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Abstract: It has been known for 50 years that the

discrete l1 approximation problem can be solved by

linear programming (L.P.). However, improved algo-

rithms involve a step which can be interpreted as a

line search, and which is not part of the standard sim-

plex algorithm. This is the simplest example of a class

of problems with a structure distinctly more compli-

cated than that of the standard nondegenerate LP.

Our aim is to uncover this structure for these more

general polyhedral functions and to use it to develop

what are recognizably simplicial type algorithms. It is

necessary to generalise what is meant by degener-

acy, and a consequence is that a typical feature is a

line search step.
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A convex function is the supremum of an affine family:

f(x) = sup
i∈σ

cT
i x− di

If the index set σ is finite then f(x) is polyhedral.

The problem of minimizing f(x) over a polyhedral set

Ax ≥ b can always be written as an LP

min
Ax≥b

h; h ≥ cT
i x− di, i ∈ σ.
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Example 0: Linear programming problem

This could be regarded as the simplest example of

a PCF minimization problem. Certainly it is the best

known as a result of its extensive use in applications.

It has the form

min
x∈X

cTx; X = {x : Ax ≥ b}

where A : Rp → Rn, p < n. Note that it can be

written also as

min
x

F (x); F (x) = F1(x) + F2(x).

F1(x) = cTx, type 1 PCF,

F2(x) = δ(x : X), type 2 PCF.

The Kuhn-Tucker conditions characterize the optimum:

cT = uTA,

ui ≥ 0, ui(Ai∗x− bi) = 0, i = 1,2, · · · , n.
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The linear program supports a simple picture!

a
T

2
x = b2

a
T

1
x = b1

z = c
T
x

Ax ≥ b

nondegenerate linear program

Note that three faces of the epigraph intersect at each

extreme point x ∈ R2. The case of degeneracy corre-

sponds here to more than three faces intersecting at

an extreme point.
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Problems which arise in discrete estimation Let

the linear model be

r = Ax− b.

Here the estimation problem has the form

minxF (r),

where F (·) is a seminorm and polyhedral
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We consider algorithms for linear estimation problems

which are characterised by:

1 The epigraph of F (r(x)) is generically degener-

ate in the sense of linear programming.

2 There is a well defined set of necessary condi-

tions which describe the problem optimum and

which can be taken here as defining an appro-

priate sense of nondegeneracy.

It is assumed that rankA = p, and that this suffices

to guarantee a bounded optimum. Associated with

extreme points of the epigraph are appropriate sets of

algebraic conditions. Typically these involve a subset

of the equations specifying the linear model and we

refer to this subset as the ”active set” at xσ where σ is

the index set pointing to the active subset.

7



Example 1: l1 estimation

min
x

∑
|ri| r = Ax− b A : Rp → Rn.

corresponding to

cT
j = [±1,±1, · · · ,±1]A, j = 1,2, · · ·

Note apparent redundancy when ri = 0. The neces-

sary conditions are:

0 =
∑

i∈σC

θiAi∗+
∑

i∈σ

uiAi∗,

θi = sign(ri), ri 6= 0,

σ = {i; ri = 0},
|ui| ≤ 1, i ∈ σ.

The nondegeneracy condition is

|σ| = p.
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In case p = 2 extreme points characterized by (say)

±r1(x1, x2) = 0,

±r2(x1, x2) = 0.

Four faces of epigraph intersect at each extreme point

(LP expect 3). ± ⇒ θi such that directions into faces

of epigraph satisfy

θ1A1∗t = λ1 > 0,

θ2A2∗t = λ2 > 0.

for convex combination of edge directions. This con-

vention permits each face to be specified unambigu-

ously!
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r1 = 0

r2 = 0

t

r1 > 0, r2 > 0

r1 < 0
r2 < 0

r1 < 0
r2 > 0

r1 > 0
r2 < 0

four faces of epigraph intersect at

extreme points x ∈ R2
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The l1 problem typically supports a linesearch.

−1 0 1 2 3 4 5

6

8

10

12

14

Simple l1 example

function in figure is

f(x) = |x|+ |x− 1|+ |x− 2|+ |x− 3|+ |x− 4|
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Example 2: rank regression.

