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Parameter estimation of ordinary differential equations
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This paper addresses the development of a new algorithm for parameter estimation of ordinary differential
equations. Here, we show that (1) the simultaneous approach combined with orthogonal cyclic reduction
can be used to reduce the estimation problem to an optimization problem subject to a fixed number of
equality constraints without the need for structural information to devise a stable embedding in the case
of non-trivial dichotomy and (2) the Newton approximation of the Hessian information of the Lagrangian
function of the estimation problem should be used in cases where hypothesized models are incorrect or
only a limited amount of sample data is available. A new algorithm is proposed which includes the use
of the sequential quadratic programming (SQP) Gauss–Newton approximation but also encompasses the
SQP Newton approximation along with tests of when to use this approximation. This composite approach
relaxes the restrictions on the SQP Gauss–Newton approximation that the hypothesized model should
be correct and the sample data set large enough. This new algorithm has been tested on two standard
problems.

Keywords: ordinary differential equations; data fitting; parameter estimation; orthogonal cyclic reduction;
constrained optimization; SQP methods; Gauss–Newton approximation.

1. Introduction

Assume that the ordinary differential equations (ODEs), after suitable normalization, have the form

dx
dt

= f (t, x, θ), (1.1)

where t denotes the independent variable, usually referred to as time, θ is a p-dimensional vector of
unknown parameters, x = x(t, θ) is an n-dimensional state variable vector depending on t and θ, and
the function f (t, x, θ) maps �×�n ×�p into �n . In addition, side constraints are often given to specify
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further model properties such as boundary conditions, initial values or parameter restrictions

cp(x(t1), x(t f ), θ) = 0 ∈ Rq , (1.2)

where t1 is the initial time and t f is the final time.
In order to estimate the unknown parameters, a number of measurements, say N , are available for

the process under consideration. These measurements often contain inherent errors and are characterized
by

ŷi = h(x(ti , θ)) + εi , i = 1, . . . , N , (1.3)

where ŷi ∈ �n is the measured value at ti , and {εi }N
i=1 are independently and identically normally

distributed errors. A common special case is that in which the state variables are observed directly, i.e.
ŷi = x(ti , θ) + εi , i = 1, . . . , N . If the dynamical structure requires a dense grid, but only a few
experimental times are available, one could insert dummy values with zero weights. Note that of the
set of parameters making up the vector θ, some may enter only in f , others only in cp. The parameter
estimation problem is to find reasonable values for θ so that the solution of the system (1.1)–(1.2) with
these values fits the given data {ŷi }N

i=1.
Using the method of least squares, the parameter estimation problem (1.1)–(1.2) can be formulated

as follows:

min m(θ) = 1

2N

N∑
i=1

[ŷi − h(x(ti , θ))]T[ŷi − h(x(ti , θ))] (1.4)

s.t.
dx
dt

= f (t, x, θ) (1.5)

cp(x(t1), x(t f ), θ) = 0. (1.6)

Traditionally, this kind of problem (1.4)–(1.6) is tackled by the initial-value problem approach,
see Hemker (1971) and Bard (1974). However, this approach cannot deal with a case in which the
fundamental matrix of the ODE (1.1) has exponentially increasing and decreasing modes or, more
generally, has non-trivial dichotomy, see Ascher et al. (1995).

An alternative is the embedding approach, see Bock (1983), Nowak & Deuflhard (1985), Deuflhard
& Nowak (1986), Bock & Schlöder (1987), Bock et al. (1988) and Childs & Osborne (1996). The
embedding approach requires additional information on the solution structure such that the ODE model
can be stably posed by adjoining suitable boundary conditions, see Osborne (1997). However, choosing
an appropriate embedding for a general dynamical system can be difficult since a priori information
about the solution structure of the ODE model may not be available: for example, problems occurring in
chemical engineering are quoted by Tjoa & Biegler (1991) and Tanartkit & Biegler (1995). Moreover,
if this embedding is carried out explicitly then it will increase the number of parameters that must be
estimated from the observed data.

Another problem occurs in the solution of the optimization procedure involved. Typically, the SQP
Gauss–Newton method is used for solving the resultant optimization problem to take advantage of the
least-squares structure of the objective function (1.4), see Bock (1983), Bock & Schlöder (1987), Bock
et al. (1988) and Childs & Osborne (1996). However, our numerical experiments have demonstrated that
the SQP Gauss–Newton method works well only if the fitted model is exact and the sample data set is
large enough. The use of the SQP Gauss–Newton method would result in poor performance when only
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a limited amount of data is available or an inappropriate model is being fitted to the data as part of the
comparison process, see Li (2000).

In this paper, we attempt to develop an efficient and stable algorithm for estimating unknown
parameters in an ODE system. The method of least squares is used to define the objective function.
In order to pose the ODE model in a stable fashion, we use the simultaneous approach of Tjoa &
Biegler (1991). In doing so, the differential equations are transformed into difference equations. Thus
the problem becomes a constrained nonlinear least-squares problem, in which both the parameters and
the state variables are regarded as unknown variables. Other applications of the simultaneous approach
include Irving & Dewson (1997), Baer et al. (1999) and Parlitz & Merkwirth (2000). This constrained
minimization is large if N , the number of observations, is large. However, its effective degrees of
freedom are determined by the ODE, rather than by the size of the data set. This motivates us to reduce it
to a minimization problem with a fixed finite number of constraints by the use of orthogonal cyclic
reduction. This reduction process is stable and does not need any explicit imposing of extra initial
or boundary conditions, see Bock et al. (1988), Wright (1992), Gallitzendoerfer & Bock (1994) and
Osborne (1997). In order to relax the restrictions on the Gauss–Newton-type optimization method, the
treatment of the Hessian approximation in our SQP method combines the best of the Newton Hessian
approximation and the Gauss–Newton approximation. A trust region global strategy is also added in our
code to make our algorithm more robust.

The remainder of this paper is organized as follows: our new simultaneous approach algorithm is
outlined in Section 2; then we present the orthogonal cyclic reduction procedure in Section 3; the details
of our implementation are discussed in Section 4; and the final section describes the application of our
new algorithm to two standard problems.

2. Outline of the new algorithm

The simultaneous approach circumvents the drawbacks of both the initial-value problem approach and
the embedding approach, see Tjoa & Biegler (1991) and Tanartkit & Biegler (1995). Furthermore, this
approach does not need any explicit adjoining of boundary conditions to devise a stable embedding.

