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Abstract. We describe a method for recursively calculating Gromov–Witten
invariants of all blowups of the projective plane. This recursive formula is

different from the recursive formulas due to Göttsche and Pandharipande in

the zero genus case, and Caporaso and Harris in the case of no blowups. We
use tropical curves and a recursive computation of Gromov–Witten invariants

relative a normal crossing divisor.

This paper computes Gromov–Witten invariants of blowups of the projective
plan from recursively computable relative Gromov–Witten invariants. Recursions
calculating some such Gromov–Witten invariants are already known. Göttsche and
Pandharipande give a recursive formula for zero-genus Gromov–Witten invariants
of arbitary blowups of the plane in [6]. Caporaso and Harris in [5] show that the
Gromov–Witten invariants of CP 2 relative to a line may be calculated recursively,
giving a method for calculating Gromov–Witten invariants of CP 2 of any genus.
This is extended by Vakil in [20] to a recursive formula for Gromov–Witten in-
variants of CP 2 blown up at a small number of points, and further extended by
Shoval and Shustin, then Brugallè in [19, 3] to CP 2 blown up at 7 and 8 points
respectively. Our recursion gives a formula for (arbitary-genus) Gromov–Witten
invariants1 that is uniform in the number of blowups.

Behind our recursion are exploded manifolds, [12], and the tropical gluing for-
mula from [18]. This paper should be readable to someone not familiar with ex-
ploded manifolds, however we lose some precision of language by forgoing any seri-
ous use of exploded manifolds.

In section 1, we explain what relative invariants we use, and explain the recursion
that these invariants satisfy. Section 2 explains why this recursion follows from a
simplified tropical gluing formula, Theorem 2.1. This simplified gluing formula is
applied in Section 3 to reconstruct our absolute Gromov-Witten invariants from
our relative invariants and some further relative invariants of CP 2 blown up at one
point, computed in section 4.

I have written a Mathematica program that computes these relative Gromov–
Witten invariants, and compared the results to known Gromov–Witten invariants
of CP 2, and the results of [6, 3, 4], however further work is required to get these
invariants in a closed form. For example, beyond checking up to degree 12, I
have been unable to reprove the beautiful formulas of Bryan and Leung [4] which
count curves of genus g passing through g points in CP 2 blown up at 9 points.
This formula also can be proved using topological recursion for certain descendant
invariants and the symplectic sum formula for Gromov–Witten invariants as in [9],
however the consequences in our model are less than obvious. The Mathematica

This work was supported by ARC grant DP1093094.
1We only count rigid curves with no constraints — the counts of curves constrained to pass

through a collection of points may be recovered by blowing up these points, and counting rigid
curves that intersect the new exceptional spheres once.
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program and a link to a talk with lots of pictures is available on my website:
http://maths-people.anu.edu.au/∼parkerb/publications.html.

1. The relative Gromov–Witten invariants

Consider the following sequence of blowups of CP 2. Choose a line N0 in CP 2,
then blow up CP 2 at a point on N0, and label the exceptional sphere N1. Then
blowup at a point on N1, and label the new exceptional sphere N2. Let M be
the complex manifold obtained by making n blowups in this fashion, and let N
be the normal crossing divisor consisting of the union of (the strict transforms of)
N0, . . . ,Nn. If toric blowups are used, the following is a moment map picture of
(M,N) and the corresponding toric fan.

N0

N1

N2

N3

N4

N0

N1

N2N3N4

Integral vectors in the non-negative span of (1,1) and (1,1 − n) correspond to
contact data of curves in M with N as follows: A vector (d, d − id) corresponds to
a point where a curve is required to have contact order d with Ni, and a vector,
a(1,1− i)+ b(1,1− i−1) where a and b are positive integers, corresponds to a point
sent to Ni ∩Ni+1 , where the curve is required to have contact order a to Ni and b
to Ni+1.

Let Γ be a finite set of integral vectors in the non-negative span of (1,1) and
(1,−n + 1). For reasons that will become apparent latter, we will identify such
a Γ with a ‘connected rigid tropical curve in the span of (1,1) and (1,−n + 1)’.
For example, the following is a picture of the rigid tropical curve corresponding to
Γ = {(1,0), (1,−2)}.

http://maths-people.anu.edu.au/~parkerb/publications.html
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(1, 0)

(1,�2)

The homology class represented by a holomorphic curve in M is determined by
its contact data Γ — for example the degree (or intersection with a line not passing
through any of the blown up points) is ∑(a,b)∈Γ a. For the virtual dimension of the
space of curves of genus g and contact data Γ to be 0, we need that

(1) g = 1 − ∑
(a,b)∈Γ

(a + b + 1) .

Let nΓ be the virtual number of rigid curves in M with contact data Γ. In the case
that a vector appears more than once in Γ, it is important to clarify that nΓ counts
curves with points labeled by the vectors in Γ. As a consequence, we sometimes
must divide the corresponding count by the automorphisms of Γ. These numbers
nΓ are relative Gromov–Witten invariants defined either using exploded manifolds
[12, 14, 17], log Gromov–Witten theory [1, 7], or Ionel’s method for defining GW
invariants relative normal crossing divisors [8]. These three approaches give the
same invariants, as discussed in [13] and [15].

Arrange these relative Gromov–Witten invariants of (M,N) into a generating
function

Fn ∶=∑
Γ

nΓ

∣Aut Γ∣
Γ

where the sum is over all connected rigid tropical curves Γ in the cone spanned by
(1,1) and (1,−n + 1).

Absolute Gromov–Witten invariants of CP 2 blown up at n points may be recov-
ered from Fn as follows. Consider the generating function

Gn ∶=∑ng,βx
g−1qβ

where ng,β is the (virtual) number of rigid genus g curves in CP 2 blown up at n
points and representing the homology class β. To obtain Gn from Fn, we shall use
a R-linear map Ψ defined as follows. If Γ = {(1,1 −m1), . . . , (1,1 −mk)}, then

(2) Ψ(Γ) ∶=
k

∏
i=1

⎛

⎝
xmi−3qH ∑

j1<⋯<jmi

q−∑
mi
l=1

Ejl
⎞

⎠

and Ψ(Γ) = 0 if Γ is not in the above form. In the above, H indicates the homology
class represented by (the pullback of) a line, and Ei is the homology class of the
ith exceptional sphere. Note that the sum on the right is the mi-th elementary
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symmetric polynomial σmi in the variables {q−E1 , . . . , q−En}, so the above formula
may be written more succinctly as

Ψ({(1,1 −m1), . . . , (1,1 −mk)}) =
k

∏
i=1

xmi−3qHσmi .

Then

Gn = Ψ(Fn) +
n

∑
i=1

x−1qEi .

By allowing the number of blowups to approach infinity, we may write a formula
that is uniform in the number of blowups. Let

F =∑
Γ

nΓ

∣Aut Γ∣
Γ

now be a sum over all finite sets Γ of vectors in the form (a, b) where a > 0 and
b ≤ a, and nΓ is the corresponding relative Gromov–Witten invariant of (M,N)

where the number n of blowups used2 is enough that the vectors in Γ are in the
non-negative span of (1,1) and (1,1 − n). Then

(3) G = Ψ(F ) +∑
i

qEi

is a generating function representing the rigid curves in all possible blowups of CP 2.

