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Summary. Two distinct and essentially independent sources of error occur in the
parameter estimation problem – the error due to noisy observations, and the error
due to approximation or discretization effects in the computational procedure. These
give contributions of different orders of magnitude so the problem is essentially a two
grid problem and there is scope for balancing these to minimize computational effort.
Here the underlying computing procedures that determine these errors are reviewed.
There is considerable structure in the integration of the differential system, and the
role of cyclic reduction in unlocking this is discribed. The role of the stochastic
effects in the optimization component of the computation is critically important in
understanding the success of the Gauss-Newton algorithm, and the importance both
of adequate data and of a true model is stressed. If the true model must be sought
among a range of competitors then a stochastic embedding technique is suggested
that converts under-specified models into “non-physical” consistent models for which
the Gauss-Newton algorithm can be used.

1 Introduction

The estimation problem for parameterized systems of differential equations
starts with data acquired through observations of system trajectories made
in the presence of noise, and it seeks to estimate the parameter values by
solving an optimization problem which matches computed solutions of the
differential equation to this observed data. Note that the explicit assumption
that the data is noisy means that there is an explicit stochastic component to
the problem. This has the immediate consequence that two distinct grids are
relevant in this problem formulation. These are:

• the grid defined by the observation process; and
• the grid defined by the discretization of the differential system.

The need to distinguish between these is a consequence of the different rates of
convergence of the estimates implied by the two different sources of error – the
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stochastic component deriving from the measurement process with its charac-
teristic O

(

n−1/2
)

rate, and the rate deriving from the truncation error in the

numerical procedure where an O
(

n−2
)

estimate is readily achieved. It follows
that there could well be scope for economizing on the work done in integrat-
ing the differential system because of the distinctly lower accuracy achievable
in the estimates based on the observation grid. Our aim here is to examine
the key computational components of the estimation problem (the discretiza-
tion of the differential equations and the parameter estimation optimization
problem) to expose structure that might be used in the economization process.
To define the problem let the differential equation be

dx

dt
= w(t,x,β) (1)

where x,w ∈ Rm, β ∈ Rp. An important case is the equation linear in the
state variable x

w =M(t,β)x+ f(t). (2)

This is not only significant in its own right, but through a process of successive
linearization it provides the “enabling technology” needed for the fully non-
linear problem. For this reason most of the discussion here is in terms of the
linear equation system. The second component of the problem formulation is
the observed data:

yi = φ
Tx(ti) + εi, i = 1, 2, · · · , n, (3)

where φ defines the “observation functional” and the observational error is
given by εi. These errors are assumed to be independent and identically dis-
tributed and typically normal.
Typically, two classes of method are considered:

embedding method : Here explicitly computed solution trajectories are com-
pared directly with the observations in an unconstrained optimization
procedure. Typically this has two main components:
1. Given trial β , plus auxiliary information b, generate trial solution
x(t,β,b).

2. Using trial solution make adjustments to β and auxiliary information
b to improve estimate of β and x(t,β,b). Measure goodness of fit by

F (β,b) =

n
∑

i=1

ri(ti,β,b)
2, (4)

ri = yi − φTx(ti,β,b). (5)

To set up the auxiliary information first select boundary matrices B1, B2

and guess the variable part of the auxiliary information b. This data is
required to permit the solution of the boundary (or initial) value problem
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B1x(0) +B2x(1) = b,

dx

dt
=M(t, β)x+ f(t).