For the simultaneous approach, the ODE (1.1) is discretized by using finite differences or orthogonal
collocation methods so that the discretized equations can be incorporated directly into the optimization
formulation together with any other process constraints. The resulting constrained least squares problem
is solved by regarding both the parameter θ and the state variables as unknown variables.

For simplicity, in our implementation, we discretize the ODE (1.1) by using the box scheme. This
gives

xi+1 − xi = ∆t f
(

ti+ 1
2
,

xi + xi+1

2
, θ

)
, i = 1, . . . , N − 1, (2.1)

where xi is an approximation to the solution x(ti , θ) of the problem (1.1)–(1.2) at ti and ∆t is the mesh
spacing. Thus, problem (1.4)–(1.6) can be formulated as follows:

min m(x1, . . . , xN , θ) = 1

2N

N∑
i=1

[ŷi − h(xi )]T[ŷi − h(xi )] (2.2)

s.t. ci (xi , xi+1, θ) = 0, i = 1, 2, . . . , N − 1 (2.3)

cp(x1, xN , θ) = 0, (2.4)



PARAMETER ESTIMATION OF ODES 267

where, for i = 1, 2, . . . , N − 1,

ci (xi , xi+1, θ)
∆= xi+1 − xi − ∆t f (ti+ 1

2
,

xi + xi+1

2
, θ). (2.5)

This kind of discretization method will not contribute to overall accuracy loss as the stochastic errors
are O(N−1/2) compared with discretization error of O(N−2). It has been noted that limitations in the
data together with the approximate model involved do not justify the use of more complex quadrature
formulae, see Foss (1971).

Problem (2.2)–(2.4) is a typical nonlinear optimization problem. However, general constrained
optimization methods such as the Powell–Hestenes method or the SQP method have no special ability
to deal with this kind of problem efficiently because they do not take the structure into account. It
is desirable to use a method that can take advantage of the least squares structure of the objective
function (2.2). For nonlinear least squares problems, Wedin & Lindström (1987) and Li et al. (2002)
proposed a combination of Gauss–Newton method and Newton method, while Mahdavi-Amiri & Bartes
(1989) proposed a reduced quasi-Newton method on the null space of the constraints based on a general
exact-penalty-type method. In this context, the special structure of the state constraints (2.3) also require
special treatment.

It is also interesting to note that the size of the problem (2.2)–(2.4) is generally large but with few
effective degrees of freedom as these are determined by the ODE, rather than by the size of the data
set. In order to make the variable elimination procedure efficient and robust, rather than using forward
successive Gauss elimination, an elimination technique based on orthogonal cyclic reduction is used
here. This reduction process has been used by Bock et al. (1988), Wright (1992), Gallitzendoerfer &
Bock (1994) and Osborne (1997).

For simplicity of notation, we first consider the case in which the point constraints (2.4) are removed.
Thus, we have

min m(x1, . . . , xN , θ) = 1

2N

N∑
i=1

[ŷi − h(xi )]T[ŷi − h(xi )] (2.6)

s.t. ci (xi , xi+1, θ) = 0, i = 1, 2, . . . , N − 1. (2.7)

Before we present our new algorithm, we need to introduce some notation. Define

z = [xT
1 , xT

2 , . . . , xT
N , θT]T ∈ �Nn+p, (2.8)

cd(z) = [c1(x1, x2, θ)T, . . . , cN−1(xN−1, xN , θ)T]T ∈ �(N−1)n (2.9)

and the Lagrangian function associated with (2.6)–(2.7) by

l(z, λ) = m(z) + λTcd(z), (2.10)

where

λ = [λT
1 , . . . ,λT

N−1]T, λi ∈ �n, i = 1, . . . , N − 1. (2.11)

Let

r(x(t))
∆= ŷ − h(x(t, θ)) (2.12)
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and denote the residual r(x(t)) at the i th experimental measurement by ri (xi ); let g(z) be the gradient
of m(z) with respect to z, i.e. g(z) = ∇zm(z) and Ad(z) be the Jacobian of cd(z), i.e. Ad(z) = ∇zcd(z);
then, we have

g(z) = 1

N

N∑
i=1

∇zri (xi )
Tri (xi ), (2.13)

Ad(z) =




D1 C1 E1
D2 C2 E2

· · · · · · ···
DN−1 CN−1 EN−1


 , (2.14)

where for i = 1, . . . , N − 1,

Di = −I − ∆t

2
∇x f (ti+ 1

2
, x, θ) | xi +xi+1

2
, (2.15)

Ci = I − ∆t

2
∇x f (ti+ 1

2
, x, θ) | xi +xi+1

2
, (2.16)

Ei = −∆t∇θ f (ti+ 1
2
, x, θ) | xi +xi+1

2
(2.17)

and the Hessian of l(z, λ)

∇2
z l(z, λ) = 1

N

[
N∑

i=1

∇zri (xi )
T∇zri (xi )

+
N∑

i=1

(
n∑

j=1

[ri ] j (xi )∇2
z [ri ] j (xi )

)

+
N∑

i=1

∇2
z (λT

i ci (z))

]

∆= 1

N
[H1(z) + H2(z) + H3(z, λ)], (2.18)

where

H1(z) =
N∑

i=1

[∇zri (xi )
T∇zri (xi )]

=




∇xr1(x1)
T∇xr1(x1)

· · ·
∇xrN (xN )T∇xrN (xN )

0p


 , (2.19)
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H2(z) =
N∑

i=1

n∑
j=1

[ri ] j (xi )∇2
z [ri ] j (xi )

=




n∑
j=1

[r1] j (x1)∇2
x [r1] j (x1)

· · ·
n∑

j=1
[rN ] j (xN )∇2

x [rN ] j (xN )

0p




(2.20)

and

H3(z, λ) =
N∑

i=1

∇2
z (λT

i ci (z)), (2.21)

where 0p denotes the p by p zero matrix.
Note that

∂2(λT
i ci (z))

∂xi∂xi
T = −∆t

4

∂2(λT
i f (ti+ 1

2
, x, θ))

∂x∂xT |
x= xi +xi+1

2

= ∂2(λT
i ci (z))