We shall now describe how to recursively compute F . Our recursion is simplified
by using eF , the generating function of possibly disconnected curves. Use the con-
vention that (n1Γ1)(n2Γ2) ∶= (n1n2)Γ1∐Γ2. Then write the generating function
for possibly disconnected curves as

eF =∑
Γ

nΓ

Aut Γ
Γ

where the sum is now over possibly disconnected rigid tropical curves Γ, and when
{Γi} is some collection3 of connected rigid tropical curves, n∐Γi = ∏i nΓi . An
alternate description of a possibly disconnected rigid tropical curve is as a finite set
of integral vectors (a, b) so that a > 0 and b ≤ a along with an equivalence relation
— where we say some of these vectors are connected to each other. Again, we can
read off the degree and Euler characteristic of the curves that nΓ counts as before:

(4) Degree: deg Γ ∶= ∑
(a,b)∈Γ

a

Euler Characteristic: χ(Γ) ∶= ∑
(a,b)∈Γ

(1 + 2a + 2b)

The Euler characteristic above is the Euler characteristic of the surface with bound-
ary obtained by taking the real oriented blowup of a curve at all contact points. So if
a connected curve has genus g and k contact points, we say its Euler Characteristic
is 2 − 2g − k.

The generating function eF is completely determined by the relations

eF←Ðy y = yÐ→y eF

where y = (y1, y2) is any integral vector with y1 ≤ −1 and y2 ≥ y1, and the R-linear
operators ←Ðy y and yÐ→y have a combinatorial definition, described shortly. In fact,

(5) eF←Ðy y = ∑
Γ∋y

nΓ

Aut Γ
Γ = yÐ→y eF

2So long as n is large enough for nΓ to be defined, the value of nΓ does not depend on n.
3We include the case Γ = ∅. There is a unique empty curve, so n∅ = 1.
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where now the sum is over possibly disconnected rigid tropical curves4 Γ with
a special edge labeled by y and called ‘incoming’, and nΓ is a Gromov–Witten
invariant corresponding to such a Γ. The target of the evaluation map at a point
with contact data −y is a 2-dimensional space. Use the convention that an incoming
vector such as y in Γ corresponds to specifying that a point must have contact data
−y, and the evaluation map at this point must be constrained to a specified point.5

With this convention, nΓ is the relative Gromov–Witten invariant6 counting curves
with data Γ. We shall see that eF←Ðy y and yÐ→y eF correspond to calculating nΓ by
specifying this constraint to be in two different positions.

An important ingredient for understanding the action of ←Ðy y is the action of ←Ðα
on a single vector v, given by

v←Ðα =←Ðα v +max{v ∧ α,0}
←ÐÐÐÐ
(v + α)

where we can think of the rightmost term as ←Ðα interacting with v, and the other
term as α not interacting with v, as pictured below.

v

 �↵

(v ^ ↵)
 ����
(v + ↵)

 �↵
v

= +

We use the above interactions to define an action of ←Ðy y as follows:

● Choose an order on the vectors {vi} making up Γ so that vi is to the right
of vj if vj ∧ vi < 0, where (a, b) ∧ (c, d) ∶= ad − bc.

● Set
Γ←Ðy y ∶= v1⋯vn

←Ðy y

where the expression on the right indicates the ordered set (v1, . . . , vn,
←Ðy , y)

along with the equivalence relation connecting ←Ðy only to y, and otherwise
connecting the vectors vi as in Γ.

● Move the vector decorated by the arrow to the left using the linear relations
generated by

v1⋯vn
←Ðy y = v1⋯vn−1

←Ðy vny +max{vn ∧ y,0}v1⋯vn−1

←ÐÐÐÐ
(vn + y)y

where the first expression on the right has the same equivalence relation
as above, and the second expression has the induced equivalence relation

connecting everything formerly connected to vn or ←Ðy to
←ÐÐÐÐ
(vn + y). Similarly,

v1⋯vk
←Ðαw⋯ = v1⋯vk−1

←Ðα vkw⋯+max{vk ∧ α,0}v1⋯vk−1

←ÐÐÐÐ
(vk + α)vkw⋯

where the the second expression on the right uses the induced equivalence

relation connecting everything formerly connected to vk or ←Ðα to
←ÐÐÐÐ
(vk + α).

4Equivalently, these Γ consist of a finite set containing y and integral vectors (a, b) with a > 0
and b ≤ a, along with an equivalence relation saying which vectors are connected.

5In the case that y is k times a primitive vector, the target of the evaluation map E is actually
an exploded orbifold which is the quotient of an exploded manifold by a trivial Zk action. In this

case, constraining the moduli space to the specified point means taking the fiber product of the

moduli space with a map of a point into E. This multiplies nΓ by k when compared with the
other reasonable interpretation.

6We use [14, 17] to define our relative Gromov-Witten invariants — constraining contact data
to a point corresponds to integrating the pullback of the Poincare dual to that point over the

virtual fundamental class.
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● define

←ÐÐÐ
(a, b)w⋯ ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{(a, b),w, . . .} if a > 0 and b ≤ a

{w, . . .} if (a, b) = (−1,0)

0 otherwise

A graphical illustration of two cases of this process is below: on the left,
we see ←Ðy interacting with two edges of Γ, and in the second picture, we see
←Ðy interacting with one edge to produce

←ÐÐÐÐ
(−1,0), which is then discarded.

=
=

Similarly define yÐ→y Γ as follows:

●

yÐ→y Γ ∶= yÐ→y v1⋯vn

●

⋯wÐ→α vkvk+1⋯ = ⋯wvk
Ð→α vk+1⋯+max{0, α ∧ vk}⋯w

ÐÐÐÐ→
(α + vk)vk+1⋯

where the equivalence relation of the first expression on the right is the
same as that from ⋯wÐ→α vkvk+1⋯ , and the equivalence relation of the sec-
ond expression on the right is obtained by connecting everything formerly

connected to Ð→α or vk to
ÐÐÐÐ→
(α + vk).

=
v

�!↵

(↵ ^ v)
����!
(↵ + v)

v

�!↵
+

●

⋯w
ÐÐÐ→
(a, b) ∶=

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{. . . ,w, (a, b)} if a > 0 and b ≤ a

{. . . ,w} if (a, b) = (0,−1)

0 otherwise

= =
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We shall argue below that these relations, eF←Ðy y = yÐ→y eF , recursively determine
eF , but let us first consider some examples. To begin with, all we know is that
eF = 1∅ + ⋯ , nevertheless, we can use this information to compute n(−1,0) using

eF
←ÐÐÐÐ
(−1,0)(−1,0). The only contributing term is n∅

←ÐÐÐÐ
(−1,0)(−1,0) — as pictured

below on the left — so n(−1,0) = 1. Computing using (−1,0)
ÐÐÐÐ→
(−1,0)eF , the only

contributing term is

n(1,−1)(−1,0)
ÐÐÐÐ→
(−1,0)(1,−1) = n(1,−1){(−1,0)}

as pictured below on the right, so n(1,−1) = n(−1,0) = 1, and eF = 1∅+1{(1,−1)}+. . . .

=

In fact, n(1,−1) is the only nonzero degree 1 invariant involved in eF . To see

that n(1,−1−g) = 0 for all g > 0, note that computing n(−1,g) using (−1, g)
ÐÐÐÐ→
(−1, g)eF

gives n(−1,g) = n(1,−1−g) — as pictured below on the right — but computing using

eF
←ÐÐÐÐ
(−1, g)(−1, g) gives n(−1,g) = 0, because (−1, g) will never be able to be turned

into (−1,0) by interacting with vectors (a, b) with a > 0, as indicated in the picture
below on the left.

