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Abstract

Classical considerations of stability in ODE initial and boundary
problems have been mirrored by corresponding properties (stiff stabil-
ity, di-stability) in problem discretizations. However, computational
categories are not precise, and qualitative descriptors such as “of mod-
erate size” cannot be avoided where size varies with the sensitivity of
the Newton iteration in nonlinear problems for example. Sensitive
Newton iterations require close enough initial estimates. The main
tool for providing this in boundary value problems is continuation
with respect to a parameter. If stable discretizations are not available
then adaptive meshing is needed to follow rapidly changing solutions.
Use of such tools can be necessary in stable nonlinear situations not
covered by classical considerations. Implications for the estimation
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problem are sketched. It is shown how to choose appropriate bound-
ary conditions for the embedding method. The simultaneous method
is formulated as a constrained optimization problem. It appears dis-
tinctly promising in avoiding explicit ODE characterization. However,
its properties are not yet completely understood.

1 Introduction

The stability of the solution of the initial value problem (IVP) for systems
of ordinary differential equations has been studied extensively. There is a
corresponding theory for numerical schemes for estimating solutions of these
problems but it possesses some important differences. These arise through
the requirement to produce numerical results for problems which cannot fit
the classical framework, and this leads to differences both in emphasis and
requirement. Boundary value problems (BVP) involve a global statement
which makes corresponding results more elusive, but problems which are
similar in kind occur. The estimation problems is an inverse problem which
arises in trying to quantify system properties using information obtained by
observing solution trajectories, typically in the presence of noise. Important
in applications, the requirement here is to clarify the role of intrinsic prop-
erties of the differential equation in the well determinedness or otherwise of
the estimation problem solution.

The differential equation is written

dx

dt
= f (t,x) (1)

where x ∈ Rm, f ∈ R1×Rm → Rm, and the forcing function f is assumed to
have any required degree of smoothness. Boundary conditions have the form

B0x(0) + B1x(1) = b (2)

where b ∈ Rm and B0, B1 ∈ Rm → Rm. Rank conditions are necessary on
B0, B1 for the existence of a unique solution (see (6)). Boundary conditions
are separated if no row of (2) couples solution values at both boundary points.
This formulation contains the IVP as the special separated case B0 = I, B1 =
0. The IVP is distinguished because relatively weak conditions are sufficient
to guarantee a local solution. The general boundary formulation also suffices
for multipoint problems which can be reduced to BVP form by mapping each
of the subintervals into [0, 1].
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Conditions for the existence of solutions of the BVP can be obtained by
first considering the linear differential equation

dx

dt
= A(t)x + q(t). (3)

Associated with this equation are IVP’s for the fundamental matrix X (t, ξ)
satisfying

dX

dt
= A(t)X, X(ξ, ξ) = I, (4)

and the particular integral w(t, ξ) satisfying

dw

dt
= A(t)w + q(t), w(ξ, ξ) = 0. (5)

The solution of the BVP can now be written by supposition

x = X(t, 0)x(0) + w(t, 0)

where x(0) must be chosen to satisfy the boundary value equations

(B0 + B1X(1, 0))x(0) = b−B1w(1, 0). (6)

This can be satisfied provided B0+B1X(1, 0) has a bounded inverse. Solution
conditions in the nonlinear case can now be obtained by linearising around
an assumed solution and applying the Newton-Kantorovich theory [6].

In the linear case knowledge of the fundamental matrix permits explicit
solution representations to be written down. In particular, the Green’s ma-
trix is given by

G (t, s) = X(t) [B0X(0) + B1X(1)]−1 B0X(0)X−1(s), t > s,

= −X(t) [B0X(0) + B1X(1)]−1 B1X(1)X−1(s), t < s.

Note that G is independent of the form of initial condition on the fundamental
matrix provided only it has full rank. The size of the Green’s matrix governs
the sensitivity of the BVP solution to perturbations in q(t). This is clearly
important in stability considerations. The quantity