∂xi∂xi+1
T

= ∂2(λT
i ci (z))

∂xi+1∂xi+1
T

∆= Lxx
i , (2.22)

∂2(λT
i ci (z))

∂xi∂θT = −∆t

2

∂2(λT
i f (ti+ 1

2
, x, θ))

∂x∂θT |
x= xi +xi+1

2

= ∂2(λT
i ci (z))

∂xi+1∂θT

∆= Lxθ
i (2.23)

and

∂2(λT
i ci (z))

∂θ∂θT = −∆t

∂2(λT
i f (ti+ 1

2
, x, θ))

∂θ∂θT |
x= xi +xi+1

2

∆= Lθθ
i . (2.24)
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Hence H3(z, λ) has the general almost tridiagonal form


Lxx
1 Lxx

1 Lxθ
1

Lxx
1 Lxx

1 + Lxx
2 Lxx

2 Lxθ
1 + Lxθ

2

· · · · · · · · · ···
Lxx

N−2 Lxx
N−2 + Lxx

N−1 Lxx
N−1 Lxθ

N−2 + Lxθ
N−1

Lxx
N−1 Lxx

N−1 Lxθ
N−1

Lθx
1 Lθx

1 + Lθx
2 . . . Lθx

N−2 + Lθx
N−1 Lθx

N−1

N−1∑
i=1

Lθθ
i




, (2.25)

where

Lθx
i = (Lxθ

i )T. (2.26)

By using the KKT conditions, we have

∇m(z) + Ad(z)Tλ = 0. (2.27)

Substituting (2.14) and (2.15)–(2.17) into (2.27) and using the notation

∇x f i+ 1
2

∆= ∇x f (ti+ 1
2
, x, θ) | xi +xi+1

2
, (2.28)

we obtain [
−I − ∆t

2
∇x f T

1+ 1
2

]
λ1 − ∇xh(x1)

Tr1(x1) = 0, (2.29)[
I − ∆t

2
∇x f T

N− 1
2

]
λN−1 − ∇xh(xN )TrN (xN ) = 0, (2.30)

N−1∑
i=1

[−∆t∇θ f T
i+ 1

2

]
λi = 0, (2.31)

and for i = 2, . . . , N − 1,[
−I − ∆t

2
∇x f T

i− 1
2

]
λi−1 +

[
I − ∆t

2
∇x f T

i+ 1
2

]
λi − ∇xh(xi )

Tri (xi ) = 0. (2.32)

Hence, we have for i = 2, . . . , N − 1,

λi − λi−1 = −∆t

2

[∇x f T
i− 1

2
λi−1 + ∇x f T

i+ 1
2

]
λi − ∇xh(xi )

Tri (xi ) = 0. (2.33)

Therefore, for cases where the hypothesized model is correct and there is no measurement error in our
data, we obtain the limit form

dλ∗(t)
dt

= −∇x f (t, x∗, θ∗)Tλ∗(t), (2.34)∫ 1

0
∇θ f (t, x, θ∗)Tλ∗(t)dt = 0, (2.35)
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where x∗(t) is determined by

dx∗
dt

= f (t, x∗, θ∗). (2.36)

It is interesting to note that the trivial solution of problem (2.34)–(2.35) is

λ∗(t) = 0. (2.37)

Our numerical results confirm this theory: we observed that, as an approximation to λ∗(t) in the case
where the number of observations N is large, λN (t) is small. Therefore, for simplicity of testing, initially
we choose λi = 0 for i = 1, . . . , N − 1.

In cases where measurement errors are present ri (x∗(ti )) = εi = ∫ ti
ti−1

dw, where w is a Wiener
process, we will have a stochastic differential equation for λ∗(t).

Based on the numerical experiments, we would like to use the SQP method for solving problem
(2.6)–(2.7). We now state this formal SQP Lagrangian local method.

At the current iterate z, given an approximate multiplier λ ∈ �(N−1)n and a (Nn + p) by (Nn +
p) symmetric matrix B(z) to approximate the Hessian of the Lagrangian function ∇2

z l(z, λ), the SQP
Lagrangian local method for solving (2.6)–(2.7) is characterized by the iterative procedure

z+ = z + s̄, (2.38)

where s̄ ∈ �Nn+p is the solution of the quadratic problem

min
s∈RNn

g(z)Ts + 1

2
sT B(z)s (2.39)

s.t. cd(z) + Ad(z)s = 0, (2.40)

cp(z) + ∇cp(z)s = 0. (2.41)

The straightforward SQP Newton method is derived by setting B(z) to be

BNe(z)
∆= ∇2

z l(z, λ)

= 1

N
[H1(z) + H2(z) + H3(z, λ)]. (2.42)

This is called the SQP Newton approximation. To enlarge its convergence region, a line search or trust
region global convergence strategy is needed.

To compensate for possible lack of positive definiteness of ∇2
z l(z, λ) and to reduce the computational

complexity of the SQP Newton approximation, Bock (1983) proposed to use the SQP Gauss–Newton
approximation. This takes B(z) to be

BGN(z)
∆= H1(z). (2.43)

Subsequently, forward successive block Gauss elimination was used to reduce the number of variables.
We should mention that, rather than using the trust region global convergence strategy, the Bock method
uses a line search global convergence strategy. Moreover, the Bock method still needs to embed suitable
initial conditions for integrating sensitivity equations.
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The use of the SQP Gauss–Newton approximation is recommended only if the hypothesized model
is correct and the sample data set is large enough. If these assumptions hold, it has the advantages of
efficiency and stability. Otherwise, this kind of approximation could result in poor performance. In order
to improve the performance of the SQP Gauss–Newton approximation, Biegler and his co-workers (Tjoa
& Biegler, 1991 and Tanartkit & Biegler, 1995) proposed a simple hybrid SQP method based on a test
on the relative merit function value. If the relative merit function value is small, the SQP Gauss–Newton
approximation is used; otherwise, the choice is the SQP BFGS approximation. However, this switching
rule may refuse the use of the SQP Gauss–Newton approximation even if its performance is satisfactory.
Thus, it reduces the efficiency of the algorithm. If the data set is large, then the law of large numbers
can be used to show that the size of the residuals is not the point. If the sample size is large enough, the
effect of these large residuals can be pinned down due to cancellation.