Let scores wi nondecreasing and summing to 0 be

given - for example wi =
√

12
(

i
n+1 −

1
2

)
, i = 1,2, · · · , n

min
x

n∑

i=1

wirν(i)

w1 ≤ w2 · · · ≤ wn,
n∑

i=1

wi = 0, ‖w‖ > 0.

ν ranking set. Nonsmoothness has its origin in the

reordering of scores associated with tied residuals.

Here the objective is a seminorm.

The necessary conditions are distinctly more compli-

cated!
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6 faces of epigraph intersect at extreme points of epi-

graph over R2. Consider the equations characterizing

ties:

± (r2 − r1) = ± (r3 − r2) = ± (r1 − r3) = 0.

Serious redundancy:

r1 − r3 = −r3 + r2 − r2 + r1.

This implies the third line must pass through intersec-

tion of first two. Again redundancy in the association

of edges and faces can be resolved by looking at di-

rections into faces as convex combinations of direc-

tions along edges.

θik (Ai∗ −Ak∗) t = λik > 0,

θkj

(
Ak∗ −Aj∗

)
t = λkj > 0.
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r1 = r2

r2 = r3

r3 = r1

t

r3 > r1 > r2 r3 > r2 > r1

r1 > r3 > r2 r2 > r3 > r1

r1 > r2 > r3 r2 > r1 > r3

six faces of epigraph intersect at

extreme points x ∈ R2
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Rank regression examples:

Hubble data Hubble rank statistic

Weight data Asymptotic linearity
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Duality: l1: Fenchel dual not too bad

min
u

bTu, ATu = 0, −e ≤ u ≤ e.

rank regression: Fenchel dual looks familiar, but ...

min
u

bTu, ATu = 0, u ∈ conv {wi}
where wi are all distinct permutations of

w1, w2, · · · , wn. l1 is actually a limiting case of rank

regression corresponding to sign scores.
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Type 1 PCF:

f (x) = max
1≤i≤m

cT
i x− di.

Set φi (r) , i = 1,2, · · · , N structure functionals

for f (r (x)) if each extreme point

[
x∗

f (r (x∗))

]
of

epi (f)is determined by the linear system

φi
(
r

(
x∗

))
= 0, i ∈ σ ⊆ {1,2, · · · , N} .

where σ defines the active set (of structure function-

als).

We have already seen examples where the set of struc-

ture functionals contains redundant elements!
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Redundancy: Structure equation φs = 0 is redun-

dant if

∃π 6= ∅, s /∈ π � (φi = 0 ∀ i ∈ π)⇒ φs = 0

identically in r. Consider rank regression example

φ12 = r2 − r1, φ23 = r3 − r2, φ31 = r1 − r3.

φ12 = φ23 = 0⇒ φ31 = φ23 − φ12 = 0,

φ12 = 0⇒ φ21 = 0.

multiplication by -1 is significant!

φ12, φ23 and φ23, φ31examples of nonredundant pairs.

Say: get nonredundant configurations by allowable re-

ductions.

Linear independence: Given set of structure func-

tionals

rank (Vσ) = k = |σ| ≤ p.

V T
σ = ΦT

σA ∈ Rp→ Rk

Φσ =
[
∇rφT

σ(1)
· · · ∇rφT

σ(k)

]
∈ Rk → Rn.

Nondegeneracy: Each allowable reduction of active

set is linearly independent.
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To generate a compact local representation specialise

one of the allowable reductions. Let x = x∗+εt, ε >

0 small enough. Then, using piecewise linearity of the

objective, rearranging gives

f (r (x)) = fσ (r (x)) +

|σ|∑

i=1

ωi (t)φσ(i) (r (x)) ,

1. fσ smooth, ωi (t) provides nonsmooth behaviour.

2. Each distinct realization of ωi (t) , i = 1,2, · · · , |σ|
characterizes one of the faces of epi (f) meeting

at

[
x∗

f (r (x∗))

]
.
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An alternative is to use the property displayed in the

examples to develop a local description by character-

izing the individual faces at a particular extreme point.

