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Abstract: It is well known that the Gauss-

Newton algorithm for solving nonlinear least

squares problems is a special case of the scor-

ing algorithm for maximizing log likelihoods.

What has received less attention is that the

computation of the current correction in the

scoring algorithm in both its line search and

trust region forms can be cast as a linear least

squares problem. This is an important ob-

servation both because it provides likelihood

methods with a general framework which ac-

cords with computational orthodoxy, and be-

cause it can be seen as underpinning computa-

tional procedures which have been developed

for particular classes of likelihood problems (for

example, generalised linear models). Aspects

of this orthodoxy as it affects considerations

such as convergence and effectiveness will be

reviewed.
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1. Point of paper has changed somewhat with
more emphasis on what do we know about
Gauss-Newton.
2.Will not consider estimation of DE’s per se.
However,

1. Results apply to stable simple shooting es-
timation problems, and

2. to suitably imbedded multiple shooting for-
mulations - and we know how to do this.

3. Strictly results do not apply to (our work
on) the simultaneous approach to ODE esti-
mation. Problem is technically a mixed prob-
lem as limiting multipliers satisfy a stochastic
DE.
4. Will not say anything about optimum obser-
vation points. However, the information ma-
trix will be much in evidence,and its determi-
nant is a quantity to maximize as a function
of these.
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Start with independent event outcomes yt ∈
Rq, t = 1,2, · · · , n,

associated pdf g (yt; θt, t) indexed by “points”

t ∈ T ⊂ Rl,

and structural information provided by a known

parametric model

θt = η (t,x)

where θ ∈ Rs, and x ∈ Rp.

A priori information is the experimental design

Tn, |Tn| = n. For asymptotics require

1

n

∑

t∈Tn

f(t) →
∫

S(T )
f(t)ρ(t)dt

The problem is given the event outcomes yt

it is required to estimate x. It is not assumed

that the individual components of yt are inde-

pendent.
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Example Exponential family:

g

(
y;

[
θ
φ

])
= c (y, φ) exp

[{
yTθ − b (θ)

}
/a (φ)

]

E∗{y} = µ
(
x∗, t

)
= ∇b (θ)T ,

V∗{y} = a (φ)∇2b (θ) .

“signal in noise” model θ = µ.

(i)normal density

g =
1√
2πσ

exp− 1

2σ2 (y − µ)2

c(y, φ) =
1√
2πσ

exp− y2

2σ2
, a(φ) = σ2

θ = µ, b(θ) = µ2.
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(ii) multinomial (discrete) distribution

g (n;ω) =
n!

∏p
j=1 nj!

p∏

j=1

ω
nj
j =

n!
∏p

j=1 nj!
e
∑p

j=1 nj logωj ,

where
∑p

j=1 nj = n, and the frequencies must

satisfy the condition
∑p

j=1 ωj = 1. Eliminating

ωp gives

p∑

j=1

nj logωj =
p−1∑

j=1

nj log
ωj

1−∑p−1
i=1 ωi

+n log


1−

p−1∑

j=1

ωj




It follows that

θj = log
ωj

1−∑p−1
i=1 ωi

, b (θ) = n log


1−

p−1∑

j=1

eθj


 .
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Likelihood: G (y;x, T ) =
∏

t∈T g (yt; θt, t)

Estimation principle: x̂ = argmaxx G (y;x, T ).

Log likelihood

L (y;x, T ) =
∑

t∈T

log g (yt; θt, t)

=
∑

t∈T

Lt (yt; θt, t)

Assume:

• ∃ true model η, parameter vector x∗;

• x∗ properly in interior of region in which L
is well behaved;

• boundedness of integrals (computing ex-

pectations etc.).
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Properties:

• E {∇xL (y;x, T )} = 0;

• E
{
∇2

xL (y;x, T )
}

= −E
{
∇xLT∇xL

}
.

Fisher information

In =
1

n
E

{
∇xL (y;x, T )T ∇xL (y;x, T )

}

= V
{

1√
n
∇xL (y;x, T )

}
.

Maximum likelihood estimates are consistent

and asymptotically minimum variance.
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Algorithms: Describe step h, x ← x + h

Newton

Jn =
1

n
∇2

xL (y;x, Tn)

h = −J−1
n

1

n
∇xL (y;x, T )T

Scoring

h = I−1
n

1

n
∇xL (y;x, T )T

Sample

Sn =
1

n

∑

t∈Tn

∇xLt (yt;x, t)T ∇xLt (yt;x, t)

h = S−1
n

1

n
∇xL (y;x, T )T
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Equivalence

lim
n→∞ In(x

∗) = lim
n→∞Sn(x

∗) = − lim
n→∞Jn(x

∗) = I
where

I =
∫

S(T )
E∗{∇2

xL (y; θt, t)}ρ(t)dt.

