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The generalised least squares problem is

min
x

rTV −1r; r = Ax − b,

where A : Rp → Rn, V : Rn → Rn. It will

be assumed that A has its full rank p < n,

but only that V is positive semi-definite. Typ-

ically in data analytic situations V , which has

the dimension of the data set, is large. An

application is made to a class of Kalman Fil-

ter problems. This forces well defined sparse

structures on both A and V .

A class of V -invariant algorithms has been in-

troduced by Gulliksson and Wedin (SIAM J.

Matrix Anal. Applic., 13(4)1298-1313,1992.)

Their problem of particular interest was equal-

ity constrained least squares which can be for-

mulated in generalised least squares form with

singular (and diagonal) V . This is a particular

example of the ability of these algorithms to

support a form of multi-scaling. They point

out the importance of column pivoting in this

application.
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Söderkvist (Proceedings of CTAC95,p.709-716,

World Scientific) considered the Kalman Filter

case with diagonal covariance matrix V and

was able to demonstrate superior numerical

performance of his V-invariant methods for prob-

lems in which V possessed several distinct scales.

The restriction to diagonal V is important in

developing algorithms, and he experimented

with methods for reducing the problem to one

having this form employing both Jacobi’s method

(V = QΛQT ) and rank revealing Cholesky with

diagonal pivoting (PV P T = LDLT ). He was

concerned about possible errors in small ele-

ments of D.

Osborne (Proceedings ICCS03,v.3,p.673-682,

Springer) has argued that provided the number

of small elements in D is k ≤ p then errors in

these are benign so that errors due to the rank

revealing factorization are insignificant. Our

aim here is to present an application appropri-

ate to a class of Kalman filter problems with

distinctly illconditioned covariances and both

stable and unstable dynamics.
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V-invariant transformation J

JV JT = V

Let J1 and J2 be V -invariant. Then

• J−1
1 , J−1

2 J1J2 and J2J1 V -invariant,

• JT
1 , JT

2 V −1-invariant (V nonsingular).

If

V =

[
0 0
0 V2

]
(reduced form!)

then J is V -invariant iff

J =

[
J11 0
J21 J22

]
, J22V2JT

22 = V2,

and J11, J22 nonsingular.

4



Ordinary least squares.

Here V -invariance implies J orthogonal.

V = I ⇒ JIJT = I.

Analogue of Aitken-Householder elementary or-

thogonal transformation is

J = I − 2
V vvT

vTV v
, J2 = I.

To use in matrix factorization need v such that

J

[
u1
u2

]
=

[
u1
γe1

]

Scale of v not important. Take

V v = s

[
0

u2 − γe1

]

where s is a scale factor.
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Problem

V v = s

[
0

u2 − γe1

]

is as hard as original unless V readily invertible!

Specialize to V = D diagonal, dim(u1) = j−1,

D = diag{d1, d2, · · · , dn},
= diag{ε1, ε2, · · · , εk, νk+1, · · · , νn},

ε1 ≤ ε2 ≤ · · · ≤ εk � νk+1 ≤ · · · ≤ νn,

v =

[
0
v2

]
= dj

[
0

D−1
2 (u2 − γe1)

]
.

Here s = dj and the effective diagonal matrix

has elements ≤ 1. Importance of the ordering

of the elements of D becomes clearer in the

calculation of γ.
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To calculate γ use V -invariance
[

u1
u2

]T

JTD−1J

[
u1
u2

]
=

[
u1
γe1

]T

D−1

[
u1
γe1

]

⇒ uT
2D−1

2 u2 = γ2eT
1D−1

2 e1.

There are two cases depending on j and k.

j ≤ k

γ2 = (u2)
2
j +

k∑

s=j+1

εj

εs
(u2)

2
s+

n∑

s=k+1

εj

νs
(u2)

2
s .

j > k

γ2 = (u2)
2
j +

n∑

s=j+1

νj

νs
(u2)

2
s .