α = max
0≤t,s≤1

‖G(t, s‖2 (7)

is called the stability constant .
An important related problem is the estimation problem. Here the ar-

gument of the forcing function f in (1) contains also a vector of parameters
β ∈ Rp,

f ← f(t,x, β).
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This vector of parameters is to be estimated using information gained by
observing a solution trajectory in the presence of noise at a set of points
Tn = {t1, t2, · · · , tn}. This information is assumed to have the form

yi = Hx(ti, β) + εi, ti ∈ Tn, (8)

where yi ∈ Rk, k ≤ m, H : Rm → Rk has rank k, and εi ∼ N(0, σ2I) are
independent samples from a random process. Differences with the BVP arise
not only from the presence of the noise process, but also from a requirement
that a sufficiently rich set of observations be available. A minimum condition
assumed is that nk > m so the problem is formally strictly over-determined.
This means that the best that can be done in general is to seek a solution
that minimizes a goodness of fit criterion with respect to the observed data.
Here this criterion is assumed to be

F (β) =
n∑

i=1

‖yi −Hx(ti, β)‖22 . (9)

It can be interpreted either in a least squares or maximum likelihood sense.
The resulting optimization problem can have two forms depending on the
manner of generating the comparison functions x(t,β).

Embedding : Here boundary matrices B0, B1 are selected in order to em-
bed the comparison function in a family of BVP’s. Now the appropriate
right hand side vector b becomes a vector of auxiliary parameters to
be determined as part of the estimation problem. The selection of
B0, B1 has to be specified a priori in a manner compatible with sta-
bility constraints on the problem, and this approach has the further
disadvantage that a (in general nonlinear) BVP must be solved at each
Newton iteration.

Simultaneous : The idea is to impose a discretized form of the differential
equation as a set of equality constraints on the problem of minimizing
F . Estimates of β and the state variables x(ti, β) are then generated
simultaneously by solving the resulting constrained optimization prob-
lem. Here it simplifies discussion to combine the state vector with the
parameter vector xT ←

[
xT βT

]
and to augment the differential

equation system with the additional equations dβ
dt

= 0.

An important aspect of the estimation problem is the selection of the points
ti ∈ Tn. Here it is necessary to distinguish two classes of experiment.
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1. One in which observations are not available outside a finite interval
which is here assumed to be [0, 1]. Full information requires that Tn

can be generated for arbitrarily large n. These experiments are called
planned if the sets Tn satisfy the condition

1

n

n∑
i=1

v(ti)→
∫ 1

0

v(t)dρ(t), n→∞

for all v(t) ∈ C[0, 1]. This requirement just reflects the requirement
that the non negative density function ρ is associated with the mecha-
nism which must be set in place to generate an unbounded number of
observations.

2. The alternative situation is one in which observations on a trajectory
for arbitrarily large time contain parametric information. An important
class of these problems is the class of stationary processes. One problem
here which can be posed as an estimation problem is that of determining
frequencies. These are functions of the coefficients in an ODE with
constant coefficients.

The stochastic aspects of the estimation problem can have an important
bearing on the choice of Tn.

• The asymptotic analysis of the effects of noisy data on maximum like-
lihood estimates of the parameters shows that this gets small no faster
than O

(
n−1/2

)
under planned experiment conditions. A higher rate

(O
(
n−3/2

)
) is theoretically possible in maximum likelihood estimates

in the frequency estimation problem but direct maximization is not the
way to obtain these coefficients [12].

• It is not difficult to obtain ODE discretizations that give errors at most
O (n−2).

This suggests that the trapezoidal rule provides an adequate discretisation.
Here it has the form:

ci(xc) = xi+1 − xi −
h

2
(fi+1 + fi) = 0, i = 1, 2, · · · , n− 1, (10)

with xi = x(ti, β), xc the composite vector with sub-vector components xi,
and h the discretization mesh spacing. It is known to be endowed with
attractive properties [4].
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2 ODE stability

2.1 Initial value problem stability

Consider first the stability of the IVP

dx

dt
= f (t,x) , x(0) = b.

Stability here means that solutions with close initial conditions x1(0), x2(0)
remain close in an appropriate sense.

• Let ‖x1(t)−x2(t)‖ remain bounded (→ 0) as t→∞. This corresponds
to weak (strong) IVS. Note that systems with bounded oscillatory so-
lutions may well be weakly stable but the classification may not be
particularly useful.

• Here computation introduces the idea of stiff discretizations which pre-
serve the stability characteristics of the original equation in the sense
that decaying solutions of the differential equation are mapped onto de-
caying solutions of the computational problem. The advantage is that
the computation does not have to follow rapidly decaying solutions in
detail. This is one area where there are genuine nonlinear results - for
example, Butcher’s work on BN stability of Runge-Kutta methods [2].