=

?

Similarly, n(−2,1) = 0 because (−2,1) can’t be turned into (−1,0) by interacting
with vectors (a, b) so that a > 0 and (a, b)∧(−2,1) > 0. Calculating n(−2,1) the other

way gives n−2,1 = (n(1,−2))
2/2+2n(2,−2), so n(2,−2) = −

1
4
. Pictorially, this calculation

is as follows:
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=

1

2
(n(1,�1))

2

+

2n(2,�2)

0

In fact, the only nonzero terms in eF with a single vector are n(k,−k) =
(−1)k+1
k2

.

This may be verified by calculating n(−k,b) = 0 for all b > k. A nice implication7 of
this is that if (a, b) and (a+k, b−k) are appropriate incoming and outgoing vectors
respectively, then

n{(a,b),(a+k,b−k)} = (
∣(a, b) ∧ (k,−k)∣

k
) .

In particular, n{(−1,3),(1,1)} = 1, so we can calculate n{(1,−4),(1,1)} = 1. Pictorially,
the computations involved are as follows:

=

4

2
(n(1,�1))

2

+

4n(2,�2)

1 =

n{(1,�4),(1,1)}

Let us now argue that equation (5) determines eF recursively. Replace an edge
(a, b) from Γ with an incoming edge (−a,−1 − b) to obtain Γ′. Then the coefficient

of Γ′ in (−a,−1−b)
ÐÐÐÐÐÐÐ→
(−a,−1 − b)eF −eF

←ÐÐÐÐÐÐÐ
(−a,−1 − b)(−a,−1−b) is a×nΓ/ ∣Aut Γ′∣ — ob-

tained by8
ÐÐÐÐÐÐÐ→
(−a,−1 − b) interacting with (a, b) from Γ producing a

ÐÐÐÐ→
(0,−1), which does

not interact with any more edges — plus terms involving nΓ′′ where Γ′′ has strictly

greater Euler characteristic and not larger degree — obtained from
ÐÐÐÐÐÐÐ→
(−a,−1 − b) in-

teracting with multiple edges of Γ′′ to produce
ÐÐÐÐ→
(0,−1), or

ÐÐÐÐÐÐÐ→
(−a,−1 − b) or

←ÐÐÐÐÐÐÐ
(−a,−1 − b)

interacting with edges of Γ′′ to produce either
ÐÐÐÐ→
(−1,0) or one of the other edges of Γ′.

As the number of Γ with degree bounded above and Euler characteristic bounded
below is finite, this equation determines eF entirely.

2. How recursive calculation of the relative invariants follows
from a gluing formula.

This section explains how equation (5) follows from a gluing formula. Applying
the explosion functor from [12] to (M,N) gives an exploded manifold M′. One way
of defining the relative Gromov–Witten invariants of (M,N) is as the Gromov–
Witten invariants of M′.

Each exploded manifold has a tropical part. The tropical part M′ of M′ is the
nonnegative span of (1,1) and (1,1 − n) subdivided by the rays (1,1 − k). For
us, this subdivison is extraneous information which we can ignore, because M′ is
a refinement of an exploded manifold M with tropical part the nonnegative span

7See the derivation of equations (6) and (7) later in the paper.
8If there are k edges (a, b) in Γ, the k-fold choice of which of these edges to interact with is

compensated for by k = ∣Aut Γ∣ / ∣Aut Γ′∣.
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of (1,1) and (1,1 − n), and Gromov–Witten invariants do not change under the
operation of refinement.

A refinement is a kind of blowup of an exploded manifold. In this case, M is the
explosion of (M0,N

′), where M0 is a toric space with the toric fan defined by the
rays (0,−1), (−1,0), (1,1), (1,1−n), and N ′ is the divisor corresponding to (1,1)
and (1,−n). (M,N) is a kind of toric blowup of (M0,N

′). In [11], it is proved that
the virtual moduli space of curves in a refinement M′ of an exploded manifold M is
a refinement of the virtual moduli space of curves in M. The upshot of this is that if
we are counting the virtual number of curves in M′ with some given constraints, the
same count is achieved in M. Similar invariance of log Gromov–Witten invariants
under such blowups is proved in [2].

The tropical part of each holomorphic curve in M is a tropical curve in M. For
us, such a tropical curve means a map of a complete metric graph into M with
integral derivative on its edges. In the interior of M, such tropical curves also obey
the balancing condition familiar to tropical geometers: the sum of the derivatives
of all edges leaving a vertex is 0.

For understanding equation (5), we regard nΓ as a Gromov–Witten invariant of
M. The curves in M relevant to nΓ have tropical part continuously deformable to
Γ. In particular, the ends — or semi-infinite edges — of these tropical curves have
derivatives equal to the vectors in Γ, and for the nΓ from equation (5), there is a
distinguished end with an extra constraint on its position, and with ‘incoming’ de-
rivative equal to y. As we shall see, the computation of nΓ using eF←Ðy y corresponds
to constraining this incoming edge above the ray −y, and using yÐ→y eF corresponds
to constraining this incoming edge below the ray −y.

After choosing where to constrain this incoming edge, the Gromov–Witten in-
variant nΓ decomposes into contributions from tropical curves which are rigid when
the incoming edge is constrained. If the incoming edge is constrained to lie on the
ray −y, then the only such rigid curve is Γ itself. Otherwise, there are many pos-
sible curves γ, each telling how to combine ‘relative’ Gromov–Witten invariants
corresponding to vertices to obtain a contribution to nΓ.

For a vertex v of γ, the space that is used to define these relative Gromov–Witten
invariants depends on the location of v in M. In particular:

(A) If v is sent to the interior of M, we use the Gromov–Witten invariants of the
exploded manifold T2, or equivalently we may use the relative Gromov–Witten
invariants of any compact two-complex-dimensional toric manifold relative to
its toric boundary divisors.

The tropical curve γv in R2 obtained by extending the edges of γ adjacent
to v to be infinite defines contact data for such a space. The contact data
γv determines the homology class represented by the corresponding curves,
and for topological reasons, the sum of the derivatives of edges of γv leaving
v is 0. The virtual (complex) dimension of the space of genus g curves with
(unconstrained) contact data γv is the valence of v plus g − 1.

From this, we might hope to rigidify a genus 1 curve by constraining all edges
of γv, but actually, generic constraints preclude any curves. This may be seen
tropically: every balanced tropical curve in R2 has its infinite edges obeying
a one-dimensional constraint caused by the balancing condition. Therefore,
there is no tropical curve with infinite edges in the directions specified by γv
constrained generically.

With genus 1 curves now excluded, the only case in which we can make
such curves rigid by constraints on their edges is the case of genus 0, where
the space of curves with contact data γv has virtual (complex) dimension the
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valence of v minus 1. Such curves can be made rigid by constraining all but
one edge.

(B) If v is sent to a codimension 1 boundary of M, we use the Gromov–Witten
invariants of T times the explosion of (CP 1,0), or equivalently, we may use
the relative Gromov–Witten invariants of (CP 1)2 relative to 3 of its 4 toric
boundary divisors.