Completeness: For each face s, 1 ≤ s ≤ q of

T (epi (f) ,x∗) there exists σs such that directions

into the face
[

x∗+ εt
f (x∗+ εt)

]
=

[
x∗

f (x∗)

]
+ ε

[
t

f ′ (x∗ : t)

]

satisfy

V T
σs

t = λ > 0.

Note that ∀ s system

φσs(i) (x) = 0, i = 1,2, · · · , p
has same solution x∗.

22



Extreme directions in T (epi (f) ,x∗)
These are given by

ti
σs

= V −T
σs

ei, i = 1,2, · · · , p, s = 1,2, · · · , q.

There is redundancy here if q > p+1. Edges formed

by the intersection of adjacent faces (say σs, σt) are

determined by an equation of this form for each face

and there is potential here for overspecification. What

characterizes an edge unambiguously is that a par-

ticular structure functional in the allowable reductions

increases away from zero.
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Example l1 estimation: Active structure functionals

correspond to zero residuals.

φ2i−1 = ri, φ2i = −ri, N = 2n.

Let an extreme point x∗ be determined by

φσ(i) = ri, σ = {1,3, · · · ,2p− 1}
Let x = x∗+ εt .Then

f (r (x)) =
∑

|ri(x
∗)|>0

|ri|+
p∑

i=1

ωi (t)φσ(i) (r (x))

For each allowable reduction of the active structure

functionals ωi (t)φ
σ(i) (ri) = |ri| , ωi = ±1.

Completeness needs finer structure. For face

r1 > 0, r2 > 0, r3 > 0 : σs = {1,3,5}
r1 > 0, r2 < 0, r3 > 0 : σs = {1,4,5}

Differences between sets of equations for extreme di-

rections are pretty trivial in this case.

There are 2p faces intersecting at x∗.
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Example: rank regression

Structure is in ties

φij = rj − ri,1 ≤ i 6= j ≤ n, N = n (n− 1) .

Redundancies

φij = −φji, φik = φjk + φij.

Possible structure equations when p = 3.

r1 = r2 = r3 = r4,

r1 = r2, r3 = r4 = r5,

r1 = r2, r3 = r4, r5 = r6.

In first case σ1 = {φ12, φ13, φ14} possible set of

structure functionals - specializes r1 (origin!).

f (r) =
n∑

i=5

wµ(i)ri+




l+4∑

i=l

wi


 r1+

4∑

i=2

ωi−1 (t)φ1i.
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Redundancy v’s completeness!

Not a good set for completeness. If t is into face r1 <

r2 < r3 < r4

r1 < r2 < r3 < r4 ⇒ φ12 > 0, φ13 > φ12, φ14 > φ13.

Relaxed structure functionals do not give right order-

ing. Right set is (σs = {12,23,34} )

φ12 > 0, φ23 = φ13−φ12 > 0, φ34 = φ14−φ13 > 0.
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Changing structure functional basis changes repre-

sentation of non-smooth part of function.

p∑

i=1

ωi (t)φσ1(i) (x + t) = tTVσ1ω(t),

= tTVσ1SsS
−1
s ω(t),

=
p∑

i=1

(ωs (t))i φσs(i) (x + t)

where φT
σ1

Ss = φT
σs

[
φ12 φ13 φ14

]



1 −1
1 −1

1




=
[

φ12 φ23 φ34

]

Solution of system V T
σs

ts
i = ei, i = 1,2,3,breaks ties

ts
1 : r1 < r2 = r3 = r4,

ts
2 : r1 = r2 < r3 = r4,

ts
3 : r1 = r2 = r3 < r4.

27



subdifferential: Let f(x), x ∈ X be convex. The

subdifferential ∂f(x) is the set

{v; f(t) ≥ f(x) + vT (t− x),∀t ∈ X}.
Also subdifferential is convex hull of gradient vectors

at nearby differentiable points.

Subgradient v generalises idea of a gradient vector at

points of nondifferentiability of f(x).