Transformation invariance - scoring, sam-

ple, but not Newton: Let u = u(x), W = ∂u
∂x

then

∇xL = ∇uLW, Ix = WTIuW

hx =
(
WTIuW

)−1 1

n
WT∇uLT

= W−1(Iu)−11

n
∇uLT

⇒ hu = Whx.
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Implementation: This requires:

(1) A method for generating h, a direction in

which the objective is increasing.

(2) A method for estimating progress. A full

step need not be satisfactory. This is especially

true of initial steps.

To measure progress introduce a monitor Φ(x)

- needs same local stationary points and to be

increasing when objective F is increasing

∇Fh ≥ 0 ⇒ ∇Φh ≥ 0

Two approaches:

(1) Line search: effective search direction com-

puted, monitor used to gauge a profitable step

in this direction.

(2) Trust region: step required to lie in an

adaptively defined control region - typically one

in which linearization of F does not depart too

far from true behaviour.
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Direction of search is required to be one which

increases the objective. This is the case here

for both scoring and sample algorithms

∇xLh =
1

n
∇xLI−1

n ∇xLT > 0, x 6= x̂.

Note this shows that L is a suitable monitor.

∇xLh is invariant:

n∇xLhx = ∇xLI−1
n ∇xLT

= ∇uLW (WTInW )−1WT∇uLT

= ∇uL(Iu
n)−1∇xLT

= n∇uLhu

Will see there are good ways to compute this.
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Measuring effectiveness. Goldstein: accept

step x → x + λh if

ρ ≤ Ψ(λ,x,h) ≤ 1− ρ, 0 < ρ < .5

Ψ =
Φ(x + λh)−Φ(x)

λ∇xΦ(x)h

Can always choose λ to satisfy this test.

Armijo: Let 0 < ρ < 1, and λ = ρk where k is

smallest integer such that

Φ(x + ρk−1h) ≤ Φ(x) < Φ(x + ρkh).

Goldstein fine for proving results. No direct

link in sense of small step asymptotic equiva-

lence relating λ and ρk. It does not tell how

to find λ while Armijo does. Choice λ = 1

favoured for scale invariant, Newton type meth-

ods. Also Ψ → .5 for scoring and sample meth-

ods provided n large enough. .5 ≥ ρ ≥ .1.
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Convergence: nice inequality (Kantorovitch)

∇xLh

‖∇xL‖‖h‖
≥ 1

condS (In)1/2
.

If ∃ region R 3 L bounded and In positive def-

inite then ascent direction exists uniformly ⇒
lower bound λR exists for linesearch step mul-

tiplier. Effectiveness means L can be used as a

monitor (Not true for pure Newton). Goldstein

gives

∇xLh ≤ L(x + λh)− L(x)

ρλR
→ 0

L(x) increasing and bounded ⇒ convergence.

Also

‖h‖ = ‖(In)
−11

n
∇xLT‖ ≥ ‖∇xL‖

n‖In‖
.

Putting it all together gives

‖∇xL‖2 ≤ K (L(x + λh)− L(x)) → 0
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What happens if inf{λi} = 0? Must be se-

quence {λ̃i}, inf λ̃i = 0 3

ρ >
L(xi + λ̃ihi)− L(xi)

λ̃i∇xL(xi)hi

Here, Taylor plus mean value theorem gives

‖1
n
∇2

xL(x)‖ >
2(1− ρ)

λ̃i
σmin(In) ↑ ∞.

Almost a global result! Set of allowed approx-

imations need not be closed:

η = x(1) + x(2) exp−x(3)t

t = lim
n→∞(n− n exp−1

n
t).
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Least squares. Consider sample estimate:

Sn =
1

n

∑

t∈Tn

∇xLT
t ∇xLt

=
1

n
ST

n Sn

Sn =




...
∇xLt

...




Correction satisfies the least squares problem

min
h

rT r; r = Snh− e
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Scoring works pretty much the same:

In =
1

n

∑

t∈Tn

∇xηTE{∇ηLT
t ∇ηLt}∇xη

Set V −1
t = E{∇ηLT

t ∇ηLt} then obtain least squares

problem

min
h

rT r; r = IL
n h− b

where

IL
n =




...

V
−1/2
t ∇xη

...


 , b =




...

V
1/2
t ∇ηLt

...