Note that there is multiple scale behavior when

j ≤ k and that limit ε → 0 can be defined! Also

γ is the column length in the re-scaled metric.

Column pivoting can be required because of

the multiple scaling.
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If elements of J are large then this is an indi-

cator of possible stability problems! Let

J = I − 2cdT

be an elementary V -invariant reflector. Then

‖J‖2 = η +
√ {

η2 − 1
}

, η = ‖c‖2 ‖d‖2 .

Here

η =

∥∥∥D−1
2 (u2 − γe1)

∥∥∥ ‖u2 − γe1‖
(u2 − γe1)

T D−1
2 (u2 − γe1)

,

⇒ ‖J‖ ≥ η ≥ ‖u2‖
2γ

That is
∥∥∥Jj

∥∥∥ will be large if

∣∣∣dju
T
2D−1

2 u2

∣∣∣ � ‖u2‖ .

the ε → 0 limit gives η large if

‖uε‖ � ‖u2‖ .

Here uε corresponds to {εj, · · · , εk} in D2.
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Example Let

D =




ε
ε

1


 , w =




α
β
ν


 .

The transformation taking w to γe1 in limit

ε → 0 is

I − π







α
β
ν


 + θ(π1)e1










α
β
0


 + θ(π1)e1




T

,

where

π =
1

π1π2
, θ = sgn(α),

π1 = (α2 + β2)1/2,

π2 = |α| + (α2 + β2)1/2.

Note that πν would be large if α, β � ν violat-

ing the stability condition.

9



Solution of GLSQ problem is x = Tb where T

solves

[
T Λ

] [
D A

AT 0

]
=

[
0 I

]
.

Let JA =

[
R
0

]
. Transformed operator satis-

fies

[ [
T̃1 T̃2

]
Λ

]







[
Dε 0
0 D21

]
0

0 D22




[
R
0

]

[
RT 0

]
0




=
[
0 I

]
.

Gives

T̃1 = R−1, T̃2 = 0,

Λ = R−1

[
Dε 0
0 D21

]
R−T ,

x =
[

R−1 0
]
Jb.
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When V is not diagonal start with an LDLT

factorization of V and rewrite problem by set-

ting L−1r =r̃ = D1/2s to obtain

min
x

sT s; D1/2s = L−1Ax − L−1b.

Implement by making a rank-revealing Cholesky:

PV PT → Ldiag {dn, dn−1, · · · , d1}LT

where the diagonal pivoting ensures

dn ≥ dn−1 ≥ · · · ≥ d1

and process stops if a very small or negative

di encountered. Key point is that illcondition-

ing in V is largely forced into D. Conditions

for success (eg Higham) correspond to the as-

sumptions made already on D but need fur-

ther step to reverse order of computed D to

construct V -invariant transformation. Would

expect that small di could have high relative

error. Does this matter?
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The case

D = diag
{
0, · · · ,0, dk+1, · · · , dn

}
, k < p,

gives the equality constrained problem

min
x

sT s;

[
0

D
1/2
2

]
s =

[
A1
A2

]
x −

[
b1
b2

]
.

This is the limiting problem associated with

the penalised objective

min
x

{
rT
2D−1

2 r2 + λrT
1 r1

}
; r =

[
A1
A2

]
x −

[
b1
b2

]

which has the alternative form

min
x

sT s;


 λ−1/2I

D
1/2
2


 s =

[
A1
A2

]
x−

[
b1
b2

]
.

From theory of penalty functions expect

‖x (λ) − x (∞)‖ = O (1/λ) , λ → ∞.
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Generalised spline objects having the general

form E{hTx(t)|y1, · · · , yn} can be obtained by

considering the stochastic differential equation

dx = Mxdt + σ
√

λbdw,

where M : Rm → Rm, in conjunction with the

observation process

hTx(ti) + εi = yi, V{εi} = σ2.

Let
dX

dt
= MX, X(ξ, ξ) = I.