Subdifferential is important for characterizing optima

and calculating descent directions in nonsmooth con-

vex optimization.

directional derivative:

f ′(x : t) = inf
λ>0

f(x + λt)− f(x)

λ
,

= max
v∈∂f(x)

vT t.

Optimality: x minimizes f(x) if 0 ∈ ∂f(x).
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Recall

f (r (x)) = fσ (r (x)) +

|σ|∑

i=1

ωi (t)φσ(i) (r (x)) ,

Implies a representation of subdifferential:

vT ∈ ∂f (r (x))→ v = fg + Vσz.

fg = ∇xfσ (r)T : gradient of smooth part.

(Vσ)∗i = ∇xφT
σ(i) =

{
∇rφσ(i)A

}T
, i = 1,2, · · · , |σ| ,

z ∈ Zσ = conv(ωs, s = 1,2, · · · , q).

Standard inequality for directional derivative gives

Zσ =
{
z; (fg + Vσz)T t ≤f ′

(
x∗ : t

)}
.

Constraint set known if directional derivative known.
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Role of extreme directions

Extreme points of Zσ are determined by the extreme

directions associated with the edges of T (epi (f) ,x∗).

Key calculation is

f ′
(
x∗ : ts

)
= fT

g ts + max
z∈Zσ

zTV T
σ ts,

= fT
g ts + max

z∈Zσ





p∑

i=1

λiz
TV T

σ ts
i



 ,

≤ fT
g ts +

p∑

i=1

λi max
z∈Zσ

zTV T
σ ts

i

=
p∑

i=1

λif
′ (x∗ : ts

i
)
.

It uses the linearity of f(x) on the faces of T twice.
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Computation of Zσ :

Start with tie r1 = r2 = r3 = r4. If r1 leaves group

on edge then φ12, φ13, φ14 all relax. On the edge

φ23 = φ24 = 0 have to relate φ12, φ13, φ14 and

φ12, φ23, φ24. In general

[
Φj ∇rφT

j

] [
Sj

sT
j 1

]
= ΦσPj.

where active set condition on edge is ΦT
j At = 0.

f ′
(
x∗ : t

)
= fT

g t + max
z∈Zσ

zTV T
σ t,

= fT
g t+max

z∈Zσ
zTP−T

j

[
ST

j sj

1

] [
ΦT

j
∇rφj

]
At,

= fT
g t+max

z∈Zσ
zTP−T

j

[
sj
1

]
vT

j t,

= fT
g t+





ζ+
j vT

j t, vT
j t > 0,

ζ−j vT
j t, vT

j t < 0.

This gives the inequalities determining Zσ in the form

ζ−j ≤
[

sT
j 1

]
z ≤ ζ+

j .
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Here the bounds are given by

ζ+
j = max

z∈Zσ
zTP−T

j

[
sj
1

]
,

ζ−j = min
z∈Zσ

zTP−T
j

[
sj
1

]
.

This has sneaked in the assumption that the relax-

ation could involve either φj, or −φj. Case where this

is not true interesting. Consider “non degenerate” ver-

tex having form

cT
ν(i)x− dν(i) = C (x) , i = 1,2, · · · p + 1.

Structure equations

φi (x) =
(
cT
i − cT

p+1

)
x−

(
di − dp+1

)
= 0.

C (x) = cT
p+1x−dp+1 +

p∑

i=1

ωi (t)φi (x) ,

ωi (t) = 1, t into i’th face, 0 otherwise,

Z =



z; zi ≥ 0, i = 1,2, · · · , p,

p∑

i=1

zi ≤ 1.




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Rank regression: Multiple groups of ties,relaxed struc-

ture functional corresponds to one group splitting into

two subgroups, and new origin must be found for one

of these subgroups.

Original subgroup: V0 =
[
∇xφT

1 · · · ∇xφT
m

]
, new,

same origin : V1 =
[
∇xφT

1 · · · ∇xφT
k−1

]
, new,

origin:

V2 =

[
∇x

(
φk+1 − φk

)T · · · ∇x (φm − φk)
T

]
.