It is important to choose B1, B2 so that the Green’s matrix is nicely
bounded. This is always possible if the system possesses a known, well-
defined dichotomy [1]. However, this requires significant additional struc-
tural information about the differential system. Typically it is required of
the imposed conditions that the fast solutions of the differential equation
be pinned down at t = 1 , and slow solutions be similarly pinned down
at t = 0. Simple shooting corresponds to B1 = I, B2 = 0. It requires the
initial value problem to be stable.
This formulation leads to the nonlinear least squares problem:

min
b,β

n
∑

i=1

(yi − φTx(ti,β,b))
2. (6)

It is recommended that the correction to β, b be computed using the
Gauss-Newton or Scoring method [2]. This requires the integration of the
variational equations:

{

d∆β

dt =M∆β +∇βMx,
B1∆β(0) +B2∆β(1) = 0,

{

d∆b

dt =M∆b,
B1∆b(0) +B2∆b(1) = I,

where

∆β =
∂x

∂β
, ∆b =

∂x

∂b
.

simultaneous method : In this approach the system of differential equations is
imposed as explicit constraints on the optimization problem (6) [3]. The
resulting equality constrained mathematical program typically is solved by
a variant of sequential quadratic programming. For the linear differential
equation the mathematical program can be formulated as

min
β

n
∑

i=1

(yi − φTx(ti,β))
2, (7)

subject to the equality constraints

xi+1 −Xi(ti+1, ti)xi = vi, i = 1, 2, · · · , n− 1, (8)

where Xi(t, ti) is the fundamental matrix, and vi(t) is the particular
integral for equation (2) given by
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dXi

dt
= MXi, Xi(ti, ti) = I, (9)

vi =

∫ ti+1

ti

Xi(ti+1, u)f(u)du. (10)

In practice, the differential equation constraints would be replaced by an
appropriate discretization. In this formulation the additional information
comes from the Lagrange multipliers, but now the dimension of the con-
straint system grows with n. This can be avoided to some extent at least
by the use of a coarser solution grid to generate data which can be in-
terpolated linearly to obtain values to compare with the observed data.
However, the differential system has only m degrees of freedom. This sug-
gests a more compact specification could be available.

This brief sketch of the algorithmic possibilities suggests a number of sig-
nificant problems including the determination of suitable boundary matrices
B1, B2, finding problem formulations that might aid the selection of appro-
priate integration grids, and reducing the degrees of freedom information in
the mathematical programming formulation. A possible approach to these
problems is considered in the next section which is based around the possible
forms of cyclic reduction in this context. It is shown that, in certain circum-
stances at least, an optimal reduction in the degrees of freedom in the con-
straint system is possible. The applicability of the Gauss-Newton algorithm
has been indicated above. A general treatment is sketched in the following sec-
tion (including for constrained problems). Part of the context required here is
that the model for the system trajectory be correctly specified. To rescue the
Gauss-Newton method when this is not the case introduces the interesting
class of problems involving model selection. One possible approach, involving
a stochastic embedding of the tentative model equations, is sketched in the
final section.

2 Cyclic reduction

Cyclic reduction [4] is an elimination scheme applied to the block bidiagonal
recurrence

A0
ixi+1 +B0

i xi = c
0
i (11)

which combines adjacent rows using techniques such as partial pivoting or
orthogonal reduction as follows:

[

B0
i−1 A0

i−1 0 c
0
i−1

0 B0
i A0

i c
0
i

]

→
[

B1
i/2 0 A1

i/2 c
1
i/2

V 1
i −I W 1

i w
1
i

]

. (12)

The procedure can be applied recursively to give

Interpolation equations

xt = Vtx(0) +Wtx(1) +wt, (13)
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Constraint equation

Gk
1x(0) +Gk

2x(1) = c
k
1 . (14)

The process is simplest if n = 2k, but this restriction is not necessary in
the bidiagonal case considered here [5]. The resulting equations (13), (14) are
intrinsic properties of the differential equation system in the sense that they
do not depend on the boundary conditions.
The constraint equation (14) gives immediate information concerning the

choice of the boundary matrices in the embedding approach. It is required to
choose B1, B2 to ensure that

[

B1 B2

Gk
1 Gk

2

]

has a ‘nicely’ bounded inverse for then x(0), x(1) can be found stably and
the remaining values filled in using the interpolation equations. Thus Gk