However, not all relevant IVPs are stable. The classical BVP solution method
of multiple shooting provides an example [10]. This requires computation of
the multiple shooting matrix of the linearized equation:

−X(t2, t1) I
−X(t3, t2) I

· · · · · ·
B0 B1

 .

The problem is that the IVP for computing X(ti+1, ti) could well be unstable
in both forward and backward directions when the BVP has a well determined
solution. This does not mean progress cannot be made. This is a consequence
of Dahlquist’s famous ”consistency + stability implies convergence as h→ 0”
theorem [3] which does not require IVP stability. However, it’s setting
implies exact arithmetic. The problem for practical computation is a form
of numerical instability. This occurs in trying to follow a decreasing solution
in the presence of rapidly increasing solutions. Rounding error introduces
components of these fast solutions and these will eventually swamp that
required. Compromise is necessary. Here this takes the form of restrictions
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on the length of the interval of integration. This control in multiple shooting
is provided by the choice of the {ti}. Multiple shooting in this form appears
to require accurate computation of all solutions and this is potentially a
weakness.

This discussion is readily illustrated in the constant coefficient case. Con-
sider the ODE

f (t,x) = Ax− q

If A is non-defective then weak IVS requires the eigenvalues λi(A) to satisfy
Re{λi} ≤ 0 while this inequality must be strict for strong IVS.
A one-step discretization of the ODE (ignoring the q contribution) can be
written

xi+1 = Th (A)xi.

where Th(A) is the amplification matrix. A stiff discretization requires the
stability inequalities to map into the condition |λi (Th) | ≤ 1. For the trape-
zoidal rule

|λi (Th)| =
∣∣∣∣1 + hλi(A)/2

1− hλi(A)/2

∣∣∣∣ ,

≤ 1 if Re {λi (A)} ≤ 0.

2.2 Boundary value problem stability

The generalisation of IVS that is appropriate for linear differential equa-
tions is provided by the property of dichotomy : The key paper discussing
the computational context is de Hoog and Mattheij [5]. Here only a weak
form of dichotomy is considered. It requires that there exists a projection P
depending on the choice of X such that, given

S1 ← {XPw, w ∈ Rm} , S2 ← {X (I − P )w, w ∈ Rm} ,

then for all s, t

φ ∈ S1 ⇒
|φ(t)|
|φ(s)|

≤ κ, t ≥ s,

φ ∈ S2 ⇒
|φ(t)|
|φ(s)|

≤ κ, t ≤ s.

This is the structural property that connects linear BVP stability with the
detailed behaviour of the range of possible solutions. However, the BVP is
specified on a finite interval. This means that on that interval, provided the
fundamental matrix is bounded, there is always a bounded κ. The additional
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feature in the computational context is that a modest κ is required for t, s ∈
[0, 1]. The key result is that if X satisfies B0X(0) + B1X(1) = I then
P = B0X(0) is a suitable projection in sense that for separated boundary
conditions the choice κ = α is allowed where α is the stability constant.
There is an intimate connection between stability and dichotomy. Dichotomy
permits a form of generalisation of A stability to the BVP case.

• The dichotomy projection separates increasing and decreasing solutions
of the differential equation. Compatible boundary conditions pin down
rapidly decreasing solutions at 0, and rapidly increasing solutions at 1.

• The discretization needs similar property in order that the given bound-
ary conditions exercise the same control on the discretized system.

• This requires solutions of the ODE which are rapidly increasing (de-
creasing) in magnitude be mapped into solutions of the discretization
which are rapidly increasing (decreasing) in magnitude.

This property is called di-stability in [7]. They show that the trapezoidal
rule is di-stable in the constant coefficient case. The argument is straight
forward:

λ(A) > 0⇒
∣∣∣∣1 + hλ(A)/2

1− hλ(A)/2

∣∣∣∣ > 1. (11)

Example 1 Mattheij suggested a problem which provides an interesting test
of discretization methods. Consider the differential system defined by

A(t) =

 1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t

 ,

q(t) =

 et (−1 + 19 (cos 2t− sin 2t))
−18et

et (1− 19 (cos 2t + sin 2t))

 .