Relation

[ [
V1 V2

]
∇xφT

k

] [
S

sT
k 1

]
= V0P,

[
S

sT
k 1

]
=




I 0
I 0

0
[
1 · · · 1

]
1


 .

Obtain, for each mode of separation into subgroups,

inequalities

ζ−k ≤
m∑

j=k

zj ≤ ζ+
k
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To calculate ζ:

Compare two computations of f ′(x∗ : t) using first

the original group structure, and then the subgroup

splitting on the edge. In the first case the origin contri-

bution is
(∑m+1

i=1 wi

)
A(m+1)∗t and the contribution

from a group before splitting is a bound for

m∑

i=1

zi

(
Ai∗ −A(m+1)∗

)
t =




k∑

i=1

zi




(
Ak∗ −A(m+1)∗

)
t

where the calculation requires that terms which vanish

on the edge be grouped. For the new subgroups, only

the origin terms contribute as active structure func-

tional terms vanish. The result is






k∑

i=1

wi


 Ak∗+




m+1∑

i=k+1

wi


 A(m+1)∗


 t

when Ak∗t < A(m+1)∗t. General result is




m−k+1∑

i=1

wi


 ≤

m∑

i=k

zπ(i) ≤



m+1∑

i=k+1

wi


 .
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Testing for optimality:

Optimum requires ∃z̃ ∈ Z, 0 = fg + V z̃. If z̃ /∈ Z

then there exists a violated member of the set of in-

equalities

ζ−k ≤
m∑

j=k

zj ≤ ζ+
k .

Can now generate a descent direction.
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Let

V →
[

Vk vk

] [
Sk
sT
k 1

]
,

tT
[

Vk vk

]
= θeT

p , θ = ±1.

Then the directional derivative is

sup
z∈Z

tT (fg + V z)

= sup
z∈Z

(
−tTV z̃ + θ

[
sT
k 1

]
z
)

,

= sup
z∈Z

(
θ

[
sT
k 1

]
(z−z̃)

)
,

=





(
ζ+
k −

[
sT
k 1

]
z̃
)

,
[

sT
k 1

]
z̃ > ζ+

k ,

−
(
ζ−k −

[
sT
k 1

]
z̃
)

,
[

sT
k 1

]
z̃ < ζ−k

< 0.
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Linesearch: Descent step relaxes off one structure

functional while remainder defining edge stay active

(simplicial step). Experience is that linesearch in this

direction is profitable. Linesearch must terminate at

new active structure functional.

l1: Only necessary to know distances to nonsmooth

points in search direction. Required point is a weighted

median. Hoare’s partitioning algorithm suggested with

partition bound defined by standard median of three.

General: Bisection applied to directional derivative to

refine bracket of minimum. Explicit computation when

bracket contains just one active member.

Statistical estimation: Asymptotic linearity results sug-

gest use of secant algorithm to find axis crossing point

of piecewise constant directional derivative. Shifting

strategy important.

These are all partitioning methods. Important that

evaluation of f ′ (x : t) is no worse than nγ (n) , γ (n)

of slow growth.
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red: secant step

green: shift step

progress in secant algorithm
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Polyhedral constrained problems:

min
x∈X

f(x); X = {x; κ ≥ g (x)} .

Here f (x) strictly convex and smooth (typically a quadratic

form), and g (x) is polyhedral convex. Assume

x̂ = arg min
x

g (x)⇒ κ ≥ g (x̂)

is isolated (global) minimum. Related problem consid-

ers the Lagrangian form:

L (x, λ) = f(x) + λg (x) .

Kuhn-Tucker conditions

∇f(x) = −µvT , vT ∈ ∂g (x) .

κ→ g (x̂) , x∗ → x̂, µ
(
x∗

)→ µ (x̂) ,

κ→∞,x∗ → arg min
x∈ eff(g)

f (x) , µ
(
x∗

)→ 0.

If λ ≥ µ (x̂) , 0 ∈ ∂g (x̂)o then x̂ minimizes L (x, λ) .