 .
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Example: normal distribution

Lt = − 1

2σ2
(yt − µ(x, t))2

∇xLt =
1

σ2
(yt − µ(x, t))∇xµt

∇2
xLt = − 1

σ2 (−(yt − µ(x, t))∇2
xµt

In =
1

nσ2

∑

t∈Tn

∇xµT
t ∇xµt

IL
n =




...
∇xµt

...




As σ cancels the result is the Gauss-Newton

method. In contrast

Sn =
1

nσ2

∑

t∈Tn

(yt − µ(x, t))2

σ2
∇xµT

t ∇xµt.

Here the scale does not exit so agreeably.
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Computation:

IL
n =

[
Q1 Q2

] [
U
0

]

h = U−1QT
1b

Can get more value from factorization

∇xLh =
(
bT IL

n

)
h

= bTQ

[
U
0

]
U−1QT

1b

= ‖QT
1b‖2 ≥ 0

This is needed for Goldstein test, Also → 0 as

∇xLh → 0 so provides a scale invariant quan-

tity for convergence testing.

Typically would scale columns of IL
n - see Higham’s

book.
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Rate of convergence: Consider the unit step

scoring iteration in fixed point form:

xi+1 = Fn (xi) ,

where

Fn (x) = x + In (x)−1 1

n
∇xL (x)T .

The condition for convergence is

$
(
F ′n (xn)

)
< 1,

where $
(
F ′n (xn)

)
is the spectral radius of the

variation F ′n = ∇xFn. Then

$
(
F ′n (xn)

)
→ 0, a.s., n →∞.

$
(
F ′n (xn)

)
is a (Newton-like) invariant of the

likelihood surface, is a measure of the quality

of the modelling, and can be estimated by a

modification of the power method.
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To calculate $
(
F ′n (xn)

)
note that ∇xL (xn) =

0. thus

F ′n (xn) = I + In (xn)
−1 1

n
∇2

xL (xn) ,

= In (xn)
−1

(
In (xn) +

1

n
∇2

xL (xn)
)

.

If the right hand side were evaluated at x∗ then

the result would follow from the strong law

of large numbers which shows that the matrix

gets small (hence $ gets small) almost surely

as n → ∞ . But, by consistency of the esti-

mates, we have

$
(
F ′n (xn)

)
= $

(
F ′n

(
x∗

))
+ O

(‖xn − x∗‖) , a.s.,

and the desired result follows.
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Trust region: Idea is to limit scope of the
linear subproblem to a closed control region
containing the current estimate:

min
h,‖h‖2D≤γ

rT r; r = IL
n h− b

‖h‖2D = hTD2h, D > 0 diagonal.

Necessary conditions give
[

rT 0
]
= λT

[
I −IL

n

]
− π

[
0 hTD2

]

so h satisfies the perturbed scoring equations
(
In +

π

n
D2

)
h =

1

n
∇xLT

π can be used to control the trust region by
controlling the size of h. Differentiating wrt π

gives
(
In +

π

n
D2

)
dh

dπ
= −1

n
D2h

dh

dπ

T

D2h = −n
dh

dπ

T (
In +

π

n
D2

)
dh

dπ
< 0

⇒ − d

dπ
‖h‖2D < 0.
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The classical form of the algorithm goes back
to Levenberg 1944. Here two parameters α, β
are kept, and the basic sequence of operations
is:

count=1: do while F(x+h(\pi))<F(x)

count=count+1

\pi=\alpha*\pi

loop

x\leftarrow x+h(\pi)

if count=1 then \pi=\beta*\pi

Successful steps will be taken eventually as

h → 1

π
D−2∇xLT , π →∞

Experience suggests choices of α, β are not
critical. Typically αβ < 1 to approach New-
ton like methods.

The scoring and sample algorithms are not ex-
act Newton methods. Both can be regarded
as regularised methods because of their generic
positive definiteness. Not obvious that setting
π = 0 will increase rate of convergence.
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Basic theorems mirror line search results.

Convergence: Let {xi} produced by the α, β

procedure be contained in compact region R in

which {πi} < ∞ then {L(y;xi, Tn)} converges,

and limit points of {xi} are stationary points

of L.

Boundedness: If sequence {πi} determined

by α, β procedure is unbounded in R then the

norm of ∇2
xL is also unbounded.

