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Summary. The main question addressed is how does the stability of the under-
lying differential equation system impact on the computational performance of the
two major estimation methods, the embedding and simultaneous algorithms. It is
shown there is a natural choice of boundary conditions in the embedding method,
but the applicability of the method is still restricted by the requirement that this
optimal formulation as a boundary value problem be stable. The most attractive im-
plementation of the simultaneous method would appear to be the null space method.
Numerical evidence is presented that this is at least as stable as methods that depend
on stability of the boundary value formulation.

1.1 Introduction

The description of the estimation problem begins with a system of differential
equations depending explicitly on a fixed vector of parameters together with
data obtained by sampling solution trajectories typically in the presence of
noise. The system of differential equations is written:

dx
dt

= f (t,x,β) , (1.1)

where the state vector x ∈ Rm, the parameter vector β ∈ Rp, and it is
assumed that f ∈ R×Rm×Rp → Rm is smooth enough. The data is assumed
to have the form:

yi = Hx(ti, β∗) + εi, i = 1, 2, · · · , n, (1.2)

where H : Rm → Rk, and the observational error εi ∼ N
(
0, σ2I

)
. The prob-

lem is to estimate β by making use of the given data and the structural
information contained in the differential equation statement. An alternative
formulation of the estimation problem as a smoothing problem by incorpo-
rating the parameter vector into the state vector is also useful in certain
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circumstances. This approach expands the system of differential equations by
making the substitutions:

x ←
[
x(t)
β

]
, f ←

[
f(t,x)

0

]
(1.3)

The standard estimation methods of least squares and maximum likelihood
are equivalent in this problem context. The basic idea is that β is to be
estimated by minimizing the objective:

F (xc, β) =
n∑

i=1

‖yi −Hx (ti, β) ‖2 (1.4)

over all allowable values of the state variables x(ti, β), i = 1, 2, · · · , n. Meth-
ods differ in the manner of generating these comparison function values. Two
well defined classes are considered here.

1. Embedding method: The differential equation solutions are restricted to
the class of boundary value problems satisfying the conditions:

dx
dt

= f(t,x, β), B0x(0) + B1x(1) = b. (1.5)

Here the boundary matrices B0, B1 are imposed and b becomes an ex-
tra vector of parameters to be determined. The boundary matrices must
be chosen in such a way that the boundary value problem has a well
determined solution for the range of parameter values of interest. These
methods require that the boundary value problem be solved explicitly
each time a new value of the state variable is required.

2. Simultaneous method: The idea here is that differential equation discretiza-
tion information is incorporated as explicit constraints on the state vari-
ables leading to a constrained optimization problem. In the case of the
trapezoidal rule this gives

ci(xc) = xi+1 − xi − h

2
(f i+1 + f i) = 0, i = 1, 2, · · · , n− 1, (1.6)

with xi = x(ti,β), xc the composite vector with sub-vector components
xi, and h the discretization mesh spacing. A feature of these methods is
that the state and parameter vectors are corrected simultaneously.

Mesh selection for integrating the ODE system or defining the constraint
equations would typically take the data points {ti, i = 1, 2, · · · , n} as a start-
ing configuration. These could be expected to be required to cluster in regions
where the solution trajectory is changing rapidly. Their choice is further con-
ditioned by two important considerations:

• The asymptotic analysis of the effects of noisy data on the parameter
estimates shows that this gets small typically no faster than O

(
n−1/2

)
.
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• It is not difficult to obtain differential equation discretizations that give
errors at most O

(
n−2

)
.

This suggests that selection of the data points is a more serious consideration
than reducing discretization error. Consequences include:

• That the trapezoidal rule provides an adequate integration method.
• As linear interpolation has an accuracy comparable with the trapezoidal

rule it should be easily possible to integrate the differential equation on a
mesh coarser than that provided by the observation points .

The basic assumption made is that the estimation problem has a well
determined solution for n, the number of observations, large enough. This
requirement takes slightly different forms for the two problem approaches. It
becomes a stability requirement for the boundary formulation in the embed-
ding method. This is discussed in the next section where it is shown that an
“optimal” choice of boundary matrices is possible. However, the connection
between stability and dichotomy suggest possible limitations to the embed-
ding method. In the third section it is shown that the simultaneous method
is capable of a number of implementations and that these can give rise to dif-
ferent stability considerations. It is concluded that there is likely a preferred
implementation

1.2 ODE stability

The basic idea is that a system is stable if small changes to its inputs leads
to small changes in its outputs. Computational considerations enter through
the requirement that the discretized scheme mimic the structural properties
of the original. Also this requirement could hold for all discretization scales
or only for those scales small enough. These cases could be summarized as
types of structurally stable discretization. In addition, in suitably controlled
circumstances, it may be possible to obtain useful information by applying
computational schemes to follow bounded solutions in unstable situations.
Control is needed because even if the desired solution could be followed pre-
cisely in exact arithmetic it is likely unstable modes will be introduced by
rounding errors and eventually swamp the computation. This is an example
of numerical instability.