In this case, the tropical curve γv, obtained by infinitely extending the edges
attached to v, translates into contact data for this model in two different ways
depending if v is on the top or bottom boundary of M: simple contact with the
middle divisor corresponds to the vector (1,0) if v is on the upper boundary
of M, and (0,1) if v is on the lower boundary. Simple contact with one of
the other two divisors corresponds to the vectors ±(1,1) if v is on the top
boundary, and ±(1,1 − n) if v is on the bottom boundary.

Again, the homology class represented by a curve in such a model is deter-
mined by its contact data, and for topological reasons, a balancing condition is
obeyed at such vertices: the sum of the derivatives of edges leaving v is equal
to a nonnegative multiple of (1,0) if v is at the top boundary, or a nonnegative
multiple of (0,1) if v is at the bottom boundary.

The virtual dimension of genus g curves with contact data γv is the valence
of v plus g − 1 plus d, where the sum of the derivatives of edges of γv leaving
v is (0, d) or (d,0) (depending on which boundary v is on).

The only interesting case when we can make such curves rigid by constraints
on their edges is when the genus is 0 and the sum of the derivatives of edges
of γv is (1,0) or (0,1) respectively. Then such curves may be rigidified by
constraining all edges of γv.

(C) At vertices sent to the corner of M, we use the Gromov–Witten invariants
of M, or alternately the relative Gromov–Witten invariants of the manifold
with normal crossing divisor (M,N) described in the previous section. Our
main interest is the moduli spaces of curves in M that are rigid without being
constrained. These rigid moduli spaces have degree and genus determined by
the contact data γv as described in equations (1) and (4), however there are
also non-rigid moduli spaces with the same contact data but lower genus.

We shall argue below that the only tropical curves γ contributing to nΓ satisfy
the following conditions:

If we remove from γ all vertices sent to the corner of M and all edges attached to
such vertices, we obtain a connected linear graph. This connected linear graph has
the constrained edge at one end, bivalent vertices sent to the interior of M in the
middle, and either a univalent vertex sent to a boundary of M or another infinite
edge at the other end. In addition, the following conditions hold.

(A) Every vertex of γ sent to the interior of M is at least trivalent, and as mentioned
above, has exactly two edges not attached to a vertex sent to the corner of M.
The tropical balancing condition is satisfied at these vertices.

(B) As mentioned above, there is at most one vertex sent to the one-dimensional
boundaries of M, and such a vertex must have exactly one edge not attached
to a vertex sent to the corner of M. If the vertex is sent to the upper boundary,
the sum of the derivatives of edges entering this vertex is (−1,0). If the vertex
is sent to the lower boundary, the sum of the derivatives of edges entering this
vertex is (0,−1). If the constrained edge of γ is above the ray −y, this vertex
must go to the top boundary of M, and if the constrained edge is below the
ray −y, this vertex must go to the bottom boundary of M.
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(C) At vertices v of γ sent to the corner of M, the configuration γv of edges leaving
such a vertex is one of the configurations with nonzero coefficient nγv in F .
In this case, the relative Gromov–Witten invariants used counts curves with
genus specified by γv using equation (1).

We shall now argue that the tropical curves described above are the only con-
tributors to nΓ. A contributing tropical curve γ must be rigid after restricting the
constrained edge.9 As scaling M acts on tropical curves, and can be thought of
as acting separately on different components of γ minus the inverse image of the
corner of M, it follows that γ minus the inverse image of the corner of M consists
of some number of rays emanating from the corner of M, and one connected ‘inter-
esting’ component that includes the constrained edge. The need for γ to be rigid
and the balancing condition at vertices in the interior of M implies that vertices
in the interior of M must be at least trivalent, and have at least two edges not
attached to the corner of M, similarly, we may discount vertices on a boundary of
M with all edges constrained to the boundary.

With the above constraints on the tropical curve γ, the only way to get the virtual
dimension of curves with tropical part γ to be 0 is for γ to satisfy the conditions
above. In particular, the (complex) virtual dimension is equal to the sum of the
virtual dimensions of the moduli spaces corresponding to vertices minus the number
of internal edges, minus the number of constrained edges. To satisfy the balancing
condition, each vertex in the interior must have at least 2 edges not attached to the
corner of M. The only way to get virtual dimension 0 is for the virtual dimension
corresponding to the corner vertices to be 0, and for the interesting component
of γ minus all edges attached to the corner of M to be a linear graph, with one
end the constrained edge, and the other end either an unconstrained infinite edge,
or a vertex sent to the boundary of M. Such a configuration corresponds to an
unconstrained moduli space of virtual dimension 1. The balancing condition implies
that the constrained edge and the other end of this linear graph must both be on
the same side of the ray −y.

This completes the explanation of why the only tropical curves that contribute
to nΓ satisfy the above conditions.

As proved in [18], the contribution of each tropical curve γ to nΓ/ ∣Aut Γ∣ is
determined by taking a fiber product of relative Gromov–Witten invariants cor-
responding to vertices of γ over spaces corresponding to internal edges of γ, and
dividing the result by automorphisms of γ. For this formula, the relative Gromov–
Witten invariants for a vertex v have contact data labeled by γv, the tropical curve
obtained by extending all edges leaving v to be infinite. To describe the gluing for-
mula precisely, all moduli spaces and the spaces over which we take fiber products
must be described in terms of exploded manifolds. For fiber products of exploded
manifolds to be reflected correctly using cohomology, it is necessary to use refined
cohomology, defined in [10], to define the correct relative Gromov–Witten invari-
ants. To avoid refined cohomology, we shall use the following simplified gluing
formula that only applies in rather special cases:

Theorem 2.1 (Simplified gluing formula). Suppose that a tropical curve γ has no
edges with both ends attached to a single vertex, and that the following algorithm
terminates with all edges of γ labeled rigid:

● Label any constrained infinite edge of γ ‘rigid’, and orient it to be incoming.

9This is because the virtual fundamental class is empty wherever the real dimension of the
moduli space of tropical curves exceeds the complex virtual dimension of the moduli space of

curves.
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● Suppose that a vertex v satisfies the following: the expected dimension of
curves with contact data γv with rigid edges incoming (or constrained), and
all other edges outgoing (or unconstrained) is 0. Then label the remaining
edges leaving v as rigid, and orient them away from v. Then repeat this
step until all edges are labeled rigid.

If the above algorithm terminates with all edges of γ labeled rigid, the contribution
of γ to Gromov–Witten invariants (in this case nΓ/ ∣Aut Γ∣ ) is

1

∣Autγ∣
∏
v

nγv

where nγv is the relative Gromov–Witten invariant that counts curves with contact
data specified by γv with edges oriented (hence constrained or unconstrained) as
specified by the above algorithm.

This theorem follows from the gluing formula proved in [18]: our conditions
ensure that calculation of this contribution of γ using equation (1) of [18] can be
performed using only top-dimensional forms, which simplifies calculations because
top-dimensional refined cohomology is 1-dimensional, and equal to top-dimensional
usual cohomology.

The above simplified gluing formula works for the curves γ contributing to nΓ

— all edges attached to the corner of M are oriented to leave the corner, and all
other edges are oriented away from the constrained edge.

