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The generalised least squares problem is
mXin vVl r= Ax — b,

where A : RP —- R", V . R" — R"™. It will
be assumed that A has its full rank p < n,
but only that V is positive semi-definite. Typ-
ically in data analytic situations V, which has
the dimension of the data set, is large. An
application is made to a class of Kalman Fil-
ter problems. This forces well defined sparse
structures on both A and V.

A class of V-invariant algorithms has been in-
troduced by Gulliksson and Wedin (SIAM J.
Matrix Anal. Applic., 13(4)1298-1313,1992.)
Their problem of particular interest was equal-
ity constrained least squares which can be for-
mulated in generalised least squares form with
singular (and diagonal) V. This is a particular
example of the ability of these algorithms to
support a form of multi-scaling. They point
out the importance of column pivoting in this
application.



Soderkvist (Proceedings of CTAC95,p.709-716,
World Scientific) considered the Kalman Filter
case with diagonal covariance matrix V and
was able to demonstrate superior numerical
performance of his V-invariant methods for prob-
lems in which V possessed several distinct scales.
The restriction to diagonal V is important in
developing algorithms, and he experimented
with methods for reducing the problem to one
having this form employing both Jacobi’s method
(V = QAQ?L) and rank revealing Cholesky with
diagonal pivoting (PVPL = LDLT). He was
concerned about possible errors in small ele-
ments of D.

Osborne (Proceedings ICCS03,v.3,p.673-6832,
Springer) has argued that provided the number
of small elements in D is k£ < p then errors in
these are benign so that errors due to the rank
revealing factorization are insignificant. Our
aim here is to present an application appropri-
ate to a class of Kalman filter problems with
distinctly illconditioned covariances and both
stable and unstable dynamics.



V-invariant transformation J
JvJt =v
Let J; and Jo be V-invariant. Then

o J;1 J5t J1Js and JpJy V-invariant,
o J{, J4' V~linvariant (V nonsingular).

If

0 VW

then J is V-invariant iff

V = [O 0 ] (reduced form!)

Ji1 O T
J = , JooVods, = V-
[le J22] 20VoJ55 2

and Jq1, Jop nonsingular.



Ovrdinary least squares.
Here V-invariance implies J orthogonal.

V=I=JlJ'=T.

Analogue of Aitken-Householder elementary or-
thogonal transformation is

Vvvl

vIvVvy’
To use in matrix factorization need v such that

J u7 — uq
un Y€1
Scale of v not important. Take
Vv=s=s 0
us —veq
where s is a scale factor.



Problem
Vv=s 0
uz —vye€x
IS as hard as original unless V readily invertible!
Specialize to V = D diagonal, dim(uq) = j5—1,

D:diag{d17d27°" 7dn}7
= diag{e1,€2, " €k Vi1, > Vn},
g1 <ep < <ep K vpp1 <o <y,

v — 0 — 4. 0
% 7| Dyt (up —er) |
Here s = d; and the effective diagonal matrix

has elements < 1. Importance of the ordering
of the elements of D becomes clearer in the

calculation of ~.



To calculate v use V-invariance
u g u u
1 JTp-17 1| — 1
us Ul2 ’Yel

=3 U_2D2 Uy = 7y 2e D2_1e1.
There are two cases depending on 5 and k.

T
D—l ui
Ye1

j<k

n

V2 = (up)?4 z €J<u 2+ S €J<u )2.

_j+1 S—k’,—l-].

—(u2)2+ Z Vj(u2)§'
s=j+1"

Note that there is multiple scale behavior when
7 < k and that limit e — 0 can be defined! Also
~v is the column length in the re-scaled metric.
Column pivoting can be required because of
the multiple scaling.



If elements of J are large then this is an indi-
cator of possible stability problems! Let

J=1-—2cd’
be an elementary V-invariant reflector. Then

|Tllo=n+v{n* =1}, n=llcl2ldll.
Here

—1
| D3t (uz = vep)||[luz — veq|
n = — :
(up —ve1)! D51 (up — veq)

luz]]
= 7l =n >3
/y
That is || J;|| will be large if

djud Dy up| < luz -
the € — O limit gives n large if
Jue|l < [juzl].

Here ue. corresponds to {sj, e yER} N Do,
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Example Let

«
D = € , W= | [
%

The transformation taking w to ~eq in limit
e — 0 IS

—O{_ —O{_ I
I—7|| B |+0(rl)eq B | +0(rl)er | ,
_l/_ _O_
where
™= 1 , 0 =sgn(a),
wlm?2

w1 = (a® + 892,
12 = |o] + (a? + g2)1/2.

Note that v would be large if a, 3 < v violat-
ing the stability condition.