The argument uses that if

vT ∈ ∂g (x̂)⇒ µ

λ
vT ∈ ∂g (x̂) , λ > µ.
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Problems:

1. ‘Lasso’ provides a new approach to variable se-

lection

min
x

1

2
rT r; ‖x‖1 ≤ κ.

2. ‘Basis pursuit denoising’

min

{
1

2
rT r+λ ‖x‖1

}
.

3. ‘Support vector regression’

min




1

2
‖x‖22 + λ

n∑

i=1

|ri|ε



 ,

|r|ε =

{
|r| − ε, |r| ≥ ε,

0, |r| < ε.
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Text of Mangasarian’s talk on optimization methods in

data mining at Atlanta 1999 SIAM meeting interesting

source of problems (check his website. He was inter-

ested in formulating problems as linear or quadratic

programs using inequality representations of polyhe-

dral terms. Interest here is in treating polyhedral func-

tions directly.

The following figure motivates the use of the lasso in

variable selection.

(0, κ)

(κ, 0)

‖x‖1 = κ

f(x) = f(

[
0
κ

]
)

A mechanism for variable selection
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Basic algorithm: Let

vT ∈ ∂g (x0)⇒ v = gg + Vσz, z ∈ Zσ.

Generate direction by solving quadratic program

min
V T

σ h=0
G (x0,h) ,

G (x0,h) =
(
∇f (x0) + λgT

g

)
h +

1

2
hT∇2fh.

lc-feasibility defines region of validity:

• given σ points to active structure functionals

• gg is gradient of differentiable part of g.
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Subproblem generates descent direction:

Let h minimize G. Iff h 6= 0 then h is a descent

direction for minimizing L (x, λ) .

h 6= 0⇒minG < 0⇒
(
∇f (x0) + λgT

g

)
h < 0.

L′ (x : h, λ) = max
vT∈∂L

vTh,

= max
z∈Zσ

{
∇f (x0) + λ (gg + Vσz)T

}
h,

=
(
∇f (x0) + λgT

g

)
h < 0.
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Descent component of active set method:

• compute h by minimizing G (x0,h);

• if x0 + h is an lc-feasible minimum of L (x, λ)

then stop;

• else perform linesearch on L (x + γh, λ), stop at

new active structure functional.

If h = 0 lc-feasible minimum then ∃ z0

∇f (x0) + λ (gg + Vσz0)
T = 0.

x0 optimal if z0 ∈ ∂L (x0, λ).
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Otherwise it is necessary to :

1. relax an active structure functional associated with

a violated constraint;

2. redefine the local linearization.

To update the structure relations (σ ← σ� {j})
[

Vj vj

] [
S

sT
j 1

]
= VσPj,

gj
g = gg + ζjvj,

ζj =





ζ−j ,
[

sT
j 1

]
z0 < ζ−j ,

ζ+
j ,

[
sT
j 1

]
z0 > ζ+

j .
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Revised QP gives descent direction which is lc-feasible.

Let

hj = arg min
V T

j h=0
G (x0,h) .

Then h is a descent direction, and is lc-feasible in the

sense that

vT
j hj > 0,

[
sT
j 1

]
z0 > ζ+

j ,

< 0,
[

sT
j 1

]
z0 < ζ−j .

The necessary conditions give

∇2fhj +∇fT + λgj
g + Vjz = 0, V T

j hj = 0

⇒ hT
j

(
∇fT + λgj

g

)
= −hT

j ∇2fhj < 0.

hT
j ∇2fhj + hT

j

(
∇fT + λgg

)
+ λζjh

T
j vj = 0

Also

0 = hT
j

(
∇fT + λgg

)
+ λVσz0

= hT
j

(
∇fT + λgg

)
+ λ

[
sT
j 1

]
z0h

T
j vj

⇒ hT
j ∇2fhj + λ

(
ζj −

[
sT
j 1

]
z0

)
hT

j vj = 0
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Homotopy approach: Assume x, λ are optimal, and

that an index set σ points to the active structure func-

tionals. Differentiating the necessary conditions wrt λ

gives

∇2f
dx

dλ
+ λVσ

dz

dλ
= − (g + Vσz) ,

V T
σ

dx

dλ
= 0.