Remember iterations have the potential to be-

come unbounded for smooth sets of nonlin-

ear approximating functions as closure of these

sets of functions cannot be guaranteed without

more work.
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Computation: The trust region problem is:

min
h

rT r; r =

[
XL

n√
πI

]
h−

[
b
0

]

Let XL
n = Q

[
U
0

]
then h(π) can be found by

solving the typically much smaller problem

min
h

sT s; s =

[
U√
πI

]
h−

[
c1
0

]

where c1 = QT
1b. Make further factorization[

U√
πI

]
= Q′

[
U ′
0

]
, Q′T

[
c1
0

]
→

[
c′1
c′2

]
then

h(π) = (U ′)−1c′1
∇xLh(π) = cT

1Uh(π)

=
[

cT
1 0

] [
U√
πI

]

(
UTU + πI

)−1 [
UT √

πI
] [

c1
0

]

= ‖c′1‖2

25



The linear subproblem has a useful invariance
property with respect to diagonal scaling. In-
troduce the new variables u = Tx where T is
diagonal.

T−1
(
ST

x Sx + πD2
)

T−1Thx = T−1∇xLT .

This is equivalent to
(
ST

u Su + πT−1D2T−1
)
hu = ∇uLT .

Thus if Di transforms with ∂
∂xi

then T−1
i Di

transforms in the same way with respect to
∂

∂ui
. This requirement is satisfied by

Di = ‖(Sn)∗i‖ .

This transformation effects a rescaling of the
least squares problem. We have

h =
(
ST

n Sn + πD2
)−1

ST
n e,

⇒ Dh =
(
D−1ST

n SnD−1 + πI
)−1

D−1ST
n e.

The effect of this choice is to rescale the columns
of Sn to have unit length. It is often sufficient
to set π = 1, and D = diag {‖(Sn)∗i‖ , i = 1,2, · · · , p}
initially .
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One catch is the initial choice π = π0. One ex-

ample is provided by models containing expo-

nential terms such as e−xkt which should have

negative exponents (xk > 0) but which can

become positive (xk + hk < 0) by too large a

step. To fix introduce a damping factor τ such

that the critical components of x+τh(π0) ≥ 0.

‖τh(π0)‖ provides a possible choice for a re-

vised trust region bound γ. This involves solv-

ing for π by eg Newton’s method the equation

‖h(π)‖ = γ.

dh
dπ can be found by solving

(
UTU + πI

) dh

dπ
= −h

This can be written in least squares form:

min
h

sT s; s =

[
U

π1/2I

]
dh

dπ
−

[
U−Th

0

]
.
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Newton’s method extrapolates the function as

a linear. An alternative strategy could be prefer-

able here. This is based on the observation

that, if

A = WΣV T

is the singular value decomposition of the ma-

trix in the least squares formulation, then

h =
p∑

i=1

σi(w
T
i b)

σ2
i + π

vi

is a rational function of π. To mirror this set

‖h‖ ≈ a

b + (π − π0)
.

To identify the parameters a and b use the val-

ues ‖h(π0)‖ and d
dπ‖h(π0)‖ - this corresponds

to the same information as used in Newton’s

method.
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To solve for the parameters we have the equa-

tions:

‖h(π0)‖ =
a

b
,

d

dπ
‖h(π0)‖ =

hT dh
dπ

‖h‖ (π0) = − a

b2
.

The result is

b = − ‖h(π0)‖
d
dπ‖h(π0)‖

, a = ‖h(π0)‖b,

giving the correction

π = π0 −
‖h(π0)‖ − γ

d
dπ‖h(π0)‖

‖h(π0)‖
γ

.

The effect of the rational extrapolation is just

the Newton step modulated by the term ‖h(π0)‖
γ .

As this term → 1 this is also a second order

convergent process.
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Simple exponential model: Here the model

used is

µ(t,x) = x(1) + x(2) exp(−x(3)t). (1)

The values chosen for the parameters are x(1) =

1, x(2) = 5, and x(3) = 10. Initial values are

generated using

x(i)0 = x(i) + (1 + x(i))(.5−Rnd)

where Rnd indicates a call to a uniform random

number generator giving values in [0,1].

This model is not difficult in the sense that the

graph has features that depend on each of the

parameters. Thus the interest is in the effects

of simulated data errors.
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Two types of random numbers are used to sim-

ulate the experimental data.

Normal data: The data is generated by eval-

uating µ(t,x) on a uniform grid with spacing

∆ = 1/(n+1) and then perturbing these values

using normally distributed random numbers to

give values

zi = µ(i∆,x)+εi, εi ∼ N(0,2), i = 1,2, · · · , n.

The choice of standard deviation was made to

make small sample problems (n = 32) rela-

tively difficult. The log likelihood is taken as

L(x) = −1

2

n∑

i=1

(zi − µ(i∆,x))2 .

While the scale is not evident here it resurfaces

in its effects on the generated data.
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Poisson data: A Poisson random number gen-

erator is used to generate random counts zi

corresponding to µ(i∆,x) as the mean model.

The log likelihood used is

L(x) =
n∑

i=1

zi log

(
µ(i∆,x)

zi

)
+ (zi − µ(i∆,x)) .