Initial value stability (IVS)

Here the problem considered is:

dx
dt

= f (t,x) , x(0) = b.

The classical stability requirement is that solutions with close initial condi-
tions x1(0), x2(0) remain close in an appropriate sense. For example:
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• ‖x1(t)− x2(t)‖ → 0, t →∞. Strong IVS.
• ‖x1(t)− x2(t)‖ remains bounded as t →∞. Weak IVS.

In this context structurally stable discretizations which place only weak con-
ditions on the discretization scale are described as stiffly stable. Numerical
instability is an important consideration in multiple shooting [6]. Control
must be exercised to ensure reasonably accurate fundamental matrices can
be computed over short enough time intervals.

Example 1. Constant coefficient case: Here

f (t,x) = Ax− q

If the constant matrix A is non-defective then weak IVS requires that the
eigenvalues λi(A) satisfy Reλi ≤ 0, while this inequality must be strict for
strong IVS.
A one-step discretization of the ODE (ignoring the q contribution) can be
written

xi+1 = Th (A)xi.

where Th(A) is the amplification matrix. Here a stiff discretization requires
the stability inequalities to map into the condition |λi (Th) | ≤ 1.
For the trapezoidal rule

|λi (Th)| =
∣∣∣∣
1 + hλi(A)/2
1− hλi(A)/2

∣∣∣∣ ,

≤ 1 if Re {λi (A)} ≤ 0.

Boundary value stability (BVS)

Here the problem is

dx
dt

= f (t,x) , B (x) = B0x(0) + B1x(1) = b.

Behaviour of perturbations about a solution trajectory x∗(t) is governed to
first order by the linearized equation

L (z) =
dz
dt
−∇xf (t,x∗(t)) z = 0. (1.7)

Here stability is closely related to the existence of a modest bound for the
Green’s matrix:

G (t, s) = Z(t) [B0Z(0) + B1Z(1)]−1
B0Z(0)Z−1(s), t > s,

= −Z(t) [B0Z(0) + B1Z(1)]−1
B1Z(1)Z−1(s), t < s.

Where Z(t) is a fundamental matrix for the linearised equation (1.7). Let α be
a bound for |G(t, s)|. The dependence of this stability bound on the behaviour
of the possible solutions Zd of (1.7) is explained by the idea of dichotomy:
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Definition 1. Dichotomy (weak form): ∃ projection P depending on the
choice of Z such that, given

S1 ← {ZPw, w ∈ Rm} , S2 ← {Z (I − P )w, w ∈ Rm} ,

it follows that

φ ∈ S1 ⇒ |φ(t)|
|φ(s)| ≤ κ, t ≥ s,

φ ∈ S2 ⇒ |φ(t)|
|φ(s)| ≤ κ, t ≤ s.

These conditions can always be satisfied if t, s ∈ [0, 1] . The computa-
tional context requires modest κ. If Z satisfies B0Z(0) + B1Z(1) = I then
P = B0Z(0) is a suitable projection in the sense that for separated boundary
conditions an allowable setting is κ = α. There is a basic equivalence between
stability and dichotomy. The key paper is [2].

BVS has implications for the structural stability of possible discretizations.

• The dichotomy projection separates increasing and decreasing solutions.
Compatible boundary conditions pin down decreasing solutions at 0, grow-
ing solutions at 1.

• Discretization needs similar property so that the given boundary condi-
tions exercise the same control.

• This requires solutions of (1.7) which are increasing (decreasing) in magni-
tude to be mapped into solutions of the discretization which are increasing
(decreasing) in magnitude.

This property is called di-stability in [3]. They note that the trapezoidal rule
is di-stable in the constant coefficient case.

λ(A) > 0 ⇒
∣∣∣∣
1 + hλ(A)/2
1− hλ(A)/2

∣∣∣∣ > 1.

Example 2. The importance of compatible boundary conditions is well illus-
trated by the following differential equation [1].

A(t) =




1− 19 cos 2t 0 1 + 19 sin 2t
0 19 0

−1 + 19 sin 2t 0 1 + 19 cos 2t


 , (1.8)

q(t) =




et (−1 + 19 (cos 2t− sin 2t))
−18et

et (1− 19 (cos 2t + sin 2t))


 . (1.9)

Here the right hand side is chosen so that z(t) = ete satisfies the differential
equation. The fundamental matrix displays the fast and slow solutions:
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Z(t, 0) =




e−18t cos t 0 e20t sin t
0 e19t 0

−e−18t sin t 0 e20t cos t


 .