(A) If v is a vertex sent to the interior of M, nγv indicates the corresponding
zero-genus Gromov–Witten of the exploded manifold T2, or alternately the
zero-genus relative Gromov–Witten invariant of any compact two-complex-
dimensional toric manifold relative to its toric boundary strata, with contact
data given by γv. In the case that v is trivalent and we choose the standard
complex structure, the (virtual and actual) moduli space is acted on freely
and transitively10 by the (C∗)2–action on the toric manifold, implying that
nγv = ∣α ∧ β∣ where α and β are the two incoming edges.

In the case that γv has several edges coming from the corner of M (these
edges must therefore be parallel), we may compute the relative Gromov–Witten
invariant nγv by constraining these edges to be at different locations tropically
so that there is only one possible tropical curve that contributes to the count,
and this tropical curve is trivalent. Then using our simplified gluing formula
to glue the trivalent invariants gives

nγv =∏
i

∣α ∧ βi∣

where the βi are the derivatives of γv on the edges from the corner of M and
α is the derivative of γv on one of the other two edges of γv.

(B) If v is a vertex sent to a boundary of M, nγv indicates the relative Gromov–
Witten invariant of T times the explosion of (CP 1,0), or alternatively CP 1 ×

CP 1 relative to 3 of its 4 toric boundary divisors, where all edges of nγv are
labelled incoming (or constrained), and γv is interpreted as contact data so
that (constrained) contact with a point on the middle divisor corresponds to
(−1,0) or (0,−1) if v is respectively on the top or bottom boundary of M. In
this case, the above formula for nγv also holds so long as the sum of vectors
in γv adds up to (−1,0) or (0,−1) respectively. The case that v is univalent is

10Of course, (C∗)2 only acts transitively on the noncompact moduli space of curves with no
components contained in toric boundary strata — in the case of the exploded manifold T2, this

(C∗)2–action is replaced by a T2–action which is free and transitive on the (already compact)
moduli space.



TROPICAL ENUMERATION OF CURVES IN BLOWUPS OF CP 2 13

readily calculated directly to give a unique curve. In cases with more incoming
edges, we may constrain these edges so that the only contributing tropical curve
has one univalent vertex and otherwise trivalent vertices for which the above
formula follows from our simplified gluing formula.

(C) If v is sent to the corner of M, nγv is the relative Gromov–Witten invariant
we described in the definition of F .

Let γ0 indicate the disjoint union of γv for all vertices v of γ sent to the corner
of M. If γ has its constrained edge above the ray −y, the coefficient of Γ in
nγ0/ ∣Autγ0∣γ0

←Ðy y is equal to the above contribution of γ to nΓ/ ∣Aut Γ∣, (and this
coefficient is 0 if the constrained edge is below the ray −y). This observation is
easy to prove after noting that ∣Autγ0∣ / ∣Autγ∣ is equal to the number of ways of
choosing which edges from γ0 should interact with the vector decorated with an
arrow in order to be left with Γ. Similarly, if γ has its constrained edge below the
ray −y, the above contribution is the coefficient of Γ in nγ0/ ∣Autγ0∣ y

Ð→y γ0. Equation
(5) follows, with the sum over all tropical curves with constrained edge below −y
replaced by terms in yÐ→y eF , and the sum over all tropical curves with constrained
edge above −y replaced by terms in eF←Ðy y.

3. Reconstructing the absolute Gromov–Witten invariants from the
relative invariants

To relate our relative Gromov–Witten invariants to the absolute Gromov-Witten
invariants of the n-fold blowup of CP 2, we shall consider a degeneration of this
manifold — we will then use our relative Gromov-Witten invariants as an essential
ingredient in a tropical gluing formula reconstructing the Gromov–Witten invari-
ants of our n-fold blowup. As a warmup, we will first describe a corresponding
degeneration of CP 2.

Consider the moment map of CP 2 with the standard torus action. We can
subdivide this moment map as below using rays in the directions (−1,1), (1,0),
and (k,−1) for all integers k ∈ [−n + 1,1], while ensuring that all the downward
pointing rays intersect the lower edge of the moment map.

There exists a complex toric degeneration of CP 2 with degenerate fiber consisting
of a union of toric manifolds with moment maps the pieces of the subdivided triangle
above, glued along boundary divisors as above. The particular toric degeneration



14 BRETT PARKER

chosen shall not be important for us, and it is not important that this degeneration
is toric, only that it is log smooth.

One choice of degeneration is constructed as follows: Consider a dual polytope P
to the above set of rays — in other words, consider a convex polygon P with edges
orthogonal to the above rays. Choose P to have integral vertices. Then consider
the toric partial compactification X of (C∗)3 given by the fan consisting of

● the cone over P , when P is placed in the plane with first coordinate 1,
● the cone formed by (0,−1,0), (0,1,1) and the top right vertex of P ,
● the cone formed (0,1,1), (0,0,−1) and the other righthand vertex of P ,
● the cone formed by (0,0,−1), (0,−1,0) and top left vertex of P ,
● the cone formed by the righthand face of P and (0,1,1),
● the cone formed by the top left face of P and (0,−1,0),
● and the cones formed by (0,0,−1) and all the lower faces of P .

Projection of X to the first coordinate gives the required toric degeneration.
This degeneration π ∶ X Ð→ C is log smooth when C is given the log structure

from the divisor 0, and X is given the log structure from the divisor π−1(0). This
divisor is the union of the toric divisors of X corresponding to all rays in the fan of X
apart from (0,−1,0), (0,1,1), (0,0,−1). To verify that X with this log structure is
log smooth, note that the cones formed using two of the directions (0,−1,0), (0,1,1)
and (0,0,−1) may be transformed (using an invertible Z-linear transformation) to
standard quadrants, and that each time a cone is formed using a face of P and
one of these directions, the configuration formed by the linear plane containing the
face of P and the extra direction may be transformed to the standard configuration
consisting of the plane spanned by the first two coordinates and (0,0,1).

We may blow up X along n complex submanifolds intersecting the singular
divisor transversely at n points distributed within the n triangles in the above
subdivided moment map picture. By restricting the family π to some neighborhood
D of 0 ∈ C, we may assume that these n complex submanifolds are transverse to
all fibers of π, so the resulting blown-up family π′ ∶ X ′ Ð→ D is also a log smooth
family.

As explained in [12] or [13], we may apply the explosion functor to π′ ∶X ′ Ð→D
to obtain a smooth family of exploded manifolds.

Explπ′ ∶ ExplX ′
Ð→ ExplD

Each exploded manifold has a tropical part consisting of a union of polytopes.
The tropical part of ExplX ′ is the cone over P , the tropical part of ExplD is
the half line, and the tropical part of Explπ′ is the projection defining our toric
degeneration. The definition of a smooth family in [12] contains a condition of
being surjective on integral vectors — this condition is satisfied due to our choice
of the corners of P having integer coordinates. It is easy to choose a symplectic
form taming the complex structure of ExplX in the sense of [16]. After a choice of
symplectic representation of our blowup, this gives a symplectic form on ExplX ′

taming the complex structure. As the tropical part of ExplX ′ may be embedded
in a quadrant of R3, the results of [16] imply that Gromov compactness holds in
our family Explπ′, and we may define Gromov–Witten invariants as in [14, 17].