Here the right hand side is chosen so that z(t) = ete satisfies the differential
equation. The fundamental matrix displays two fast and one slow solution
showing that this system exhibits strong dichotomy:

X(t, 0) =

 e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t

 .
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h = .1 h = .01
x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000
x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

Table 1: Boundary point values - stable computation

h = .1 h = .01
x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000
x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

Table 2: Boundary point values - unstable computation

For boundary data with two terminal conditions, one initial condition, and
right hand side chosen to match the exponential solution :

B0 =

 0 0 0
0 0 0
1 0 0

 , B1 =

 1 0 0
0 1 0
0 0 0

 , b =

 e
e
1

 ,

the trapezoidal rule discretization scheme gives the results in Table 1. These
computations are apparently satisfactory.

In contrast, posing two initial and one terminal condition:

B0 =

 0 0 1
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
0 0 0

 , b =

 1
e
1


gives the results in Table 2 The effects of instability are seen clearly in the
first and third solution components.

The feature of this example is the role of di-stability. Consider the trape-
zoidal rule denominator in (11). This suggests large and spurious amplifi-
cation is likely in case h = .1. However, this is not evident in the stable
computation. However, the unstable case does show more influence of insta-
bility than the case h = .01. The small denominator in (11) suggests the
likely explanation.

2.3 Nonlinear stability

In nonlinear problems stability becomes a property of the linear problem
governing the behaviour of perturbations about a current trajectory. In this
sense it is a local property. Stable nonlinear problems are associated with
relatively slow perturbation growth. Such problems can be expected to have
the property that Newton’s method applied to solve the discretized problem
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will have a reasonable domain of convergence. The linear IVP/BVP stability
requirements are inflexible in the sense that solutions must not depart from
the classification as increasing/decreasing. Important conflicting examples
occur in the linearised equations associated with dynamical systems. These
include solutions which

• can have a stable character - for example, limiting trajectories which
attract neighboring orbits;

• and clearly switch between the increasing and decreasing modes of the
linearised system in a manner characteristic of oscillatory behaviour
and so cannot satisfy the linear IVP/BVP stability requirements.

Limit cycle behavior provides a familiar example that is of this type. Intrigu-
ingly it can share some of the properties of stationary processes in the sense
that observations contain trajectory information for all t.

Example 2 To exhibit limit cycle behaviour consider the FitzHugh-Nagumo
equations:

dV

dt
= γ

(
V − V 3

3
+ R

)
,

dR

dt
= −1

γ
(V − α− βR) .

Solution components for α = .2, β = .2, γ = 1 are illustrated in Figure 1.
Note that the positive and negative components of the individual cycles are
not exact opposites.

Example 3 The Van der Pol equation:

d2x

dt2
− λ

(
1− x2

) dx

dt
+ x = 0.

This provides a difficult ODE example with difficulty increasing with λ. The
solutions here are exactly periodic. Stability is illustrated by convergence of
trajectories from nearby initial points to the limit cycle. In Figure 2 rapid
convergence to the limit cycle for λ = 1, 10 computed using standard Scilab
code is illustrated. Computational problems occur because of the need to follow
rapidly changing trajectories in detail. The clustering of integration points
near the approximately vertical section of each trajectory shows the impor-
tance of adaptive mesh selection. Note the rapid convergence to the limiting
trajectory showing this is certainly a stable situation.
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Figure 1: FitzHugh-Nagumo BVP solutions V, R (one cycle)

Van der Pol

−20 20
−3

3

Figure 2: Scilab plot of Van der Pol trajectories for λ = 1, 10
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Figure 3: Matlab plot of state variable for λ = 1000, x1(0) = 2

Matlab also uses this example in demonstration software but the output is
less useful as it gives state information but not the derivative values for the
case λ = 1000 (Figure 3). This plot of a difficult case implies an excellent
IVP solver. The starting values (2, 0) used are rather special as:

x1(0) = 2 +
1

3
αλ−4/3 − 16

27
λ−2 ln(λ) + O(λ−2)

where α = 2.33811....

Example 4 The Van der Pol equation is exactly cyclic so the problem of
computing a half cycle can be cast in BVP form on the interval [0, 2] by
making the transformation s = 4t/T . The unknown interval length can be
treated as an additional variable by setting x3 = T/4. The resulting ODE
system becomes

dx1

ds
= x2,

dx2

ds
= λ

(
1− x2

1

)
x2x3 − x1x

2
3,

dx3

ds
= 0.
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Figure 4: Van der Pol solution x1, x2 for λ=10

The appropriate boundary data is

B0 =

 0 1 0
0 0 0
1 0 0

 , B1 =

 0 0 0
0 1 0
1 0 0

 , b = 0.