For boundary data with two terminal conditions and one initial condition :

B0 =




0 0 0
0 0 0
1 0 0


 , B1 =




1 0 0
0 1 0
0 0 0


 , b =




e
e
1


 ,

the trapezoidal rule discretization scheme gives the following results. These
computations are apparently satisfactory.

Table 1.1. Boundary point values – stable computation

∆t = .1 ∆t = .01

x(0) 1.0000 .9999 .9999 1.0000 1.0000 1.0000

x(1) 2.7183 2.7183 2.7183 2.7183 2.7183 2.7183

In contrast, for two initial and one terminal condition:

B0 =




0 0 1
0 0 0
1 0 0


 , B1 =




0 0 0
0 1 0
0 0 0


 , b =




1
e
1


 .

The results are given in following Table. The effects of instability are seen
clearly in the first and third solution components.

Table 1.2. Boundary point values – unstable computation

∆t = .1 ∆t = .01

x(0) 1.0000 .9999 1.0000 1.0000 1.0000 1.0000

x(1) -7.9+11 2.7183 -4.7+11 2.03+2 2.7183 1.31+2

Nonlinear stability

There are well known examples of forms of stability associated with systems
of differential equations which cannot be classified as BVS. Any realization
of (1.7) in which the labelling of solutions as fast or slow cannot be done
unambiguously over the interval of interest, and which clearly has a local
stability property provides a counterexample. One fruitful source corresponds
to systems with stable limit cycles.
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Example 3. The FitzHugh-Nagumo equations

dV

dt
= γ

(
V − V 3

3
+ R

)
, (1.10)

dR

dt
= − 1

γ
(V − α− βR) . (1.11)

The limit cycle is exemplified in the case α = .2, β = .2, γ = 1. in figure 1.1.
Figure 1.2 gives the sum of squares of discrepancies between this solution and
the solution for perturbed values of the α and β parameters. It shows that the
minimum is well determined in a neighbourhood of the target values, but it
also shows that there are definite restrictions on the size of this neighbourhood,
and that changes in solution structure would render global searching very
difficult. These figures are taken from [8].

Fig. 1.1. Limit cycle trajectory.

This example can be solved numerically as a boundary value problem by
transforming the range of a complete cycle to [0, 1], introducing the unknown
range as an extra variable as in the smoothing approach, imposing periodic
boundary conditions, and using (1.11) to impose a zero derivative condition
at one boundary to fix the extra unknown. Thus it does not show a severe
instability.

1.3 The embedding method

First problem is to set suitable boundary conditions. Expect good boundary
conditions should lead to a relatively well conditioned linear system. Assume
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Fig. 1.2. Objective function as function of α and β.

the ODE discretization is

ci (xi,xi+1) = cii(xi) + ci(i+1)(xi+1).

Consider the factorization of the difference equation (gradient) matrix C =
∇xcc with first column permuted to end:




C12 C11

C21 C22

C(n−1)(n−1) C(n−1)n 0


 → Q

[
U V

0 · · · H G

]
(1.12)

This step is independent of the boundary conditions. Inserting the bound-

ary conditions gives the system with matrix
[

H G
B1 B0

]
to solve for x1, xn.

Orthogonal factorization again provides a useful strategy.

[
H G

]
=

[
L 0

] [
ST

1

ST
2

]

It follows that the system determining x1, xn is best conditioned by choosing
[
B1 B0

]
= ST

2 . (1.13)

These conditions depend only on the differential equation. For the Mattheij
example (1.8) the “optimal” boundary matrices for h = .1 are given in Table
1.3. These confirm the importance of weighting the boundary data to reflect
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Table 1.3. Optimal boundary matrices when h = .1

B1 B2

.99955 0.0000 .02126 -.01819 0.0000 -.01102

0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

.02126 0.0000 .00045 .85517 0.0000 .51791

the stability requirements of a mix of fast and slow solutions. The solution does
not differ from that obtained when the split into fast and slow was correctly
anticipated.

Example 4. Solution of the embedding problem would typically use the Gauss-
Newton method [7]. Consider the modification of the Mattheij problem (1.8)
with parameters β∗1 = γ, and β∗2 = 2 corresponding to the solution x (t,β∗) =
ete:

A(t) =




1− β1 cos β2t 0 1 + β1 sin β2t
0 β1 0

−1 + β1 sin β2t 0 1 + β1 cosβ2t


 ,

q(t) =




et (−1 + γ (cos 2t− sin 2t))
−(γ − 1)et

et (1− γ (cos 2t + sin 2t))


 .