The size of problem (2.39)–(2.40) is large but it has few effective degrees of freedom, so the
variable reduction method has a natural application, see Fletcher (1987, pp. 230–236). To take advantage
of the almost block-bidiagonal structure of the linearized constraints arising from the ODE, forward
successive block Gauss elimination was used in Bock (1983). This reduction technique is similar to the
compactification numerical method for the boundary value problems of ODEs for it can suffer from
instability, much like the single shooting method, see Ascher et al. (1995). In the earlier version of the
Tjoa and Biegler method in Tjoa & Biegler (1991) and Tanartkit & Biegler (1995), a complete pivoting
Gauss elimination method was used without taking advantage of the almost block-bidiagonal structure.
Later, Biegler (1998) proposed the use of the block Gauss elimination method to take advantage of the
almost block-bidiagonal structure. However, in these examples, the aim of the elimination is to simplify
overhead calculation rather than to explicitly reduce the number of variables in the optimization problem.

For these reasons, a new SQP algorithm is proposed that incorporates a number of novel features:

1. A different approach to distinguish between two competing models (the SQP Gauss–Newton
approximation and the SQP Newton approximation) is taken: our local quadratic model contains
the use of either the SQP Gauss–Newton approximation or the SQP Newton approximation. The
choice is determined by numerical performance, not by the size of residuals. Our algorithm
permits the use of the SQP Gauss–Newton approximation even for large merit function value
problems if its performance is better. This will allow us to choose the SQP Gauss–Newton
approximation as often as possible;

2. The orthogonal cyclic reduction process is used for variable reduction. This procedure avoids
the hard task of explicitly adjoining extra initial or boundary conditions to take up the intrinsic
degrees of freedom in the solution set of the differential equations in order to guarantee that the
estimation problem is stably posed;

3. The trust region global convergence strategy is used. This makes our algorithm more robust.

An outline of the algorithm is given below (for more details see Section 4).

ALGORITHM 2.1 General description of the new algorithm (PESOL)

Step 0. Set z0 ∈ �Nn+p, B0 = BGN(z0) ∈ R(Nn+p)×(Nn+p), λv
0 = 0 ∈ �(N−1)n, ρ0 � 0, δ0 > 0, 0 <

α1 � α2 � 1, α3 > 1, 0 < η1 � η2 � 1, ε > 0, k = 0;

Step 1. If ‖ ∇l(zk, λ
v
k ) ‖2=‖ [∇lz(zk, λ

v
k )

T, c(zk)
T]T ‖2� ε, then stop; otherwise,

Step 2. Use the orthogonal cyclic reduction procedure to reduce the (Nn+ p)-dimensional optimization
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problem with s = [dxT
1 , . . . , dxT

N , dθT]T

min
s∈�Nn+p

g(zk)
Ts + 1

2
sT Bks (2.44)

s.t. cd(zk) + Ad(zk)s = 0, (2.45)

cp(zk) + ∇cp(zk)s = 0, (2.46)

‖ s ‖2� δk (2.47)

to the following (2n + p)-dimensional optimization problem s̃ = [dxT
1 , dxT

N , dθT]T

min
s̃∈�2n+p

g̃T
k s̃ + 1

2
s̃T B̃k s̃ (2.48)

s.t. c̃k + Ãk s̃ = 0, c̃k ∈ �n+q , (2.49)

‖ s̃ ‖2� δ̃k (2.50)

so that the number of unknown variables and the number of constraints are independent of N , see
Section 3.

Step 3. Use the Byrd and Omojokun algorithm (Lalee et al., 1998) to compute an approximation
solution s̃k of problem (2.48)–(2.50), see Section 4.1.

Step 4. Use the interpolation formulae from the cycle orthogonal reduction procedure to recover the
total approximate solution sk through s̃k , see Section 4.4.

Step 5. Update the penalty parameter ρk , see Section 4.2.

Step 6. Test the step and the choice of the Hessian approximation Bk , see Section 4.3.

Step 7. Update λv
k to give λv

k+1, see Section 4.4.

Step 8. Update Bk+1 by computing BGN(zk+1), and BNe(zk+1) if necessary according to the model
switching strategy chosen.

Step 9. Modify δk , see Section 4.2.

Step 10. Set k := k + 1 and go to Step 1.

We will show in the rest of this paper that this algorithm can be converted into efficient software
for parameter estimation of the ODE. Since the key to good performance lies in the orthogonal cyclic
reduction procedure applied to the subproblem (2.44)–(2.47), we begin by studying the orthogonal cyclic
reduction procedure for an almost block-bidiagonal system.
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3. Orthogonal cyclic reduction

We wish to develop efficient and robust methods for reducing the following almost block-bidiagonal
system to a system with unknown parameters of dx1, dxN and dθ



D1 C1 E1
D2 C2 E2

· · · · · · ···
DN−2 CN−2 EN−2

DN−1 CN−1 EN−1







dx1

···
dxN

dθ


 =




−c1

···
−cN−1


 , (3.1)

where Di ∈ �n×n , Ci ∈ �n×n and Ei ∈ �n×p, dxi and ci are n-dimensional vectors.
Note that (3.1) can be rewritten as

Di dxi + Ci dxi+1 + Ei dθ = −ci i = 1, 2, . . . , N − 1. (3.2)

Properties of cyclic reduction are discussed in Osborne (1997) and Wright (1992).
It simplifies addressing in developing the cyclic reduction procedure to assume that N = 2l + 1, but

it should be noted that this is not a necessary assumption, orthogonal wrap-around partitioning (Hegland
& Osborne, 1998) does not depend on exact factorization of the order of the current submatrix. It has
the advantage that stable factorization methods which preserve the underlying structure can be used
and provides a profound generalization of cyclic reduction. Here, we also assume there are boundary
point constraints only. If intermediate point constraints are present, we partition the total interval into
sub-intervals so that the intermediate points become boundary points and each partition is processed
independently to eliminate the intermediate state variables. Consider the frontal matrix obtained by
displaying the data corresponding to consecutive rows in the matrix representation of (3.2) in the case i
even. This gives the matrix [

D(0)
i−1 C (0)

i−1 0 E (0)
i−1 −c(0)

i−1

0 D(0)
i C (0)

i E (0)
i −c(0)

i

]
, (3.3)

where D(0)
i := Di , C (0)

i := Ci , E (0)
i := Ei and c(0)

i := ci .
Now we are ready to describe the orthogonal cyclic reduction process. By applying orthogonal

transformations to the system (3.3), we have

(Q(0)
i )T

[
D(0)

i−1 C (0)
i−1 0 E (0)

i−1 −c(0)
i−1

0 D(0)
i C (0)

i E (0)
i −c(0)

i

]

⇓
[

V (1)
i −I U (1)

i W (1)
i u(1)

i

D(1)
i/2 0 C (1)

i/2 E (1)
i −c(1)

i/2

]
, (3.4)

where Q(0)
i is formed as a product of a series of Householder transformations, and the information

needed to reconstruct Q(0)
i can be stored in the space formerly occupied by the zeroed elements of[

C(0)
i−1

D(0)
i

]
.
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The last row of (3.4) combines entries two time steps apart, i.e.