1 , G
k
2

must reflect the dichotomy properties of the ODE system.
The interpolation equations (13) produced by the recursive cyclic reduc-

tion transformations allow the reformulation of the equality constrained es-
timation problem with minimum degrees of freedom (minimum numbers of
equality constraints):

min
β

n
∑

t=ti,i=1

(

yt − φT (Vtx(0) +Wtx(1) +wt)
)2

(15)

subject to the constraints

Gk
1x(0) +Gk

2x(1) = c
k
1 . (16)

This reduces the Lagrangian form of the problem to solving an optimization
problem involving a fixed number m of equality constraints.
Certain properties are an immediate consequence of the basic process:

• Boundary conditions on the interpolation equations (13) follow directly:

V (0) = I, V (1) = 0,
W (0) = 0, W (1) = I,
w(0) = 0, w(1) = 0.

(17)

• Vt,Wt,wt, G1, G2, c are not uniquely defined by the cyclic reduction pro-
cess. Let Ct be the transformation that combines adjacent block rows.
Then there is an equivalence class of transformations:

Ct ←
[

R1(t) 0
R21(t) R2(t)

]

Ct (18)

that preserve the basic structure in the elimination tableau (12). Freedom
in the interpolation is in R−1

2 R21. Freedom in the constraint is in R1.
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• Relationships in the constraint equation can also be identified

(

Gk
2

)−1
Gk

1 = X(1, 0),
(

Gk
2

)−1
ck1 = v1.

The simplest transformation introducing a zero in the cyclic reduction step
is given by

C =

[

I X(ti+1, ti)
I −X(ti+1, ti)

]

. (19)

Assume δ = ti+1 − ti is small. Substitute for the state variable using the in-
terpolation equations, apply the transformation, and expand in powers of δ.
Equating leading terms gives second order differential systems for the interpo-
lation equation quantities (note this means the boundary condition (17) can
be satisfied):

d2

dt2

(

X−1

{

V
W

)

= 0,

⇒ V = X(t, 0)(1− t), W = X(t, 1)t.

Other possibilities can be found by fixing

R−1
2 R21 = S1 = δS +O(δ2). (20)

Substituting this into C ← RC and repeating the calculation gives for V (W
is similar)

d2V

dt2
+ 2 (S −M)

dV

dt
+

(

M2 − 2SM − dM

dt

)

V = 0. (21)

The interesting reduction is based on the use of orthogonal transformations as
we know that bidiagonal systems with coupled boundary conditions provides
a practical example of the potential instability of partial pivoting. Orthogonal
transformation requires

CTRTRC = I

Substituting and expanding in powers of δ gives

S =
M +MT

2
(22)

Substituting in the general equation (21) gives (here order is important)
(

d

dt
+MT

)(

d

dt
−M

){

V
W
= 0

The general equation (21) corresponds to the first order system (write Y for
either V,W )

d

dt

[

Y
Z

]

= N

[

Y
Z

]

, N =

[

M I
−(2S −M)

]

. (23)
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To see where the constraint equation (14) fits in write the particular integral
equation in form

d

dt

[

w

z

]

= N

[

w

z

]

+

[

f

0

]

.

The interpolation equation (13) gives x as a combination of solutions of the
higher order (2m × 2m) first order systems for V , W , w. The function of
the constraint equation is to remove unwanted components of the expanded
fundamental matrix. It is required that

0 =
dx

dt
−Mx− f ,

=

(

dV

dt
−MV

)

x(t1) +

(

dW

dt
−MW

)

x(tn)

+
dw

dt
−Mw − f ,

= ZV (t)x(t1) + ZW (t)x(tn) + z(t). (24)

Although the constraint must hold for every t there is really only one condition
here because the equations for ZV , ZW , z are homogeneous so the constraint
equation determined for t = t2 is obtained from that for t = t1 by multiplying
by Z(t2, t1) where Z is a fundamental matrix for the system

dZ

dt
= − (2S −M)Z.