The nonlinear system has the trivial solution x = 0 so it is necessary to
choose appropriate nonzero initial estimates. Here this has been done by
taking the periodic solution for λ = 0 with x1(0) = 2, x2(0) = 0 as the initial
estimate. This gives convergence for the Newton iteration for λ = 1 and
continues to work for λ ≤ 5. Continuation with ∆λ = 1 is used for higher
values. The fixed discretizations exemplified are h = 1/100, 1/1000. This
is not ideal for this problem as the IVP computations have illustrated the
importance of adaptive meshing. The BVP results for λ = 10, h = 1/1000
are given in Figure 4. These reinforce the need for the use of appropriately
graded mesh selection.

2.4 Stability consequences

The ODE stability conditions provide sharp distinctions - in part because
they are specifying global properties. Computational requirements force com-
promise. In the IVP this is provided by various control devices: for example,
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automatic step length control. There are two classes of computational sta-
bility problem:

• The difference approximation is unstable and does not satisfy the Dahlquist
root condition ρ(1) = 0; ρ(t) = 0, t 6= 1, ⇒ |t| < 1. In this case errors
grow with n and so are unbounded as h → 0. This occurs whether or
not the original problem is unstable.

• In unstable IVP’s a computed slow solution will be swamped eventu-
ally as a result of the growth of rounding error induced perturbations
which can grow like the Gronwall Lemma bound γ exp(Kt) in a worst
case. This is the problem which multiple shooting seeks to control.
This device appears not be necessary in stable BVP’s if di-stable dis-
cretizations are used.

In the BVP stability discussion the dichotomy considerations are restricted
to a finite interval on which we ask for ”moderate” κ, arguing that it can be
related to a bound for the Green’s matrix and so directly relates to problem
stability. Here the individual terms in the inverse of the multiple shooting
matrix can then be interpreted using the Green’s matrix. If κ is large then
the BVP will be associated with a sensitive Newton iteration because the
inverse Jacobian matrices must contain terms of O(κ). Available tools for
overcoming this problem include:

• use of adaptive mesh control in positioning discretization points - but
this may be difficult if good initial estimates are not available;

• adaptive continuation with respect to a parameter in order to move
from a known to a required BVP solution in a sequence of steps in
which the current solution provides a good enough initial estimate for
convergence of the Newton iteration at the next continuation incre-
ment.

3 The estimation problem

3.1 Estimation via embedding

The embedding form of the estimation problem (1) leads to a nonlinear least
squares problem to minimize (9) for the unknown parameters β, b. This
can be solved by an application of the Gauss-Newton method [9] once the
boundary conditions needed to specify the embedding have been specified.
This can be done by noting that a good choice should lead to a relatively
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well conditioned linear system in setting up the linear least squares problem
for the Gauss-Newton correction. To see what is involved note that the
trapezoidal rule discretization of the differential equation (10) can be written
in the form

ci (xi,xi+1) = cii(xi) + ci(i+1)(xi+1).

Here the state variables enter additively. As a consequence the gradient
system has the block bi-diagonal matrix C given by

C =


C11 C12

C22 C23

· · ·
· · · C(n−1)n

 . (12)

Consider the orthogonal factorization of this system with the first column
permuted to the last place:

C12 C11

C22 C23

C(n−1)(n−1) C(n−1)n 0

→ Q

[
U Z

0 · · · D G

]

This step is independent of the boundary conditions. It permits a solution
representation of the form

xi = Vix1 + Wixn + wi, i = 2, · · · , n− 1. (13)

with unknowns x1, xn. Factorization by orthogonal cyclic reduction asso-
ciates {Vi, Wi, wi} with solutions of the ODE system of twice the order [11]:{

d

dt
+ AT (t)

} {
d

dt
− A (t)

}
z = · · ·

where A is the coefficient matrix of the linear ODE. Does a dichotomy result
for this system follow from dichotomy for the original? The result is true for
systems with constant coefficients. The orthogonal factorization suggested
here is not the same as cyclic reduction but the performance appears similar.

If boundary conditions are inserted at this point there results a system

for x1, xn with matrix

[
D G
B1 B0

]
. Orthogonal factorization again provides

a useful strategy. [
D G

]
=

[
L 0

] [
ST

1

ST
2

]
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It follows that the system determining x1, xn is best conditioned by choosing[
B1 B0

]
= ST

2 .