This system can now be used to obtain a differential

equation for z :

λ
dz

dλ
+ z = a,

a = −
(
V T

σ (∇2f)−1Vσ

)−1
V T

σ (∇2f)−1g.

The general solution is

z = λ−1c + a,

where c is chosen at each updating of σ to ensure

continuity. x is piecewise linear in λ and satisfies
dx
dλ = −(∇2f)−1 (I − S)g, where S is the oblique

projection onto the column space of Vσ.
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Trajectory slope discontinuitiesThere are two causes

for a slope discontinuity in the piecewise linear x tra-

jectory.

1. The multiplier vector zσ(λ) reaches a boundary

point of Zσ. This implies an equality
[

sT
j 1

]
P−1

j zσ = ζ±j
This corresponds to a reduced constraint set defined

by Vj and revised necessary conditions:

[
Vj vj

] [
Sj
sj 1

]
= VσPj,

∇fT + λ
{
gσ + ζ±j vj + Vjz−

}
= 0.

2. A new nonredundant structure functional φj be-

comes active. Here the revised necessary conditions

give

∇fT + λ

{
gσ − ζ±j vj +

[
Vσ vj

] [
zσ

ζ±j

]}
= 0.
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Examples We consider both the lasso and support

vector regression applied to the Iowa wheat data (p=9,n=33),

and Boston housing data (p=13, n=506).For both these

data sets, for the lasso started at κ = 0, the homo-

topy algorithm turns out to be clearly the method of

choice as it takes exactly p simplicial steps of O(np)

operations applied to an appropriately organised data

set to compute the solutions for the full range of κ in

each case with two more steps being necessary if an

intercept term is included in the housing data. This is

essentially the minimum number possible. The cost is

strictly comparable with the work required to solve the

least squares problem for the full data set, and a great

deal more information is obtained.
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Support vector regression provides an example in which

the residual vector in the linear model appears in the

polyhedral function constraint. This now contains a

number of terms equal to the number of observations

so that it is distinctly more complex than in the lasso.

The active set algorithm proves reasonably effective:

ε λ nits n0 ne nits n0 ne

10 10 121 471 13 32 17 9

1 113 471 10 32 18 8

.1 92 459 10 33 18 6

1 10 144 135 13 31 3 9

1 130 135 13 26 2 8

.1 201 129 12 16 0 6

.1 10 262 16 13 54 1 9

1 179 14 12 34 0 8

.1 183 12 11 18 0 5

Active set: housing data, wheat data
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The homotopy algorithm is relatively less favoured in

this case. The obvious starting point in the sense that

the solution x = 0, λ = 0 is known. A characteris-

tic is a slow beginning with repeated changes in little

evident structure.

ε λ nits n0 ne

1 6.1039 -7 30 0 1

4.1825 -6 60 0 1

6.1329 -6 90 1 4

1.8249 +0 120 2 7

6.9885 +0 128 3 9

5 4.7748 -7 25 4 0

1.5381 -6 50 11 1

2.1717 -2 75 11 1

7.9804 -1 100 11 8

4.1176 +0 112 9 9

10 5.3009 -7 30 10 1

4.1587 -6 60 18 1

5.7636 -2 90 19 3

9.9232 -1 120 18 8

2.0812 +0 128 17 9

Homotopy: Iowa wheat data
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In the housing data something needs to be done to

escape the small values of λ. The active set algorithm

could be useful here.

ε λ nits n0 ne

.1 6.2813 -7 800 7 1

1.3640 -4 1600 4 5

1.2205 -2 2400 11 11

1.7506 -1 3200 14 11

1.3873 +2 3504 17 13

1 8.4170 -7 900 63 1

5.6961 -4 1800 81 5

2.5095 -2 2700 106 11

8.5303 +0 3600 134 13

2.6616 +2 3630 137 13

5 3.3052 -7 600 189 1

3.1050 -5 1200 276 3

3.7948 -3 1800 318 9

1.5889 -1 2400 394 11

6.1290 +2 2592 405 13

Homotopy: Boston housing data
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