D(1)
i/2dxi−1 + C (1)

i/2dxi+1 + E (1)
i/2dθ = −c(1)

i/2 (3.5)

and the first yields

dxi = V (1)
i dxi−1 + U (1)

i dxi+1 + W (1)
i dθ + u(1)

i (3.6)

which expresses how the extreme solution values dxi−1, dxi+1 and dθ are to be interpolated to give the
intermediate value dxi . This transformation can be applied recursively l times as a consequence of the
assumption of N = 2l + 1. The result gives the constraint equation

D(l)
1 dx0 + C (l)

1 dxN + E (l)
1 dθ = −c(l)

1 , (3.7)

i.e.

[D(l)
1 , C (l)

1 , E (l)
1 ]


dx1

dxN

dθ


 = −c(l)

1 ,

which yields (2.49) if we add the linearization of (2.4) with respect to parameters (x1, xN , θ)

cp(zk) + ∇ c̃p(zk)s̃ = 0 (3.8)

and set

c̃k =
[

c(l)

cp

]
, Ã(zk) =

[
D(l)

1 , C (l)
1 , E (l)

1∇ c̃p

]
and s̃ =


dx1

dxN

dθ


 ·

If equations (3.6) determining the eliminated values are updated simultaneously then the result is the
interpolation equations

dxi = Vi dx1 + Ui dxN + Wi dθ + ui , i = 2, . . . , N − 1. (3.9)

4. The implementational details of Algorithm PESOL

Part of this section appeared in Li et al. (2002). For easy reference, we restate it here.

4.1 Solution of the SQP problem (2.48)–(2.50)

We are now in a position to discuss how to get an approximate solution of the problem (2.48)–(2.50).
This section is based on Lalee et al. (1998) which gives a careful discussion of the implementation

of the ideas due to Byrd and Omojokun. The key to this approach is to decouple it into two independent
smaller subproblems with constraints in the normal and tangent space of the constraints, respectively.
Note that restricting the size of the step by ‖ s̃ ‖2� δ̃k may preclude us from satisfying the linear
constraints c̃k + Ã(zk)s̃k = 0. To compromise, let ζ ∈ (0, 1) be a relaxation factor, and consider a
vertical (normal) step toward constraint satisfaction defined by

min
v∈�2n+p

‖ Ãkv + c̃k ‖2 (4.1)

s.t. ‖ v ‖2� ζ δ̃k . (4.2)
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The uncoupling idea is employed by setting v = Ã(zk)
Tw which leads to a simple constrained least-

squares problem for w. Now, to reduce the function value, consider the variant given by

min
s̃∈�2n+p

s̃Tg̃k + 1

2
s̃T B̃k s̃ (4.3)

s.t. Ãk s̃ = Ãkvk, (4.4)

‖ s̃ ‖2� δ̃k . (4.5)

This problem has a non-empty feasible region because it always contains v. The Byrd and Omojokun
approach is modified so that the full step s̃k need not move any closer to the feasible manifold than vk

does. We solve for s̃k by seeking a step complementary to vk . To this end, we compute a matrix Zk whose
columns form the orthogonal basis for the null space of Ãk such that Ãk Zk = 0 and ZT

k Zk = I , and we
define the total step of the algorithm as

s̃k = vk + Zkuk, (4.6)

where uk is yet to be determined. With this choice, the linear constraints (4.4) are automatically satisfied
so for the new problem, after dropping constant terms, we know that uk solves the following problem:

min
u∈�n+p−q

h(u) = uT[ZT(g̃k + B̃kvk)] + 1

2
uT ZT

k B̃k Zku (4.7)

s.t. ‖ u ‖2�
√

δ̃2
k − ‖ vk ‖2

2. (4.8)

If we define ĝk = ZT
k (g̃k + B̃kvk), B̂k = ZT

k B̃k Zk and δ̂k =
√

δ̃2
k − ‖ vk ‖2

2, then we get the following
equivalent system:

min
u∈�n+p−q

uTĝk + 1

2
uT B̂ku (4.9)

s.t. ‖ u ‖2� δ̂k . (4.10)

Note that this has the same form as a trust region step in an unconstrained algorithm.
Powell’s dogleg method (Powell, 1970) is used for approximately solving the trust region problem

(4.7)–(4.8). Because this method requires the matrix B̂k to be positive definite, we use the modified
Cholesky factorization of Gill and Murray in Dennis & Schnabel (1986). The idea is to change B̂k to
B̂k +µk I , where µk > 0 is not much larger, ideally, than the smallest µ that will make B̂k +µk I positive
definite and reasonably well conditioned. For simplicity of notation, we retain B̂k to denote the resulting
matrix from this procedure.

Dogleg method First calculate the Cauchy step

ucp
k = −αu

k ĝk, (4.11)

which is the minimizer of h(u) in the direction of steepest descent at u = 0, subject to the trust constraint,
where

αu
k =

{
ĝT

k ĝk/ĝT
k B̂k ĝk if (ĝTĝk)

3/2/ĝT
k B̂k ĝk � δ̂k;

δ̂k/‖ ĝk ‖2 otherwise
(4.12)
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and the Newton step

un
k = −B̂−1

k ĝk . (4.13)

The dogleg path consists of the two segments from u = 0 to u = ucp
k and from u = ucp

k to u = un
k . The

dogleg method finds the minimizer along this path subject to ‖ u ‖� δ̂k . Since h decreases monotonically
along the path, we simply find the intersection point with the trust region boundary, or we use the Newton
step if the path lies entirely inside the trust region.

