimed for the boundary form of the embedding method.
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2 Initial value instability of response surfaces

in chaotic systems

It proves convenient to start with a classic example of a chaotic system in order
to demonstrate the instability problem.

Example 1 The standard Lorenz system [2] is

dx1
dt

= β1 (x2 − x1) , (2.1)

dx2
dt

= x1 (β2 − x3)− x2, (2.2)

dx3
dt

= x1x2 − β3x3. (2.3)

The canonical parameters are β1 = 10, β2 = 28, β3 = 8/3.

This system is chaotic with Lyapunov exponents λ1 = .905, λ2 = 0., λ3 =
−14.57. The instability of the system is illustrated in Figure 1 where plots
of trajectories for two sets of initial values x∗ (0)T = [1, 1, 30], and x̂ (0)T =
[−0.1, 2, 31] are displayed. Reasonably close initially, the trajectories begin
to diverge seriously about t = 1, the divergence being more in phase rather
than amplitude. The response surface plots are very revealing. Here x∗ (0)
is taken as the true vector of unknowns corresponding to the boundary value
parameters in the embedding method. The response surfaces are plotted as
functions of x1(0), x2(0) and correspond to terminal integration values tn =
1, 3, 5, 10. The plots correspond to the choice n = 1000. The instability of the
response surfaces with respect to the initial value parameters as tn increases
is clearly evident, and the initial value problem solution becomes increasingly
chaotic. These conclusions are valid despite the instability of the forward
integration. The system actually possesses a backward stability property [4]
which means that the visual impression is correct even if the fine numerical
detail cannot be accurate.

The response surface diagram provides further evidence in support of [1]
by showing that the initial value formulation of the embedding method in the
case of chaotic system dynamics is a recipe for serious disappointment. It
follows that the adjoining of auxiliary conditions in the embedding method
must be done appropriately, and the a priori choice of initial values, if made
at all, should be done with caution . To our cost we found this advice ap-
plies also to boundary value software that uses the quasi initial value device of
compactification or condensation [6] when applied in the context of the bound-
ary problems encountered here. The problem with this form of the solution
algorithm should be well known. It is clearly described in [3], section 4.3.4.
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Figure 1: Diverging trajectory plots for the Lorenz system
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Figure 2: IVP response surface plots for Lorenz equations
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3 How to choose the boundary conditions

The embedding approach has the advantage that it leads to algorithms that
are relatively simple to formulate. It follows from (1.1) that the gradient of
the objective function (1.5) is

∇(β,b)F = − 1

n

n∑
i=1

rTi O
T
i ∇(β,b)x (ti) , (3.1)

where the gradient term components can be evaluated by solving the linear
boundary value problems

B1
∂x

∂β
(0) +B2

∂x

∂β
(1) = 0, (3.2)

d

dt

∂x

∂β
= ∇xf

∂x

∂β
+∇βf , (3.3)

and

B1
∂x

∂b
(0) +B2

∂x

∂b
(1) = I, (3.4)

d

dt

∂x

∂b
= ∇xf

∂x

∂b
. (3.5)

Given this information then the scoring (Gauss-Newton) algorithm [7] is ap-
plied readily.

The suggestion is that the boundary matrices B0, B1 be chosen to ensure
the satisfactory integration of the linear differential equation corresponding to
variation of (1.1) with respect to x. Here this corresponds to equation (3.5).
There is an assumption here that variation of β is not going to affect stability
unduly, and this assumption would be expected to hold quite generally. In
exceptional cases it would be possible to augment the state vector by β, (1.1)
by dβ

dt
= 0, and treat b as the parameter vector to be estimated.

If a two point discretization (for example, the trapezoidal rule) is employed
to link adjacent points of the linearised equation on the data grid then the
resulting difference equation matrix X has the block bi-diagonal form:

X =


X11 X12

X22 X23

X33 X34

· · · · · ·
X(n−1)(n−1) X(n−1)n


The next step involves interchanging the first column of X to the last position
using the permutation matrix P followed followed by orthogonal reduction of
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the modified matrix to upper triangular form using the orthogonal matrix Q
computed, for example, using Householder transformations, to give

XP → Q


R11 R12 0 R1n

R22 R23 0 R2n

· · · · · · · · ·
R(n−2)(n−2) R(n−2)(n−1) R(n−2)n

H G

 .
Note the move of X11 to the last column introduces fill in this column. If
the boundary matrices are introduced at this stage then the first step in a
backsubstitution would require the solution of the linear system with matrix[

H G
B1 B0

]
.