Variation of parameters gives the dynamics equa-

tion

xi+1 = Xixi + σ
√

λui

where

ui =

∫ ti+1

ti
X(ti+1, s)b

dw

ds
ds,

ui ∼ N(0, σ2λRi)).

13



This leads, via the Kalman filter subject to a

diffuse prior, to the generalised least squares

problem

min
x

{
rT
1R−1r1 + rT

2V −1r2

}
,

where

[
r1
r2

]
=




−X1 I
−X2 I

. . .
−Xn−1 I

hT

hT

. . .

hT




x −
[

0
y

]
,

R = σ2λdiag{R1, R2, · · · , Rn−1}, V = σ2I

and

Ri =

∫ ti+1

ti
X(ti+1, s)bbTX(ti+1, s)T ds
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V -invariant factorization applied to successive

column blocks requires rank-revealing factor-

ization of the corresponding Rj and within col-

umn block sorting. Straight forward applica-

tion under the given ordering results in accu-

mulating fill. The first few steps are:




−X1 I
−X2 I

... ... ...

hT

hT

hT




→




U1 W1
−X2 I

... ... ...

zT
11

hT

hT




→




U1 W1
U2 W2

... ... ...

zT
21

zT
22

hT




The ordering used in Paige and Saunders in-

formation filter generates less direct fill.
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Fill can be controlled to a total of m+1 rows in

the next to pivotal block column by orthogonal

transformations which are in the context used

V -invariant.First applied at step m



. . . . . . . . .
Um Wm

−Xm+1 I
. . . . . . . . .

zT
m1

zT
m2
...

zT
mm

hT




→




. . . . . . . . .
Um Wm

−Xm+1 I
. . . . . . . . .

Zm

0




where Zm : Rm → Rm. It is convenient to carry

out the transformation in two steps in order to

compute auxiliary quantities.



zT
i1...

zT
im

hT



→

[
Z1

i

hT

]
→

[
Zi
0

]
.
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Example: Quintic spline. This corresponds to
the case

M =




0 1 0
0 0 1
0 0 0


 , h =




1
0
0


 , b =




0
0
1


 ,

with h and b chosen for maximum smooth-
ness. The covariance matrix blocks are readily
computed:

Ri = δ




δ4

20
δ3

8
δ3

6
δ3

8
δ2

3
δ
2

δ3

6
δ
2 1




.

The rank revealing Cholesky gives

PRiP
T = δ




1

δ
2 1

δ2

6 −δ
2 1







1

δ2

12
δ4

720







1 δ
2

δ2

6

1 −δ
2

1


 .

Note the small elements in Di. However, there
are (n − 1)(m − 1) of these all told while the
design is Rnm → Rnm+n so the conditions for
the solubility of the generalised least squares
problem can be satisfied.
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Example: Tension splines. This corresponds

to an example with unstable dynamics. For

one and two parameter splines we have

M =

[
0 1

α2 0

]
,




0 1 0 0

α2 0 1 0
0 0 0 1

0 0 β2 0




Smoothness is maximized by choice h = e1, b =

em. Again covariances have small elements.The

examples are not very unstable.

α = 1

n = 11 Di = {8.3 − 5,1.0 − 1}
n = 51 Di = {6.7 − 7,2.0 − 2}

α = 1, β = 2

n = 11 Di = {9.9 − 13,1.4 − 8,8.3 − 5,1.0 − 1}
n = 51 Di = {0.0,4.4 − 12,6.7 − 7,2.0 − 2}
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Example: A stable example is provided by the

simple chemical reaction A → B → C with rates

k1 and k2. Here

d

dt




A
B
C


 =



−k1 0 0
k1 −k2 0
0 k2 0







A
B
C




Well posedness of the estimation problem re-

quires (h)3 6= 0. Maximum smoothness of the

g-spline is achieved with b = e1, h = e3.

k1 = 1, k2 = 2

n = 11 Di = {5.5 − 8,6.8 − 5,9.1 − 2}
n = 51 Di = {1.8 − 11,6.4 − 7,2.0 − 2}
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