Note that if zi = 0 then the contribution from

the logarithm term to the log likelihood is zero.

The rows of the least squares problem design

matrix are given by

eT
i A =

1

si
,
exp(−x(3)ti)

si
,
−x(2)ti exp(−x(3)ti)

si
,

i = 1,2, · · · , n

where si =
√

µ(i∆,x). The corresponding com-

ponents of the right hand side are

bi =
zi − µ(i∆,x)

si
.
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Numerical experiments comparing the perfor-
mance of the line search (LS) and trust region
(TR) methods are summarised below. For
each n the computations were initiated with
10 different seeds for the basic random num-
ber generator, and the average number of it-
erations is reported as a guide to algorithm
performance. The parameter settings used are
α = 2.5, β = .1 for the trust region method
and ρ = .25 for the Armijo parameter used in
the line search. Experimenting with these val-
ues (for example, the choice α = 1.5, β = .5)
made very little difference in the trust region
results. Convergence is assumed if ∇xLh <

1.0e−8. This corresponds to final values of ‖h‖
in the range 1.e−4 to 1.e−6.

Normal Poisson
n LS TR LS TR
32 10.3* 14* 11 12.3
128 9.3 11.9 7.6 7.9
512 7.3 7.3 7.1 6.9
2048 6.7 6.1 6.3 5.8
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The starred entries in the table correspond

to two cases of nonconvergence. The figure

shows (in red) the current estimate after 50

iterations together with the data and the start-

ing estimate. This gives an illustration that the

set of approximations is not closed.

Result shows a straight line fit
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Second example - Gaussians with an exponen-

tial background.

µ = x(1) exp−x(2)t+x(3) exp−(t− x(4))2/x(5)

+ x(6) exp−(t− x(7))2/x(8)

Line search case:

x(1) = 5, x(2) = 10, x(3) = 18, x(4) = .3333,

x(5) = .05, x(6) = 15, x(7) = .6667, x(8) = .05

.05 32 128 512 2048

1 - 10 8 10
2 17 41 42 24
3 - 64 11 6
4 84 11 - 53
5 27 15 8 142
6 20 13 11 8
7 6 7 26 8
8 - 40 15 8
9 137 10 9 66
10 11 6 14 23
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The results here are much more of a mixed

bag. The problems are closely related to the

choice of starting values. The figure is pro-

duced using peak widths of .01 which makes it

easier to see what is going on. In this case the

starting values do not see the second peak.

Both the background and the first peak are

picked up well.

Initial conditions miss the second peak
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Third example - trinomial example
Data for a trinomial example (m = 3) came
from a consulting exercise with CSIRO. It is
derived from a study of the effects of a cattle
virus on chicken embryos.

log10(titre) dead deformed normal
-0.42 0 0 18
0.58 1 2 13
1.58 5 6 4
2.58 12 6 1
3.58 18 1 0
4.58 16 0 0

Cattle virus data

The model suggested fits the frequencies ex-
plicitly

ω1 =
1

1 + exp (−β1 − β3 log (t))
,

1− ω2 =
1

1 + exp (−β2 − β3 log (t))
,

ω3 = 1− ω1 − ω2.
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Makes sense to develop the algorithm in terms

of the frequencies. Numerical results show an

impressive rate of convergence for a relatively

small data set. Suggests the model analysis is

good.

its L ∇Lh β1 β2 β3
0 49.31 -4.597 -3.145 .7405
1 47.53 .1353+2 -3.937 -2.369 .7834
2 47.00 .9778+0 -4.419 -2.584 .8882
3 46.99 .2145-1 -4.405 -2.620 .9060
4 46.99 .7370-5 -4.405 -2.619 .9060
5 46.99 .8861-8 -4.405 -2.619 .9060
Results of computations for the trinomial

data
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In conclusion Work on the Levenberg algo-
rithm in the 1970’s was responsible for at least
some of the encouragement for the shift from
linesearch to trust region methods in optimiza-
tion problems. It can now be argued that this
component of the move had somewhat dubi-
ous validity.
1. Use of the expected Hessian is already a
“regularising” step. Improved conditioning de-
rived from the trust region parameter could be
illusory if the aim is small values for rapid con-
vergence. If significant values of π are required
then in the data analytic context the modelling
could well be suspect.
2. The old papers relied on a small residual
argument to explain good convergence rates.
Again in our context this is not satisfactory. It
is not completely obvious what the effect of
non zero trust region parameters is in any par-
ticular case.
3. The trust region algorithm does not scale
as well as the linesearch scoring algorithm.
4. Global convergence results of similar power
appear available for both approaches.
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