4.2 Trust region method

In order to test the viability of our algorithm in a trust region globalization framework, we need to specify
a merit function to decide whether a step sk makes sufficient progress toward the solution of the problem
(2.6)–(2.7). We choose a merit function of the form

φ(z, ρ) = m(z) + ρ

∥∥∥∥
[

cd(z)
cp(z)

]∥∥∥∥
2
. (4.14)

This type of merit function is used in Lalee et al. (1998) and Li et al. (2002). Therefore, the actual
reduction ared(zk, ρk) in the merit function in the step from zk to zk + sk is given by

ared(zk, ρk) = φ(zk, ρk) − φ(zk + sk, ρk)

= m(zk) − m(zk + sk)

+ρk

(∥∥∥∥
[

cd(zk)

cp(zk)

]∥∥∥∥
2
−

∥∥∥∥
[

cd(zk + sk)

cp(zk + sk)

]∥∥∥∥
2

)
. (4.15)

Also we need a prediction function to predict the progress of the merit function. We choose this as

ψ(zk, ρk) = m(zk) + sT
k ∇m(zk) + 1

2
sT

k Bks + ρk

∥∥∥∥
[

cd(zk) + Ad(zk)sk

cp(zk) + ∇cp(zk)sk

]∥∥∥∥
2

(4.16)

and define the predicted reduction pred(zk, ρk) by

pred(zk, ρk) = −sT
k ∇m(zk) − 1

2
sT

k Bksk + ρk

(∥∥∥∥
[

cd(zk)

cp(zk)

]∥∥∥∥
2

−
∥∥∥∥
[

cd(zk) + Ad(zk)sk

cp(zk) + ∇cp(zk)sk

]∥∥∥∥
2

)
. (4.17)

Numerical experiments have suggested that efficient performance of the algorithm is linked to
keeping the penalty parameter as small as possible. However, global convergence theory (El-Alem, 1995)
requires that the sequence ρk be non-decreasing, and that the predicted reduction in the merit function
at each iteration be at least a fraction of the Cauchy decrease of the residual norm of the linearized
constraints. The idea now is to keep the penalty parameter as small as possible, while satisfying the
two conditions needed for convergence. Hence, our strategy will be to start with ρ0 = 1 and increase it
only when necessary in order to satisfy these two conditions. This aim can be achieved by the following
scheme:
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(a) If pred(zk, ρk) � ξρk

(∥∥∥[
cd (zk )
cp(zk )

]∥∥∥
2
−

∥∥∥[
cd (zk )+Ad (zk )sk

cp(zk )+∇cp(zk )sk

]∥∥∥
2

)
,

where ξ ∈ (0, 1), then we set

ρk+1 := ρk; (4.18)

(b) else, we set

ρk+1 := 1

1 − ξ
· sT

k ∇m(zk) + 1
2 sT

k Bksk∥∥∥∥
[

cd(zk)

cp(zk)

]∥∥∥∥
2
−

∥∥∥∥
[

cd(zk) + Ad(zk)sk

cp(zk) + ∇cp(zk)sk

]∥∥∥∥
2

+ 0·0001, (4.19)

where adding 0·0001 is to make sure that ρk+1 is not too small; choice of other small values does
not appear critical, the value of 0·0001 is typically used.

Once zk+1 has been found, we decide which trust region radius to use first when seeking zk+2. The radius
chosen is as follows:

(a) if

ared(zp
k+1, ρk+1)

pred(zp
k+1, ρk+1)

� 0·75, (4.20)

we set δk+1 = min(2δk, δ∗), where δ∗ is the maximum step length allowed in the algorithm;
(b) else if

ared(zp
k+1, ρk+1)

pred(zp
k+1, ρk+1)

< 0·1, (4.21)

we set δk+1 to be a fraction of the failed step length such that

δk+1 ∈ [0·1 ‖ sk ‖2, 0·5 ‖ sk ‖2]. (4.22)

The precise value is computed by assuming that the ratio of actual to predicted reduction is a
linear function w(‖ s ‖2) of the step length ‖ s ‖2, satisfying w(0) = 1 and w(‖ sk ‖2) =
ared(zk+1, ρk+1)/ pred(zk+1, ρk+1), and then finding the value of ‖ s ‖2 where w(‖ s ‖) equals
η1 by the following formula:

δk+1 = 1 − η1

1 − (ared(zk+1, ρk+1)/ pred(zk+1, ρk+1))
‖ sk ‖2; (4.23)

this value is truncated such that δk+1 ∈ [0·1 ‖ sk ‖2, 0·5 ‖ sk ‖2];
(c) else, we keep the same radius, i.e. set

δk+1 = min(2δk, δ∗). (4.24)

4.3 Model switching strategy

Our experiments show that for some steps the SQP Gauss–Newton approximation works better than the
SQP Newton approximation, so it seems useful to have some way to decide which approximation to use
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at each iteration. Following the ideas in Dennis et al. (1986), a model switching strategy is developed for
this purpose. Our implementation includes these two approximations. Because the SQP Gauss–Newton
approximation tends to do well initially, we start with this. The first trial step is calculated using the
currently preferred algorithm whose predicted reduction is better in the last iteration.

Note that a valuable feature in our code is the internal doubling step. For a given zk and δk , suppose
sδk is generated such that δk restricts sδk and the reduction in the merit function φ(zk, ρk) predicted by
the current algorithm agrees with the actual reduction in the merit function φ(zk, ρk) to a high precision.
Normally, one would accept sδk , set zk+1 = zk + sδk and double δk for the next step. The internal
doubling procedure is to remember zp

k+1 = zk + sδk , double δk and generate a new sδk from zk . Note that
this procedure only costs evaluations of m(zk) and c(zk). If successful, it may save several evaluations
of ∇m(zk) and A(zk). In practice, it has been successful often enough to warrant leaving it in. For
convenient presentation of our switching strategy, we use q(zk, Bk) to denote the currently preferred
quadratic function (2.44) and qa(zk, Ba

k ) for the alternate quadratic function with replacement of Bk by
Ba

k , and we use ψ(zk, ρk) and ψa(zk, ρk) for their corresponding predicting functions, respectively.
We begin our current iteration by computing a prospective zk+1, say zp

k+1, based on q(zk, Bk) and
the current radius. We compute m(zp

k+1) and c(zp
k+1), but we do not yet compute ∇m(zp

k+1), A(zp
k+1)

and λk+1; our only gradient calculation in this iteration is ∇m(zk+1) and A(zk+1). We compute the
approximate multiplier λk+1 only if we have found zk+1. If

ared(zp
k+1, ρk+1)

pred(zp
k+1, ρk+1)