Some fibers of Explπ′ are n-fold blowups of CP 2, another fiber is an exploded
manifold B that has tropical part P . We shall show how to calculate the Gromov–
Witten invariants of B. As the Gromov–Witten invariants of exploded manifolds
do not change in connected families of exploded manifolds, [14, 17], the Gromov–
Witten invariants of B correspond to the Gromov–Witten invariants of CP 2 blown
up at n points.
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As explained in [18], Gromov–Witten invariants of B decompose into a sum
of contributions from rigid tropical curves in the tropical part B of B. Below is
a picture of B, and some tropical curves in B. We shall see that the left and
righthand curves both contribute 1 to the Gromov–Witten count of curves and the
middle picture does not contribute, because it is not rigid — actually this middle
tropical curve deforms to the lefthand tropical curve. Confusingly, when using
the non-generic complex structure on B from the toric model described above,
there are no genuine holomorphic curves with tropical part given by the left and
righthand pictures, but there are holomorphic curves with tropical parts such as
those pictured in the middle that deform to the lefthand picture (and something
similar happens for the righthand picture). When a generic complex structure on
B is used, there are unique holomorphic curves in B with tropical parts the left and
righthand pictures, but there does not exist any holomorphic curve with tropical
part given by the middle picture.

Use H to denote the homology class represented by the pullback of a line to the n-
fold blowup of CP 2, and let Ei be the homology class of the ith exceptional divisor.
As proved in [10], our exploded manifold B has the same DeRham cohomology as
CP 2 blown up at n points, so the same classes make sense in B — we can choose a
representative for H with tropical part the lefthand corner and top boundary of B,
and a representative for each Ei with tropical part the ith corner at the bottom of B.
With these choices, we can measure the homology class represented by curves using
their intersection with our representatives, and talk of the individual contributions
of vertices of tropical curves to the overall homology class. From the left, the first
and second curves are rational curves in the class H − E3 − E5, and the last is a
rational curve representing 2H −E1 −E2 −E3 −E4 −E6.

As proved in [18], the Gromov–Witten contribution of each rigid tropical curve
in B is determined by taking a fiber product of relative Gromov–Witten invariants
corresponding to its vertices. The vertices of our tropical curves now come in the
following types.
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(A) The vertices v in the interior of B use the Gromov–Witten invariants of T2, or
alternately the relative Gromov–Witten invariants of any compact 2-complex-
dimensional toric manifold relative to its toric boundary divisors. We described
these invariants in the previous section.

In particular, the corresponding curves have genus 0, and homology class
determined by the contact data from γv, the tropical curve obtained by extend-
ing all edges attached to v to be infinite. The virtual (complex) dimension of
this moduli space is the valence of v minus 1. We shall only need to know the
Gromov–Witten invariant in the case that γv has one unconstrained (outgoing)
edge, and constrained (incoming) edges with derivatives α, and βi where all
the βi are parallel. In this case,

nγv =∏
i

∣α ∧ βi∣

as described in the last section.
(B) The vertices v sent to the one-dimensional boundaries of B use the Gromov–

Witten invariants of T × Expl(CP 1,0), or alternatively the relative Gromov–
Witten invariants of (CP 1)2 relative 3 of its 4 toric boundary divisors. These
were also described in the previous section, but now, constrained simple contact
with the middle divisor corresponds to (0,−1) for each bottom boundary of B,
(−1,0) for the top boundary of B, and (1,1) for the righthand boundary of B.
As described in the last section, the derivative of all edges entering v adds up
to some multiple k of the respective vector (0,−1), (−1,0), or (1,1), and the
virtual dimension is equal to the valence of v plus k − 1.

As it turns out, the only such relative Gromov–Witten invariant we need
has v on the righthand boundary, and γv one incoming edge with derivative
(1,1). In this case, nγv = 1.

(C) For vertices v sent to the lefthand corner of B, we use curves in the ex-
ploded manifold M described in the previous section, or alternately the relative
Gromov–Witten invariants of the (M,N) described in the first section. The
relevant Gromov–Witten invariants are those encoded by the generating func-
tion Fn.

(D) For vertices sent to either of the two righthand corners of B, we use the relative
Gromov–Witten invariants of some toric manifold relative to two of its toric
boundary divisors. In the picture of the subdivided moment map at the start
of this section, these two toric manifolds are have moment map the two right-
hand cells, and we take invariants relative to the dotted boundary divisors.
Although these two toric manifolds are different, what they have in common
is that the complex dimension of the moduli space curves with unconstrained
contact data γv is at least the valence of v. Our only hope of getting rigid curves
is to count curves with every edge of γv incoming, or constrained. We may
calculate these invariants tropically by constraining the edges of γv generically
so that all contributing tropical curves avoid the corner, so these invariants are
determined by the gluing formula and the invariants from (A) and (B) above.

In particular, we shall use that for these corners, n(1,1) = 1.
(E) For vertices sent to one of the n (difficult to distinguish) bottom corners of B,

we use the relative Gromov–Witten invariants of CP 2 blown up at one point,
relative to two lines, L1, L2. For the kth of these corners, (unconstrained)
contact with L1 corresponds to (−1, n − k) and (unconstrained) contact with
L2 corresponds to (1, k + 1 − n).

In this case, we determine the homology class of the relevant curves using
their intersection with the exceptional sphere and the contact data γv. For
topological reasons, the contact data γv satisfies the balancing condition that
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the sum of all derivatives at edges leaving v is (0, d) for some nonnegative
integer d. The virtual dimension is the valence of v plus the genus, plus
(d − 1) minus the intersection with the exceptional sphere. In fact, d minus
the intersection with the exceptional sphere is the intersection with the strict
transform of a line passing through the blown up point, and must therefore be
nonnegative. Therefore the virtual (complex) dimension is at least the valence
of v minus 1.

In the next section, we show that, apart from the exceptional sphere (which
has tropical part a single point), the rigid curves with unconstrained contact
data have genus 0, contact data (0, d), and intersect the exceptional sphere
d times. We shall also see that the corresponding relative Gromov–Witten

invariants are n(0,d) =
(−1)d+1
d2

. For us, the useful consequence of this shall be
that for this vertex,

n{(a,b),(a,b+d)} = (
a

d
)

where the above counts curves with contact data an incoming (constrained)
edge in direction (a, b), and an outgoing (unconstrained) edge in direction
(a, b+ d). If we constrain the incoming edge (a, b) to be above the ray −(a, b),
the above relative Gromov–Witten invariant decomposes into contributions
from tropical curves with some rigid edges coming up from the corner with
derivatives summing to (0, d). Importantly for us, in the case that a = 1 and
d > 1, all these contributions cancel, even though the contributions of the
individual tropical curves do not vanish.

+ + . . .

Similar cancellations happen when we compute the contribution of tropical
curves with pieces looking like above: when we sum over all possibilities of an
‘incoming’ edge (1, b) interacting with rigid edges leaving the bottom corner
and leaving as (1, b+ d), all contributions cancel whenever d > 1. This calcula-
tion holds regardless of the consideration of whether (1, b) is actually travelling
in a valid direction for being an ‘incoming edge’ to our corner.

With the above understood, we can identify which tropical curves γ contribute
to counts of rigid curves in B. First, there are the n exceptional spheres, which
correspond to the rather uninteresting tropical curves consisting of a single point
sent to one of the n bottom corners of B.