3 Optimization methodology

When the model is known then the Gauss-Newton or scoring method appears
the method of choice for the embedding methods, and good reasons for this are
presented which are a consequence of the stochastic setting. Similar approxi-
mations appear to work well in sequential quadratic programming applied to
the simultaneous class of methods. Results from Zengfeng Li’s thesis [6] are
summarized.
Scoring [2] is a generalisation of the Gauss-Newton algorithm. It is based

on two main ideas:

Maximum likelihood for parameter estimation This starts with:
• events: yt ∈ Rm, t ∈ T ,
• probability density : f(yt,η(x, t)),
• exact model : η(x, t) : Rp × T → Rq (the parameter and covariate
information).

The parameter estimates x are computed by minimizing the negative of
the likelihood
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xT = argminKT (x), (25)

KT (x) = −
∑

t∈T

Lt, (26)

Lt = log f(yt,η(x, t)). (27)

The context which generalises that typically assumed for least squares
involves:
• independent events and an appropriately structured sampling regime,
• n = |T | À m = dim x, and
• a model with suitable analytic properties.

Newton’s method for function minimization This computes:

J = ∇2K(x), (28)

h = −J−1(x)∇K(x)T , (29)

x→ x+ h. (30)

Advantages:
1 It has a fast rate of ultimate convergence to x̂ 3 ∇K(x̂) = 0 provided
J (x̂) is nonsingular.

2 It has good transformation invariance properties.
Disadvantages:
1 Convergence is local and could be, at least in theory, just to a station-
ary point.

2 The method requires ∇2K(x). In the past it has often been regarded
as uneconomical or inconvenient to compute this.

Scoring aims to maintain or even improve on the advantages of Newton’s
method while avoiding the disadvantages. The key step is the replacement of
∇2K(x) by its expectation. This gives the modified iteration the basic (full
step) form:

I = 1
n
E
{

∇2K(x)
}

, (31)

h = −I(x)−1 1

n
∇K(x)T , (32)

x→ x+ h. (33)

In [2] it is shown that the scoring iteration gives consistent estimates x̂n which
tend to the true parameter vector x∗ in an appropriate stochastic sense as the
number of observations increases without limit provided

• the sampling procedure is structured appropriately, and
• the assumed model is correct.

The important identity

E{∇2K(x)} = E{∇K(x)T∇K(x)} (34)
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shows that I is generically positive definite under reasonable modelling as-
sumptions. In [2] it is shown that limn→∞ In is essentially a bounded Gram
matrix. A second consequence of the disappearance of second derivatives in
In is that the modified algorithm has even better transformation invariance
properties. If I has to be estimated because integration is difficult then the
law of large numbers can help.

1

n
E{∇2Kn} =

1

n

∑

i

E{∇LTi ∇Li}

= − 1
n

∑

i

(

∇LTi ∇Li − E{∇LTi ∇Li}
)

+
1

n

∑

i

∇LTi ∇Li

→ 1

n

∑

i

∇LTi ∇Li, n→∞.

As In is positive (semi) definite so ∇Knh < (=)0. This last property ensures
that the scoring step is necessarily downhill for minimizing Kn when In is
nonsingular, and that Kn is a suitable function to use in a linesearch step to
stabilize the iteration. This has the consequences:

1 ∇Kh
‖∇K‖‖h‖ < − 1

condI ,

2 Limit points of the iteration are stationary points of K.
3 A full step will be acceptable in the line search eventually provided n is
large enough.

The final point in favour of scoring is that the rate of convergence to a
consistent estimate is very satisfactory. Once a full step is acceptable in the
linesearch then the iteration can be written as the fixed point iteration:

xi+1 = F(xi); F(x) = x− In(x)−1 1

n
∇Kn(x)T

Here x̂n is a point of attraction provided the spectral radius

$(∇F(x̂n)) < 1

As ∇Kn(x̂n) = 0 it follows that

∇F(x̂n) = I − In(x̂n)−1 1

n
∇2Kn(x̂n)

= (In(x̂n))−1

(

(In(x̂n)−
1

n
∇2Kn(x̂n))

)

= ∇F(x∗) +O(‖x̂n − x∗‖), a.s., n→∞

But ∇F(x∗) = o(1), n→∞ where x∗ is the true vector of parameters using
the strong law of large numbers
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⇒ $(∇F(x̂n))→ 0, n→∞

showing an arbitrary fast rate of (first order) convergence provided the effec-
tive sample size is large enough. Note that consistency of the estimate is used
explicitly here.