� η1, η1 ∈ (0, 1), (4.25)

then the step is a good one. Furthermore, if

ared(zp
k+1, ρk+1)

pred(zp
k+1, ρk+1)

� η2, η2 ∈ (η1, 1), (4.26)

this means that the direction appears worth pursuing. Then we save zp
k+1 and m(zp

k+1) and double the
trust region radius δk := min(2δk, δ∗), where δ∗ is the maximum trust region radius. This strategy has the
advantage that it avoids recomputation of ∇m(zk), A(zk) and λk+1 when this is expensive. We compute

zp′
k+1 on the basis of q(zk, Bk) and the increased trust radius. If φ(zp′

k+1, ρk) � φ(zp
k+1, ρ), then we accept

zp
k+1 as zk+1 and prepare for the next iteration. If φ(zp′

k+1, ρk) < φ(zp
k+1, ρk), then we replace zp

k+1 by

zp′
k+1 and return to test (4.25). If ever (4.25) is true but (4.26) is false, then zp

k+1 is accepted as zk+1 and
we prepare for the next iteration.

Now let us trace the branch that originates when (4.25) is false. In this case, we do not regard zp
k+1

very highly as a candidate for zk+1, but its fate will be decided by further tests. We first test whether
it might be useful to try changing models, but only if this is the first time through (4.25) in the current
iteration. If

| ψ(zp
k+1, ρk+1) − φ(zp

k+1, ρk+1) |
| ψa(zp

k+1, ρk+1) − φ(zp
k+1, ρk+1) | > 1·5, (4.27)

then we change our algorithm preference in the sense that we compute xa
k+1 with the same trust radius

and penalty parameter ρk . If φ(za
k+1, ρk+1) < φ(zp

k+1, ρk+1), then we change our algorithm preference,
so za

k+1 becomes zp
k+1 and we return to test (4.25); otherwise we retain our current algorithm preference

and decrease the radius of the trust region.
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If we reach this point without having decided on zk+1, then we have a poorly proposed new iterate
xp

k+1 and we have rejected the notion of switching models. If

ared(zp
k+1, ρk+1)

pred(zp
k+1, ρk+1)

< 10−4, (4.28)

then we reject zp
k+1 and shrink the trust region radius by picking

δk ∈ [α1 ‖ sk ‖2, α2 ‖ sk ‖2], (4.29)

where 0 < α1 < α2 < 1. We then recompute zp
k+1 and return to test (4.25). If (4.28) is false, then we

accept zp
k+1 as zk+1.

Our numerical testing suggests that the following values give good performances: η1 = 0·1, η2 =
0·75, α1 = α2 = 0·5, α3 = 2·0, δ0 = 1 and δ∗ = 100.

After we have found an acceptable zk+1, we decide whether to change algorithm preferences for
computing zk+2. We have found that it is best to retain the currently preferred algorithm if (4.27) holds
with zp

k+1 = zk+1 and φ(za
k+1, ρk+1) > φ(zk+1, ρk+1) unless the other algorithm does a significantly

better job of predicting the new function value.

4.4 Summary of the algorithm implementation

Now we are ready to describe the complete form of our adaptive algorithm PESOL

Algorithm PESOL

Step 0. Set z0 ∈ �Nn+p, B0 = BGN(z0) ∈ R(Nn+p)×(Nn+p), λv
0 = 0 ∈ �(N−1)n, ρ0 � 0, δ0 > 0, 0 <

α1 � α2 � 1, 0 < η1 � η2 � 1, ε > 0, k = 0.

Step 1. If ‖ ∇l(zk, λ
v
k ) ‖2=‖ [∇lz(zk, λ

v
k )

T, c(zk)
T]T ‖2� ε, then stop; otherwise,

Step 2. Use the cyclic orthogonal reduction procedure to reduce the (Nn+ p)-dimensional optimization
problem

min
s∈�Nn+p

g(zk)
Ts + 1

2
sT Bks (4.30)

s.t. cd(zk) + Ad(zk)s = 0, (4.31)

cp(z) + ∇cp(z)s = 0, (4.32)

‖ s ‖2� δk (4.33)

to the following (2n + p)-dimensional optimization problem:

min
s̃∈�2n+p

g̃T
k s̃ + 1

2
s̃T B̃k s̃ (4.34)

s.t. c̃k + Ãk s̃ = 0, c̃k ∈ �n+q , (4.35)

‖ s̃ ‖2� δ̃k (4.36)

so that the number of unknown variables and the number of constraints are independent of N .
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Step 3. Use the Byrd and Omojokun algorithm (Lalee et al., 1998) to compute an approximation
solution s̃k of problem (4.34)–(4.36).

Step 4. Use the interpolation formulae from the cyclic orthogonal reduction procedure to recover the
total approximate solution sk through s̃k by

dxi = Vi dx1 + Ui dxN + Wi dθ + ui , i = 2, . . . , N − 1. (4.37)

Step 5. Update the penalty parameter ρk through the formulae (4.18) and (4.19).

Step 6. Test the step and the choice of the Hessian approximation Bk , see Section 4.3.

Step 7. Update λv
k to give λv

k+1 by

λv
k+1 = −[A(zk)A(zk)

T]−1 A(zk)[∇m(zk) + Bksk]. (4.38)

Step 8. Update Bk+1 by computing BGN(zk+1), and BNe(zk+1) if necessary according to the model
switching strategy chosen.

Step 9. Modify δk through the formulae (4.20)–(4.24).

Step 10. Set k := k + 1 and go to Step 1.

For the purpose of comparison we also implemented the SQP Gauss–Newton method and the SQP
Newton method, and ran it side by side with PESOL. Our implementation of the SQP Gauss–Newton
and the SQP Newton method are the following. For simplicity we will refer to them as the PEGN and
PENe algorithms respectively.

Algorithm PEGN: All steps are identical to PESOL except for Step 2, where the SQP Gauss–Newton
approximation to the Hessian of the Lagrange is used.