The basic idea is that B0, B1 be chosen so that the resulting system is rela-
tively well conditioned. This can be achieved by starting with an orthogonal
factorization: [

H G
]

=
[
UT 0

] [ QT
1

QT
2

]
,

and setting [
B1 B0

]
= QT

2 . (3.6)

Here U provides an indication of the sensitivity of the differential system to
two point boundary conditions.

4 Computational experience

The first example compares the performance of initial value and boundary
value methods on the Lorenz equations (2.1), (2.2), (2.3). The reference data
is obtained by solving the initial value problem with x∗(0)T = [1, 1, 30] on
0 ≤ t ≤ 3. It will be seen from Figure 2 that the effects of chaos are by no
means as severe as they become for larger values of tn. However, it still proved
necessary to adjust the form of the estimation data on the initial value form
of this problem to obtain any results at all. The final form used was

yi =

[
1 0 0
0 0 1

]
x∗(ti) + ei, i = 1, 2, · · · , n,
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Figure 3: Initial and converged solutions for the initial value formulation

where ei ∼ N (0, I), and n = 200. Starting estimates for b and β are generated
by adding random noise to the exact values

β = β∗ + δβ,

b = b∗ + δb,

with δb ∼ N(0, 3I), δβ ∼ N(0, 0.15I). Although a convergent iteration was
obtained,the result did not correspond to the expected solution. Results are
summarised in Figure 3: The natural boundary matrices corresponding to the
true solution x∗(t) are

B1 =

 −0.0155 0.0084 −0.2942
0.0483 0.0061 0.8043
−0.9790 0.1958 0.0574

 ,
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Figure 4: Initial and converged solutions for the boundary value formulation

and

B2 =

 −0.4504 −0.7696 0.3434
0 −0.4694 −0.3611
0 0 0

 .
These are used here to define the particular form of the embedding method.
This time a satisfactory computation is achieved. Results are summarised in
Figure 4:

An example of a system with two positive Lyapunov exponents is given by
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the Lorenz (1996) equations

dx1
dt

= x5 (x2 − x3)− x1 + f

dx2
dt

= x1 (x3 − x4)− x2 + f,

dx3
dt

= x2 (x4 − x5)− x3 + f,

dx4
dt

= x3 (x5 − x1)− x4 + f,

dx5
dt

= x4 (x1 − x2)− x5 + f,

with f=8.17. The estimation problem based on this system is discussed in
some detail in [1] where it is noted that the presence of two positive Lya-
punov exponents requires modification of their basic synchronized initial value
method and a consequent need to collect a minimum of two suitably chosen
data items at each observation point . This formal constraint on the provision
of estimation problem data is not so obvious in the boundary value approach.
This point is illustrated here using a single data sequence in the embedding
algorithm. This sequence is chosen as

yi = x∗ (ti)5 + εi, i = 1, 2, · · · , 251

where εi ∼ N (0, σ2), σ = 0.3, and the ∗ is used to denote exact quantities. This
does not correspond to either of the observed data sets in the [1] application.
The computed boundary matrices are

B1 =


−0.2466 0.3415 −0.0282 0.4924 0.6841
−0.1790 −0.2863 −0.1201 0.3459 −0.1249
0.3798 −0.3457 −0.6443 0.2565 0.2039
−0.7452 0.0797 −0.5354 −0.1267 −0.2342
−0.2778 −0.5959 0.1805 −0.4544 0.5535

 ,
and

B2 =


−0.2674 −0.0961 0.1433 −0.0095 0.0998

0 0.4998 0.2637 0.6186 −0.1854
0 0 −0.4222 −0.1365 −0.1302
0 0 0 −0.2775 −0.0612
0 0 0 0 −0.1493

 .
Starting estimates for b and β are generated by adding random noise to the
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Figure 5: Initial and converged solutions for the Lorenz 1996 model

exact values

β = β∗ + δβ,

b = b∗ + δb,

with δb ∼ N(0, 1), δβ ∼ N(0, 0.15).
The results for the Gauss-Newton algorithm are displayed in figure 5. They

show that rate of convergence measured by number of iterations in this ap-
plication, while still reasonably satisfactory, proved distinctly slower than in
the previous example with little evidence of the asymptotic second order con-
vergence expected for large n. This may be a hint that a different choice of
observed data could be more satisfactory. The drive component of the Lorenz
system involves the first and third equations, and it is this property that in-
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fluenced the choice of data selection made in [1]. The data choice made here
is more directly associated with the response subsystem.
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