4 Extension to constrained problems

For simplicity consider the linearly constrained problem [7]:

min
x
Kn; Cx = d, C : Rp → Rm, rank(C) = m. (35)

The necessary conditions for a minimum of (35) give

∇Kn = λTC (36)

where λ is the vector of Lagrange multipliers. The limiting form as n → ∞
follows by an application of the law of large numbers to

1

n
{∇Kn − E{∇Kn}}+

1

n
E{∇Kn} = (λ/n)TC

The left hand side has the limiting form

−
∫ 1

0

E{∇L(y,x, t)}dω(t),

where ω is a limiting weight function characterizing the design of the obser-
vation process. Thus the limiting system is

−
∫ 1

0

E{∇L(y,x, t)}dω(t) = λ∗TC (37)

Cx = d (38)

where λ∗ = limn→∞ λ/n. This has the solution

x = x∗, λ∗ = 0.

Thus if there is a fixed finite number of constraints then the associated La-
grange multipliers asymptote to zero. In particular, the limiting (correctly
scaled) multipliers associated with (15), (16) are zero.
An equality constrained sequential quadratic programming approach to

constrained problems is now sketched. The target problem here is the simul-
taneous method. Needed results are straightforward if cyclic reduction can be
applied directly (that is rather than used to simplify a current linearization),
but this is not assumed. Let the problem have the form:
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min
x
K(x); c(x) = 0.

We introduce the Lagrangian

l(x,λ) = K(x) + λT c(x).

Let Bk be an approximation to ∇2
xl(xk,λk) and solve linear subproblem

min
d∈S
∇K(x)d+ 1

2
dTBkd

S = {d; c(xk) +A(xk)d = 0}

(typically cyclic reduction would have an application in the constraint reduc-
tion step). To make progress take the guarded step

xk+1 := xk + γdk.

Here Li implemented the Byrd and Omojokum trust region strategy following
[8]. The current iteration is completed by updating the Lagrange multiplier
vector λ using

λk+1 = −A+
k (∇KT

k +Bkdk))

The Gauss-Newton approximation to Bk (possibly guarded to avoid too
large changes) involves:

i ignoring the term
∑n

i=1 ri
∂2ri

∂xj∂xk
, and this is justified as in the uncon-

strained case;

ii ignoring also the term
∑n−1

i=1 λ
T
i

∂2
ci

∂xj∂xk
.

Numerical experience is that this Gauss-Newton style approximation works.
It is not too difficult to show that a suitably scaled λi → 0, but this is not
quite enough to justify omitting the constraint contributions for a potentially
unbounded number of constraints. However, there is more structure which
includes a stochastic differential equation for a limiting multiplier vector:

dλ = −∇xw(t,x,β)Tλdt+ σφdω.

It is worth observing that the modified iteration just gives the unconstrained
minimization step. This iteration can be shown to give consistent but not
feasible estimates in the case of a fixed finite number of constraints. Here the
trust region step serves to force feasibility.
The following example was given in [6] to illustrate the Gauss-Newton

strategy. The distinctly unstable equation is due to Matheij [1]. The compari-
son is between a Newton strategy where the Hessian is computed exactly and
the Gauss-Newton strategy summarized above.
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M(t,β) =





1− β1 cos(β2t) 0 1 + β1 sin(β2t)
0 β1 0

1 + β1 sin(β2t) 0 1 + β1 cos(β2t)





f(t) = et





−1 + 19(cos(2t)− sin(2t))
−18

1− 19(cos(2t) + sin(2t))





x(t) = ete

The data is chosen in the form x(t) + σrnd where rnd is a vector of stan-
dardized normal variates and σ = 5., 1., .01. The initial parameter vector has
values 20% larger than true - [19, 2]. The results are displayed in the following
table, and show clearly the reduction in number of iterations as the number
of observations is increased for each of the values of σ.