Algorithm PENe: All steps are identical to PESOL except for Step 2, where the full Hessian of the
Lagrangian is used.

5. Numerical results

In this section, we present two well-known parameter estimation problems which have been devised
to illustrate difficulties in the initial-value approach, see Bock (1983) and Ascher et al. (1995). The
objective here is to show the stability and efficiency properties of our method. For the purpose of
comparison, the results of the SQP Gauss–Newton method PEGN and the SQP Newton method PENe
are also presented. The SQP Gauss–Newton approximation is the choice of the methods in Bock
(1983), Bock & Schlöder (1987), Bock et al. (1988) and Childs & Osborne (1996). This choice is
preferred to the Newton approximation because it has equally good scaling properties, better global
convergence characteristics, and is cheaper to compute. Although the SQP Newton method has the best
performance in terms of the number of iterations in our simulations, the idea here is that the SQP Newton
method, which had its own problems, is used only when the good features of the SQP Gauss–Newton
approximation do not apply.

The algorithms described above have been tested on a Sun Ultra Sparc 5 Workstation in double-
precision C with compiler Sun C version 4.2 under Solaris 2.6 operating system. In our experiments, the
stopping tolerance ε is set to 10−6.
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TABLE 1 Number of iterations on Problem 5.1

N σ = 1·0 σ = 0·1 σ = 0·01
PENe PEGN PESOL PENe PEGN PESOL PENe PEGN PESOL

25 + 1 9 14 10 9 12 8 8 12 9
27 + 1 6 8 8 6 8 4 5 8 6
210 + 1 5 8 6 4 5 4 4 4 4

PROBLEM 5.1 (A parameter estimation problem with one parameter) This is a parameter estimation
problem with two states and one parameter. It is adapted from Bock (1983). We formulate this problem
as an initial-value problem.

min
θ

ψ(θ) = 1

2N

N∑
i=1

[ŷi − x2(ti )]2 (5.1)

s.t.
dx1

dt
= x2, (5.2)

dx2

dt
= τ 2x1 − (τ 2 + θ2) sin(θ t), (5.3)

t ∈ [0, 1], [x1(0), x2(0)]T = [0, π ]T. (5.4)

The fundamental matrix for the system (5.2)–(5.3) is

Φ(t) =
[

cosh(τ t) τ−1 sinh(τ t)
τ sinh(τ t) cosh(τ t)

]
. (5.5)

It is characterized by rapidly varying fast and slow solutions determined by the terms eτ t and e−τ t . When
eτ × macheps > 1, then serious numerical problems are expected in the initial-value approach. Here
macheps is the commonly used concept of machine epsilon which is defined as the smallest positive
number ε such that 1 + ε > 1 on the computer in question.

The solution for the parameter θ = π is x1(t) = sin(π t) and x2(t) = π cos(π t). Measurements
{ŷi }N

i=1 are generated by adding random noise N (0, σ 2) with standard deviations σ of 1·0, 0·1 and 0·01
to x2(t) at data points equal to the mesh points. The unknown parameter θ was initialized to 2 and the
value of the constant τ was set to 100. The computational results are presented in Table 1.

PROBLEM 5.2 (A parameter estimation problem with two parameters) We next consider the parameter
estimation problem, modified from Ascher et al. (1995), and also studied by Osborne (1997):

min
θ

ψ(θ) = 1

2N

N∑
i=1

[ŷi − x(ti )]T[ŷi − x(ti )] (5.6)

s.t.
dx
dt

= M(t, θ)x + f (t), t ∈ [0, 1], (5.7)

x(0) + x(π) = (1 + eπ )[1, 1, 1]T, (5.8)
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TABLE 2 Number of iterations on Problem 5.2

N σ = 5·0 σ = 1·0 σ = 0·01
PENe PEGN PESOL PENe PEGN PESOL PENe PEGN PESOL

25 + 1 15 55 18 6 11 7 4 4 4
27 + 1 16 20 22 6 10 7 3 4 3
210 + 1 7 13 10 4 5 4 3 3 3

where

M(t, θ) =

 θ2 − θ1 cos(θ2t) 0 θ2 + θ1 sin(θ2t)

0 θ1 0
−θ2 + θ1 sin(θ2t) 0 θ2 + θ1 cos(θ2t)


 (5.9)

and

f (t) = et


 −1 + 19[cos(t) − sin(t)]

−18
1 − 19[cos(t) + sin(t)]


 . (5.10)

The fundamental matrix for the system (5.7) is

Φ(t) =

 e−(θ1−θ2)t cos(2θ2t) 0 e(θ1+θ2)t sin(2θ2t)

0 eθ1t 0
−e−(θ1−θ2)t sin(2θ2t) 0 e(θ1+θ2)t cos(2θ2t)


 . (5.11)

It is characterized by rapidly varying fast and slow solutions determined by the terms e(θ1+θ2)t and
e−(θ1−θ2)t if the difference between the two positive parameters θ1 and θ2 is large. These can cause
numerical problems unless an appropriate solution method is used (Ascher et al., 1995) where numerical
data relating to the initial-value problem are given.

The data are generated randomly around the solution [x1(t), x2(t), x3(t)]T = [et , et , et ]T for the
parameters θ1 = 19 and θ2 = 1 by the assumption that standard deviations σ = 5·0, 1·0 and 0·01. The
unknown parameters θ1 and θ2 are initialized at 20% above their true values 19 and 1, respectively. The
computational results are presented in Table 2.

From our numerical experiments, we found that our new method PESOL performs well, it converges
for all cases of N . Its performance is close to that of the SQP Newton method in terms of the number
of iterations. The orthogonal cyclic reduction technique is stable and efficient. As expected, when N is
large enough, for example, N = 210 +1, algorithm PESOL never switches to the Newton approximation
because the SQP Gauss–Newton approximation works well; thus the steps are essentially the same as
those of PEGN. There is no great difference between algorithms PENe, PESOL and PEGN. However,
when only a limited amount of data is available, for example, N = 25 + 1, the performance of PESOL
is much better than that of the SQP Gauss–Newton algorithm PEGN, and is close to that of PENe. Our
simulations shows that when the model is correct and the sample data is large enough, the SQP Gauss–
Newton method works well. Otherwise, a more powerful method is needed.
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