This choice of B0, B1 depends only on the ODE, but it does depend on β in
the estimation problem as a consequence. It’s use is illustrated in Example 5.

To set up the Gauss-Newton iteration let ∇(β,b)x =
[

∂x
∂β

, ∂x
∂b

]
, ri = yi −

Hx (ti, β,b). Then the gradient of F is

∇(β,b)F = −2
n∑

i=1

rT
i H∇(β,b)xi.

The gradient terms with respect to β are found by solving the BVP’s

B0
∂x

∂β
(0) + B1

∂x

∂β
(1) = 0,

d

dt

∂x

∂β
= ∇xf

∂x

∂β
+∇βf ,

while the corresponding terms with respect to b satisfy the BVP’s

B0
∂x

∂b
(0) + B1

∂x

∂b
(1) = I,

d

dt

∂x

∂b
= ∇xf

∂x

∂b
.

Example 5 Consider the modification of the Mattheij problem with param-
eters β∗1 = γ, and β∗2 = 2 corresponding to the solution x (t,β∗) = ete:

A(t) =

 1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cos β2t

 ,

q(t) =

 et (−1 + γ (cos 2t− sin 2t))
−(γ − 1)et

et (1− γ (cos 2t + sin 2t))

 .

In the numerical experiments optimal boundary conditions are set at the first
iteration. The aim is to recover estimates of β∗,b∗ from simulated data
etiHe+εi, εi ∼ N(0, .01I) using Gauss-Newton, stopping when ∇Fh < 10−8.
Results are given in Table 3.

Here the effect of varying β, b proves negligible. The angle between the
initial conditions and the optimal conditions for the subsequent values of

β, b is determined by ‖
[

B1 B2

]
1

[
B1 B2

]T

k
− I‖F < 10−3, k > 1. This

example possesses a dichotomy so these results confirm the efficacy of the
embedding method for stable problems.
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H =
[

1/3 1/3 1/3
]

H =

[
.5 0 .5
0 1 0

]
n = 51, γ = 10, σ = .1

14 iterations
n = 51, γ = 20, σ = .1

11 iterations
n = 251, γ = 10, σ = .1

9 iterations
n = 251, γ = 20, σ = .1

8 iterations

n = 51, γ = 10, σ = .1
5 iterations

n = 51, γ = 20, σ = .1
9 iterations

n = 251, γ = 10, σ = .1
4 iterations

n = 251, γ = 20, σ = .1
5 iterations

Table 3: Embedding method: Gauss-Newton results for the Mattheij problem

3.2 Simultaneous estimation

The simultaneous method 1 leads to the optimization problem:

min
xc

F (xc) ; ci (xc) = 0, i = 1, 2, · · · , n− 1, (14)

where xc ∈ Rnm is the composite vector with block sub-vectors x1,x2, · · · ,xn,
and where the individual state and parameter vectors are bundled together
to form composite state sub-vectors. Introducing the Lagrangian function

L = F (xc) +
n−1∑
i=1

λT
i ci.

permits the necessary conditions to be written:

∇xi
L = 0, i = 1, 2, · · · , n, c (xc) = 0.

The basic algorithmic approach involves the use of Newton’s method or one of
its variants to solve this nonlinear system. The resulting system determining
corrections dxc,dλc is:

∇2
xxLdxc +∇2

xλLdλc = −∇xLT , (15)

∇xc (xc)dxc = Cdxc = −c (xc) , (16)

where the block bidiagonal matrix C is defined in equation (12) The sparsity
is a consequence of the trapezoidal rule. Here ∇2

xxL is block diagonal while
∇2

xλL = CT is block bidiagonal. In [9] these equations are connected to
necessary conditions for the solution of a quadratic program. This leads to
consideration of two main solution approaches.
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Elimination The constraint equations (16) can be solved for dxi, i =
2, · · · , n− 1 in terms of dx1 and dxn as in equation (13). This permits
the quadratic program to be reduced to a problem in just these vari-
ables with the constraint determined by the last row of the factored
matrix. Second order sufficiency conditions must still be satisfied for
this reduced problem. This is discussed in [8] and the references cited
there. This approach has been tested for boundary value stable prob-
lems. Simpler elimination schemes are possible, but these correspond
essentially to simple shooting [1] and cannot be boundary value stable.

Null space An alternative approach which does not depend on a boundary
value formulation can be based on the factorization

CT =
[

Q1 Q2

] [
U
0

]
.