In the numerical experiments optimal boundary conditions are set at the
first iteration. The aim is to recover estimates of β∗,b∗ from simulated data
etiHe+εi, εi ∼ N(0, .01I) using Gauss-Newton, stopping when ∇Fh < 10−8.
Results are given in Table 1.4. There is relatively little change observed in the
optimum boundary conditions (1.13) as ‖ [

B1 B2

]
1

[
B1 B2

]T

k
− I‖F < 10−3,

k > 1. Thus no updating was deemed to be necessary.

Table 1.4. Embedding method: Gauss-Newton results for the Mattheij problem

H =
[
1/3 1/3 1/3

]
H =

[
.5 0 .5
0 1 0

]

n = 51, γ = 10, σ = .1
14 iterations

n = 51, γ = 20, σ = .1
11 iterations

n = 251, γ = 10, σ = .1
9 iterations

n = 251, γ = 20, σ = .1
8 iterations

n = 51, γ = 10, σ = .1
5 iterations

n = 51, γ = 20, σ = .1
9 iterations

n = 251, γ = 10, σ = .1
4 iterations

n = 251, γ = 20, σ = .1
5 iterations
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1.4 The simultaneous method

Associated with the equality constrained problem is the Lagrangian

L = F (xc) +
n−1∑

i=1

λT
i ci. (1.14)

The necessary conditions for a stationary point give:

∇xi
L = 0, i = 1, 2, · · · , n, c (xc) = 0.

The Newton equations determining corrections dxc,dλc are:

∇2
xxLdxc +∇2

xλLdλc = −∇xLT , (1.15)
∇xc (xc)dxc = Cdxc = −c (xc) , (1.16)

Note sparsity! ∇2
xxL is block diagonal, ∇2

xλL = CT is block bidiagonal.
The Newton equations also correspond to necessary conditions for the

quadratic program:

min
dx

∇xFdxc +
1
2
dxT

c Mdxc; c + Cdxc = 0,

in case M = ∇2
xxL, λu = λc + dλc [5]. A standard approach is to use the

constraint equations to eliminate variables (see [4] and references given there).
This can use the factorization (1.12) to give

dxi = vi + Vidx1 + Widxn, i = 2, 3, · · · , n− 1.

The reduced constraint equation is

Gdx1 + Hdxn = w.

This variable elimination would appear to be restricted by BVS considera-
tions; but there is an alternative approach called the null space method in

[5]. Let CT =
[
Q1 Q2

] [
U
0

]
then the Newton equations (1.15), (1.16) can be

written 
QT∇2

xxLQ

[
U
0

]

[
UT 0

]
0




[
QT dxc

λu

]
= −

[
QT∇xFT

c

]
.

These can be solved in sequence

UT QT
1 dxc = −c,

QT
2∇2

xxLQ2Q
T
2 dxc = −QT

2∇2
xxLQ1Q

T
1 dxc −QT

2∇xFT ,

Uλu = −QT
1∇2

xxLdxc −QT
1∇xFT .

A direct stability test is possible using the Mattheij problem data (1.8) as
QT

1 dxc estimates QT
1 vec {exp ti} when xc = 0. Computed and exact results

are compared in Table 1.5.
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Table 1.5. Stability test: comparison of exact and computed values

test results n = 11 particular integral QT
1 x

.87665 -.97130 -1.0001

.74089 -1.0987 -1.3432

.47327 -1.2149 -1.6230

.11498 -1.3427 -1.8611
-.32987 -1.4839 -2.0366
-.85368 -1.6400 -2.1250
-1.4428 -1.8125 -2.1018
-2.0773 -2.0031 -1.9444
-2.7309 -2.2137 -1.6330
-3.3719 -2.4466 -1.1526

.87660 -.97134 -1.0001

.74083 -1.0988 -1.3432

.47321 -1.2150 -1.6231

.11491 -1.3428 -1.8612
-.32994 -1.4840 -2.0367
-.85376 -1.6401 -2.1250
-1.4429 -1.8125 -2.1019
-2.0774 -2.0032 -1.9444
-2.7310 -2.2138 -1.6331
-3.3720 -2.4467 -1.1527

1.5 In conclusion

• Embedding makes use of carefully constructed, explicit boundary condi-
tions. Thus BVS restrictions must apply.

• The variable eliminations form of the simultaneous method partitions vari-
ables into sets {x1, xn}, and {x2, · · · ,xn−1} which are found in a sequen-
tial order corresponding to a fixed pivoting sequence. This approach relies
implicitly on a form of BVS .

• The null space variant partitions the variables into the sets
{
QT

1 xc

}
,{

QT
2 xc

}
. It appears at least as stable as the variable elimination pro-

cedure. Sparsity preserving implementation is straightforward.
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