Solution of GLSQ problem is x = Tb where T
solves

D A

T A AT

=0 1],

Let JA = [ g ] Transformed operator satis-

fies

T S o] o | (8]

) 0 Do5
- |RT o] 0
=0 1],
Gives
Tl = R_l, TQZO,
A — R-l[l(?)e Dzl rRT

X = [R—l o]Jb.
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When V is not diagonal start with an LDLT
factorization of V and rewrite problem by set-
ting L~ 1r =F = D1/2s to obtain

mXin sTs; D25 = 1 ax — 7 1p.
Implement by making a rank-revealing Cholesky:

pvPl — Ldiag {dn,dy_1, -+ ,d1} LT

where the diagonal pivoting ensures

dn 2 dp—1 2 -+ 2dyg

and process stops if a very small or negative
d; encountered. Key point is that illcondition-
ing in V is largely forced into D. Conditions
for success (eg Higham) correspond to the as-
sumptions made already on D but need fur-
ther step to reverse order of computed D to
construct V-invariant transformation. Would
expect that small d; could have high relative
error. Does this matter?
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The case

Dzdiag{o,--- 0, dpy1, - ,dn}, k < p,

gives the equality constrained problem

0 s= |41 |x_|P
Dé/Q Ao bs |

This is the limiting problem associated with
the penalised objective

i [T —1 T 1. .— | A1 by
rnXIrl{_‘rQD2 r2—|—)\r1r1}, r_[AQIX_[bQI

which has the alternative form
Aq b1
S = X— .
D;/2] s

T... {)\1/2]
From theory of penalty functions expect

min sTs;
X

[x (A) =x(c0)|| =0 (1/A), A — oo.
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Generalised spline objects having the general
form £{h'x(t)|y1, -+ ,yn} can be obtained by
considering the stochastic differential equation

dx = Mxdt + oV Abdw,

where M : R™ — R™ in conjunction with the
observation process

h'x(t;) + & = yi, V{ei} = o°.
Let
dX

— = MX X8 =1

Variation of parameters gives the dynamics equa-
tion

Xi—|—1 = XiXi —|— 0\/Xuz-
where
- / o X(t@‘|‘1’ S)b—dS

u; ~ N(0,0°\R;)).
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This leads, via the Kalman filter subject to a
diffuse prior, to the generalised least squares

i -1 Ty —1
mxln{rlR r{ +r5V 1‘2},

problem
where
_ X,
rp | _
ro o hT

I
— X5

hT

I

_Xn—l

I

hT

s

R = o°Xdiag{R1,Rp, -+ ,Ry_1}, V = 0?1

and

bit1
R; = /t X (ti+1,5)bb! X (t;y1,5)" ds

1
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V-invariant factorization applied to successive
column blocks requires rank-revealing factor-
ization of the corresponding R; and within col-
umn block sorting. Straight forward applica-
tion under the given ordering results in accu-
mulating fill. The first few steps are:

X, I 1 |1 ™ |
—Xo I —Xo 1
: : : - )
hi ~ Z11
h?’ hT
i hT | hT

:Ul W1
Uy W5

e T
231
T
235

hT
The ordering used in Paige and Saunders in-
formation filter generates less direct fill.
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Fill can be controlled to a total of m<+1 rows in
the next to pivotal block column by orthogonal
transformations which are in the context used

V-invariant.First applied at step m

Um

where Z,, : R — R™

Wm
_Xm—l—l I
T
Zm1

T
m?2

Z
T
Zmm,

hT

Um

. It is convenient to carry

out the transformation in two steps in order to
compute auxiliary quantities.

-

Z;1
T —

Zim,

hT

1
Z;

Z;
h! 0O |

-]
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Example: Quintic spline. This corresponds to

the case

M =

o OO

oOor

orr O

, h

1
O
O

, b

O
O
1

Y

with h and b chosen for maximum smooth-
ness. T he covariance matrix blocks are readily

computed:

SRV

N

[ 54 83 83 ]
25
= 53> 6% 4§
Ri =0 8 3 2
63 4
5 2 1|
The rank revealing Cholesky gives
[ 1 171 1714 &
T 5 52 ' 2
PR,P* =¢6| 5 1 1> 1
2 5 q 5%
L 6 2 1L 720 4 L

Note the small elements in D;. However, there
are (n — 1)(m — 1) of these all told while the
design is RV — Rt 5o the conditions for
the solubility of the generalised least squares
problem can be satisfied.
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Example: Tension splines. This corresponds
to an example with unstable dynamics. For
one and two parameter splines we have

"0 1 0 0]
o1 a2 0 1 0O
M‘[a20]’ O 0 0 1
0 0 32 0.

Smoothness is maximized by choiceh = e, b =
emn. Again covariances have small elements. The
examples are not very unstable.

a=1
n=11 D;,={83-5,1.0-1}
n = 51 D, ={6.7—-7,2.0—-2}
a=1,0=2

n=11]D; ={99—-13,1.4-8,83-5,1.0—1}

n=51| D;,=1{0.0,44—1267—7,2.0—2}
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Example: A stable example is provided by the
simple chemical reaction A — B — C with rates
k1 and ko. Here

S A k&, 0 0]TA
21B|l=| k -k, 0]||B
dlc| | o k of|cC

Well posedness of the estimation problem re-
quires (h)z #= 0. Maximum smoothness of the
g-spline is achieved with b =e1, h = eg3.

ki =1, kp =2
n=11| D,={55-8,6.8—5,9.1 — 2}
n=51|D;={1.8—-11,6.4—7,2.0—2}
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