Table 1. Newton and scoring compared

n Ne GN Ne GN Ne GN

25 + 1 15 55 6 11 4 4
27 + 1 16 20 6 10 3 4
210 + 1 7 13 4 5 3 3

5 Model selection

It all becomes harder if the only information available is that the model is
known to lie within a parameterized class of systems. Presumably one should
start the searching with the simpler members of this class (the potentially
under-specified systems) as an aid to numerical stability. However, the scoring
method requires a consistency result and thus looses its justification in this
case. A stochastic embedding procedure which produces spline-like fits to the
data, and which offers the possibility of overcoming this difficulty, is being
studied for systems linear in the state variables.
The smoothing spline η(t) is defined by:

min
η

n
∑

i=1

(yi − η(ti))
2 + τ

∫ 1

0

(

dkη

dtk

)2

dt. (39)

Here the value of τ can be chosen to provide a compromise between data fit
and smoothness. An alternative stochastic formulation is given by Wahba [9]:

η(t) = E {y(t)|y1, y2, · · · , yn, λ} ,
dkη

dtk
= σ
√
λ
dω

dt
. (40)
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Here λ = 1/τ . The consistency result available is η(t) → E{y(t)}, n →
∞ provided λ is chosen appropriately. For our purposes a key step is the
generalisation to more general differential operators (g-splines)

min
η

n
∑

i=1

(yi − η(ti))
2 + τ

∫ 1

0

(Mkη)
2
dt. (41)

As τ gets large the minimizing η is forced to the null space of Mk. This
suggests choosingMk to provide the possibility of identifying a linear model
for the underlying signal.
An alternative approach has been considered by Wecker, Ansley, and Kohn

([10], [11] for example). They writeMk in first order system form

dx

dt
=Mkx

giving the stochastic form corresponding to (40) ( here b = ek)

η(t) = E {x1(t)|y1, y2, · · · , yn, λ} ,
dx =Mkxdt+ σ

√
λbdω. (42)

This invites generalisations to the more general observation data: yi =
φTx(ti), to general linear systems characterized by the matrix M(t,β), and
to more general smoothness controls characterized by the steering vector b
[12], [13]. Let X(t, ξ) be a fundamental matrix of the deterministic equation.
Then variation of parameters gives the relations

xi+1 = X(ti+1, ti)xi + σ
√
λui, (43)

ui =

∫ ti+1

ti

X(ti+1, s)bdω(s), (44)

∼ N(0, σ2R(ti+1, ti)), (45)

R(ti+1, ti) = λ

∫ ti+1

ti

X(ti+1, s)bb
TX(ti+1, s)

T ds. (46)

The system is now in a form suitable for computing the conditional expecta-
tion x(t|n) using the Kalman filter and interpolation smoother. The filter is
a forward recursion for xi|i = E {x(ti)|y1, y2, · · · , yi, λ}, and σ2Si|i, the corre-
sponding covariance. The interpolation smoother gives the dependence on all
the data. If ti ≤ t ≤ ti+1 then:

x(t|n) = X(t, ti)xi|i +A(t, ti)
(

xi+1|n − xi+1|i

)

, (47)

A(t, ti) =
{

X(t, ti)Si|iXi + Γ (t, ti)
}

S−1
i+1|i, (48)

Γ (t, ti) = R(t, ti)X(ti+1, t)
T . (49)
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Two choices of the initial condition x1|0 are possible – either to choose it as
constant or to assume the diffuse prior (x1|0 = 0, S1|0 ↑ ∞). Both possibilities
have been considered for computing smoothing splines. The filter is an initial
value process involving a possibly unstable deterministic component. However,
it does involve a correction step to take account of the new data. Still stability
is a legitimate question. In this connection note that there is a “multiple
shooting” form which has proved convenient in the case of the diffuse prior
[14]:

min
x

{

rT1 V −1r1 + r
T
2 R−1r2

}

, (50)