In the case that γ is not a single point, consider a connected component of
γ minus the inverse image of the lefthand corner of B. Let us argue that this
connected component must have a univalent vertex v on the closure of the righthand
boundary of B with an incoming edge of derivative (1,1). Our balancing conditions
imply that our connected component must have some vertex v on the closure of
the righthand boundary of B with derivatives of incoming edges adding up to
(a, b), where a > 0. The only way we can get rigid curves at such a vertex v by
placing constraints on the incoming edges is if all edges are constrained, and their
derivatives sum to (1,1). As there are no types of vertices on the closure of the
righthand boundary of B that can correspond to rigid curves without constraining
all edges, there is no way to obtain a constrained edge entering v with derivative
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(0, k), therefore our vertex v on the righthand edge must have a single incoming
edge with derivative (1,1).

Apart from vertices at the lefthand corner, any contributing space of curves with
unconstrained contact data γv has complex virtual dimension at least the valence
of v minus 1. Therefore, if one edge is connected to our vertex on the righthand
boundary, (and hence is unconstrained) all other edges must be constrained. Simi-
larly, all the other edges attached to a vertex on the other end of these edges must
be constrained. It follows that

● Each connected component of γ minus vertices at the lefthand corner of
B must be a tree with a unique vertex on the closure of the righthand
boundary of B.

● The only way to obtain nonzero Gromov–Witten invariants is to use the rel-
ative invariants at each vertex specified by orienting edges to point towards
the vertices on the closure of the righthand boundary of B.

● There are no vertices on the (interior of the) top or bottom boundaries of
B, as to satisfy the above dimension constraint, these vertices would need
to have edges all contained in the boundary of B, and therefore would not
be part of a rigid tropical curve. Similarly, there are no bivalent vertices in
the interior of B.

● The balancing condition implies that each connected component of γ minus
vertices at the lefthand corner of B must have a connected bivalent sub-
graph with all edges having derivative in the form (1, k), and that all other
edges must have derivative in the form (0, d). In particular, this connected
component must have a unique edge coming from the lefthand corner of B,
and the derivative of this edge must be (1, k) for some k.

● The edges in direction (0, d) must come from the bottom corners of B. If
a vertex of v of γ has an edge entering with derivative (1, k) and an edge
exiting with derivative (1, k + d) where d > 1, then the contribution of γ to
Gromov–Witten invariants will be 0 if v is at one of the bottom corners of
B, or cancel with the contributions of other curves that are the same apart
from the other edges entering v.

● For γ to be connected, it must have a unique vertex v0 at the lefthand
corner of B.

● Using the simplified gluing formula from Theorem 2.1 and the orientation
of γ above, the contribution of γ to Gromov–Witten invariants is

1

∣Autγ∣
∏
v

nγv .

Apart from the unique vertex v0, whose invariant nγv0 is equal to ∣Autγv0 ∣
times the coefficient of γv0 in F , all other nγv = 1 for tropical curves γ
whose contribution to Gromov–Witten invariants do not cancel.

To summarize, apart from the exceptional curves — which correspond to partic-
ularly uninteresting tropical curves consisting of a single point mapping to one of
the bottom vertices of B — the only tropical curves that contribute to Gromov–
Witten invariants of B are those that leave the left corner of B with edges having
derivative {(1,1−m1), . . . , (1,1−mk)} = Γ with a corresponding nonzero coefficient
nΓ/ ∣Aut Γ∣ in F . Each of these edges must go on to interact with mi edges with
derivative (0,1) coming from mi different bottom corners of B, before hitting the
closure of the righthand boundary of B with derivative (1,1). The virtual number
of curves corresponding to each such tropical curve is nΓ. Their degree and genus is
the degree and genus of Γ (as defined in equation (4)), and their intersection with
Ei is the number of edges leaving the ith bottom corner of B.
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Consider all tropical curves γ with γv0 isomorphic to Γ = {(1,1−m1), . . . , (1,1−
mk)}. Such tropical curves contribute the following term to the generating function,
Gn, encoding Gromov–Witten invariants of B:

nΓ

∣Aut Γ∣

k

∏
i=1

xmi−3qHσmi

where the exponent of x encodes genus −1, the exponent of q encodes homology
class, and σm indicates the mth elementary symmetric function in the variables
q−E1 , . . . , q−En . This implies equation (3), our formula for Gromov-Witten invari-
ants of the n-fold blowup of CP 2 in terms of the relative Gromov-Witten invariants
encoded in F .

4. Relative Gromov–Witten invariants of CP 2 blown up at one point

In this section, we calculate the relative Gromov–Witten invariants required in
the previous section for the bottom corners of B. The required invariants are the
relative Gromov–Witten invariants of CP 2 blown up at 1 point, relative to two lines
L1, L2.

One way to picture CP 2 blown up at a point symplectically is as a singular La-
grangian torus fibration with base pictured below. The size of the little removed tri-
angle represents the size of the symplectic ball removed to do a symplectic blowup;
the remaining polytope should be regarded as glued along the two faces of this
little removed triangle so that it has an integral-affine structure with a singularity
at the top point of the little removed triangle. This singularity in the integral-affine
structure reflects a focus-focus singularity in the Lagrangian torus fibration above
it — in other words, the torus fiber pinches to become a sphere which intersects
itself once above this point. There are also elliptic singularities along the 3 edges of
this picture, as is usual for moment-map pictures. We are interested in 4 holomor-
phic spheres in this picture. Over the left and righthand boundaries are spheres
L1 and L2 that are lines from CP 2. Running down the glued-together edges of the
little removed triangle is the exceptional sphere, and over the bottom boundary is
a sphere L3 that is the strict transform of a line passing through the point we blew
up.

L1 L2

L3

We need the relative Gromov–Witten invariants of this space relative to L1 and
L2. These relative invariants are most effectively computed tropically by making a
degeneration of this space into the two pieces above and below the dotted line. After
making a symplectic cut along the dotted line, the bottom piece is (CP 1)2. We
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need — and have already encountered — the relative Gromov–Witten invariants of
(CP 1)2 relative to 3 of its 4 toric boundary divisors, the left, right, and dotted top
ones in the above picture. The top piece is again the blowup of CP 2 at a point,
but now we need its Gromov–Witten invariants relative to L1, L2, and L3.

Let us work out the Gromov–Witten invariants of the above space relative L1,
L2, and L3. The tropical part of the explosion, A, of the above space relative to
L1 ∪L2 ∪L3 is pictured below, with a tropical curve.

L2

L1

L3(a, b)

(a, b + a)

To translate tropical curves in the above picture to contact data with Li, uncon-
strained contact with L1, L2 or L3 corresponds to an end with outgoing derivative
(−1,0), (1,1), or (0,−1) respectively. The homology class of a curve is determined
by its contact data with Li, and the virtual dimension of a curve with contact data
Γ is the number of infinite ends of Γ plus the genus of the curve minus 1. The
contact data obeys a balancing condition: the sum of the derivative of all edges
(oriented outgoing) is some multiple of (0,1). The case of empty contact data — or
a tropical curve with no infinite edges — corresponds to a curve representing zero
in homology, therefore we may ignore this case, because such curves of genus 1 are
not stable. Therefore, for curves with unconstrained contact data to be rigid, they
must be spheres with contact data consisting of one outgoing edge with derivative
(0, d).