Then the Newton equations can be written QT∇2
xxLQ

[
U
0

]
[

UT 0
]

0

[
QTdxc

dλc

]
= −

[
QT∇xLT

c

]
.

They can be solved in the sequence

UT QT
1 dxc = −c, (17)

QT
2∇2

xxLQ2Q
T
2 dxc = −QT

2∇2
xxLQ1Q

T
1 dxc −QT

2∇xLT , (18)

Udλc = −QT
1∇2

xxLdxc −QT
1∇xLT . (19)

Sufficient conditions are just the second order sufficiency conditions

1. The matrix C has full row rank so the linearised constraints are
linearly independent.

2. The matrix QT
2∇2

xxLQ2 is nonsingular.

Remark 6 The null space method does not depend explicitly on techniques
associated with boundary value problem solution methods. Thus it is of inter-
est to ask if it possesses wider stability tolerances. Discussion of the method’s
properties is complicated by the presence of the Lagrange multipliers for which
initial estimates have to be provided. Typically this is done by computing the
generalised inverse solution to the necessary condition

CT λc +∇xF
T = 0

at the initial point. Note this equation has formal similarity to the discretiza-
tion of the adjoint differential equation and so could connect the null space
method back to stability questions.
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test results n = 11 particular integral QT
1 x

.87665 -.97130 -1.0001

.74089 -1.0987 -1.3432

.47327 -1.2149 -1.6230

.11498 -1.3427 -1.8611
-.32987 -1.4839 -2.0366
-.85368 -1.6400 -2.1250
-1.4428 -1.8125 -2.1018
-2.0773 -2.0031 -1.9444
-2.7309 -2.2137 -1.6330
-3.3719 -2.4466 -1.1526

.87660 -.97134 -1.0001

.74083 -1.0988 -1.3432

.47321 -1.2150 -1.6231

.11491 -1.3428 -1.8612
-.32994 -1.4840 -2.0367
-.85376 -1.6401 -2.1250
-1.4429 -1.8125 -2.1019
-2.0774 -2.0032 -1.9444
-2.7310 -2.2138 -1.6331
-3.3720 -2.4467 -1.1527

Table 4: Stability test: comparison of exact and computed values

Remark 7 If the null space method is applied to the Mattheij problem with
initial estimate xc = 0 then the first step solves Cdxc = qc. It follows that

QT
1 dxc = U−Tqc should estimate QT

1 vec

exp(ti)

 1
1
1

. Computed and

exact results are displayed in Table 4 in the interesting case h = .1. The
results suggest that the null space method can exploit di-stability.

References

[1] U.M. Ascher, R.M.M. Mattheij, and R.D. Russell, Numerical solution
of boundary value problems for ordinary differential equations, SIAM,
Philadelphia, 1995.

[2] J.C. Butcher, Numerical methods for ordinary differential equations,
John Wiley and Sons, 2003.

[3] G. Dahlquist, Convergence and stability in the numerical integration of
ordinary differential equations, Math. Scand. 4 (1956), 33–53.

[4] , A special stability problem for linear multistep methods, BIT 3
(1963), 27–43.

[5] F.R. de Hoog and R.M.M. Mattheij, On dichotomy and well-
conditioning in BVP, SIAM J. Numer. Anal. 24 (1987), 89–105.

[6] P. Deuflhard, Newton methods for nonlinear problems, Springer-Verlag,
Berlin Heidelberg, 2004.

19



[7] R. England and R.M.M. Mattheij, Boundary value problems and di-
chotomic stability, SIAM J. Numer. Anal. 25 (1988), 1037–1054.

[8] Z. Li, M.R. Osborne, and T. Prvan, Parameter estimation of ordinary
differential equations, IMA J. Numer. Anal. 25 (2005), 264–285.

[9] J. Nocedal and S.J. Wright, Numerical optimization, Springer Verlag,
1999.

[10] M. R. Osborne, On shooting methods for boundary value problems, J.
Math. Analysis and Applic. 27 (1969), 417–433.

[11] M.R. Osborne, Cyclic reduction, dichotomy, and the estimation of dif-
ferential equations, J. Comp. and Appl. Math. 86 (1997), 271–286.

[12] B.J. Quinn and E.J. Hannan, The estimation and tracking of frequency,
Cambridge University Press, Cambridge, United Kingdom, 2001.

20