[

r1
r2

]

=

























φT
1

φT
2

· · · · · ·
φT
n

−X1 I
−X2 I

· · · · · ·
Xn−1 I

























x−
[

y

0

]

, (51)

where V = σ2I, R = σ2diag{R1, R2, · · · , Rn−1}, Ri = R(ti+1, ti). Here the
conditioning of R is a potential source of problems.
Interaction between the choices of φ, b turns out to determine the smooth-

ness properties of the estimated state variable x(t|n) and thus provides useful
information on how to choose them. Differentiating the interpolation smoother
gives

dx(t|n)
dt

=Mx(t|n) + bbTX(ti+1, t)
Tv, (52)

v = S−1
i+1|i(xi+1|n − xi+1|i).

It follows that if the deterministic equation has smooth solutions then the
state can fail to be smooth only at the points ti. The interesting term in
(52) is that involving bbTX(ti+1, t)

T . The calculations need the derivatives
of X(ti, t):

djX(ti, t)

dtj
= X(ti, t)Pj(M), (53)

P0 = I, Pj =
dPj−1

dt
−MPj−1, j = 1, 2, · · · .

Smoothness of djx(t|n)
dtj at ti requires [13]

φTPj−1(M)b = 0, j = 1, 2, · · · . (54)

Limits to smoothness follow necessarily if the Pj−1(M)
Tφ are linearly inde-

pendent for j < k. For example, the standard smoothing spline results follow
by setting
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φ = e1, b = ek,

M =













0 1
0 1

· · · · · ·
0 1

−mk −mk−1 · · · · · · −m1













The smoothness results have implications for the conditioning of R(ti+1, ti)
and hence for possible difficulties in methods in which R(ti+1, ti) appears
explicitly. If δ is small then Taylor expansion gives

R(t+ δ, t) =

∫ t+δ

t

∑

i,j

(s− (t+ δ))i+j

i!j!
Pi(M)bb

TPj(M)
T ds (55)

Here the Rayleigh quotient gives eigenvalue information as δ → 0.
1 Largest eigenvalue of R(ti+1, ti):

πk = λδbTb+O(δ2).

The corresponding eigenvector → b.
2 Smallest eigenvalue of R(ti+1, ti): If the orthogonality conditions

bTPj−1(M)
Tφ = 0, j = 1, 2, · · · , k − 1,

are satisfied then the eigenvector associated with the smallest eigenvalue
→ φ. The corresponding Rayleigh quotient is

π1 =
λ

((k − 1)!)2
(bTPk−1(M)

Tφ)2

φTφ

δ2k−1

2k − 1 +O(δ2k).

This is an upper bound for the smallest eigenvalue.

Two main approaches have been used for computing parameter estimates
– generalised cross validation (GCV) [15],and generalised maximum likelihood
(GML) [10],[11].The latter involves a “likelihood” approach. It takes its start-
ing point from the observation that the innovations ζi = yi−φTxi|i−1 are inde-

pendent, normally distributed with variance σ2Vi where Vi = (1+φTSi|i−1φ).
The idea is to minimize

∑

i

′
{

log σ2 + logVi +
ζ2
i

σ2Vi

}

.

Minimizing with respect to σ2 gives (here N ≤ n and the summation limits
depend on the form of the initial conditions):

σ̂2 =
1

N

∑

i

′ ζ2
i

Vi
.
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Substituting back gives the concentrated likelihood

GML =
∑

i

′
logVi +N log

(

∑

i

′ ζ2
i

Vi

)

.

The alternative uses generalised cross validation. The ojective function is

GCV =

∑n
i=1

(

yi − φTxi|n

)2

/n

{trace{I − T}/n}2
,

were T is the influence matrix mapping observations yi into the estimated
signal φTxi|n. Advantages are claimed for its use in estimating λ. Problem
is in finding an implementation that can be used for parameter estimation
which requires less than O(n2) cost. In contrast, GML is relatively easy to
calculate with O(n) cost.
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