To calculate the contribution of a tropical curve γ in A to the Gromov–Witten
invariants of A, we need to know what relative Gromov–Witten invariants to asso-
ciate to each vertex. A vertex v sent to the origin in A uses the Gromov–Witten
invariants of A. A vertex sent to the interior of one of any of the two-dimensional
strata in A uses the Gromov–Witten invariants of T2, or equivalently the relative
Gromov–Witten invariants of any two-complex-dimensional toric manifold relative
its toric boundary divisor. These relative Gromov–Witten invariants were discussed
in the previous sections. A vertex sent to the interior of any of the one-dimensional
strata of A uses the Gromov–Witten invariants of T×Expl(CP 1,{0,∞}), or equiva-
lently the relative Gromov–Witten invariants of any two-complex-dimensional toric
manifold relative to its toric boundary divisors.

In other words, vertices at every point of A apart from the origin use the
Gromov–Witten invariants of the same space, T2. There is, however, a differ-
ence. For any vertex v of γ, recall that we produce a tropical curve γv in the plane
by extending all edges leaving v to be infinite. Everywhere but the strata corre-
sponding to L3, we interpret γv directly as a tropical curve in the tropical part of
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T2 to define contact data. On the strata of A corresponding to L3 however, we
need to exchange every edge of γv with outgoing derivative (a, b) with an edge with
outgoing derivative (a, b −max{a,0}). This implies that tropical curves in A obey
the usual balancing condition if we give A the singular integral-affine structure ob-
tained by cutting the plane along the line corresponding to L3, and gluing the left
and righthand sides of this cut so that a vector (a, b) on the left side corresponds
to the vector (a, b + a) on the right. In particular, the tropical curve drawn in the
picture above corresponds to a ‘straight line’.

We can now easily compute some Gromov–Witten invariants of A. Let nv1,...,vn;w

indicate the Gromov–Witten invariant of A that counts zero genus curves with
contact data consisting of incoming (constrained) edges with derivative vi and an
outgoing (unconstrained) edge with derivative w.

Consider computing n(0,1);(1,1). The top tropical curve pictured below is the
unique curve contributing to n(0,1);(1,1) when the incoming edge is constrained in
the upper half plane. The bottom tropical curve is the only curve that contributes
when the incoming edge is constrained in the lower half plane.

(0, 1)

(1, 0)

(1, 1)

(1, 1)

(1, 0)

Therefore, using our simplified gluing formula from Theorem 2.1,

n(1,0);(1,1) = 1 = n;(0,1) .

For a > 0, we can equate the two ways pictured below of calculating n(a,b),(0,1);(a,c).

(a, b)

(0, 1)

(a, c)

(a, c � 1)

(a, b + 1)

(a, c)

(0, 1)

(a, b)
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So

n(a,b+1);(a,c) = n(a,b);(a,c−1) .

In other words, n(a,b);(a,b+d) depends only on a and d.
Calculating n(a,b);(a,b+a) by constraining the incoming edge below the ray (−a,−b)

gives that

n(a,b);(a,b+a) = 1

and

n(a,b);(a,b+d) = 0 if d > ∣a∣ .

Similarly, calculating constraining the incoming edge above the ray (−a,−b) gives
that

n(a,b);(a,b+d) = 0 if d < 0 .

If 0 ≤ d ≤ a, we can equate the two ways of calculating n(a,a+1−d),(1,0);(a+1,a+1)
pictured below.

(1, 0)

(a, a + 1 � d)

(a + 1, a + 1 � d)

(a + 1, a + 1)

(a, a + 1 � d)

(a + 1, a + 1)(1, 0)

(a, a + 1)

Therefore

(a + 1 − d)n(a+1,a+1−d);(a+1,a+1) = (a + 1)n(a,a+1−d);(a,a+1) .

Starting with the case

n(a,b);(a,b+a) = 1 = (
a

a
)

induction on d ≥ a using the above equation gives

(6) n(a,b);(a,b+d) = (
a

d
) .

We still need to compute n;(0,d). Consider p(x) = n(x,0);(x,d). For x ≥ 0, we
can compute p(x) by restricting the incoming edge (x,0) in the upper half plane.
The gluing formula for p(x) uses tropical curves in the form pictured below. In
this diagram, the thick edge indicates some number of edges with upward pointing
derivatives adding to (0, d).

(x, 0)

(x, d)

A diagram with k such upward pointing edges contributes some fixed multiple of
xk to p(x), so p(x) is a polynomial in x of degree at most d. The only possibility
for a single such edge is when its derivative is (0, d). This tropical curve contributes
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xdn;(0,d) to p(x), therefore the coefficient of the linear term in p(x) is dn;(0,d). We
already know that p(x) = 0 for 0 ≤ x < d, and p(d) = 1, therefore

p(x) =
1

d!

d−1

∏
i=0

(x − i) .

The coefficient of the linear term of p(x)/d then gives us n;(0,d).

(7) n;(0,d) =
1

d!d

d−1

∏
i=1

(−i) =
(−1)d−1

d2

Although we have only argued that the above equation holds for d ≥ 1, a very
similar argument also gives that n;(0,d) = (−1)d+1/d2 for d < 0. Of course, the
equations determining n;(0,d) are massively overdetermined. A combinatorially-
talented thinker could deduce the above equations for d > 0 and the corresponding
formula for n(a,b);(a,b+d) simply from knowing that n;(0,1) = 1 and n(1,0);(1,d) = 0 for
d > 1.

The above are Gromov–Witten invariants of the blowup of CP 2, relative to L1, L2

and L3. We need the Gromov–Witten invariants relative to L1 and L2, which are the
Gromov–Witten invariants of an exploded manifold A′ with tropical part pictured
below.

The tropical curve in the above picture is the tropical part of the exceptional
sphere. For calculating the contribution of a tropical curve γ in A′ to Gromov–
Witten invariants of A′, vertices above the bottom boundaries of A′ contribute
the same as the corresponding vertices in A. For any vertex v on the bottom of
A′, we use our relative Gromov–Witten invariants of (CP 1)2 relative to 3 of its 4
toric boundary divisors. In each case, constrained contact with the middle divisor
corresponds to (0,−1), and n(0,−1) = 1. Contact with the other divisors translates to
tropical information differently depending on the location of v. The upshot of this
is that to translate Gromov–Witten invariants of A to Gromov–Witten invariants
of A′, we allow ourselves to remove any outgoing edges with derivative (0,−1),
and otherwise restrict to the case that all infinite edges have (incoming) derivative
in the span of (1,0) and (−1,−1). For example, the contribution of the above
tropical curve is 1 (corresponding to the exceptional curve). Either of the curves
pictured below may be used to calculate that 1 is the Gromov–Witten invariant
of A′ with contact data a constrained edge entering with derivative (1,0) and one
unconstrained edge exiting with derivative (1,1). Moreover, this counts genus 0
curves that intersect the exceptional curve once.
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As n;(0,d) = (−1)d+1/d2 implies the formula (6), whenever we see a part of a trop-
ical curve γ looking like below — where the thick edge may be replaced by many
edges with derivatives adding up to (0, d) — the total effect of this part of γ is to
multiply by (

a
d
), and to affect the corresponding homology class by adding d to its

intersection with the exceptional divisor. In the tropical part B of the exploded
manifold we used to represent CP 2 blown up at n points, we may intuitively under-
stand this as saying that a rigid edge with derivative (a, b) may interact with rigid
edges coming up from the ith lower corner to leave with derivative (a, b+ d). After
summing over all possibilities, this introduces a factor (

a
d
) to the Gromov–Witten

invariant, and corresponds to intersecting the ith exceptional divisor d times.

(a, b)

(a, b + d)
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