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Abstract

This thesis deals with the problem of finding holomorphic curves in symplectic man-

ifolds which are Lagrangian torus fibrations with a well defined action of the torus.

A family of complex structures are defined which can be viewed as collapsing the

torus fibers. Under this degeneration, it is seen that holomorphic curves converge to

objects called holomorphic graphs, similar to what are called tropical curves in the

algebraic setting of tropical geometry.

A moduli space of objects called J ε holomorphic graphs is defined, and proved

to be cobordant to the moduli space of holomorphic curves. Thus the moduli space

of J ε holomorphic graphs can be used to calculate invariants of the moduli space of

holomorphic curves.
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Chapter 1

Introduction

This thesis provides methods for studying the moduli space of (pseudo)holomorphic

curves in a class of symplectic manifolds which are fibered by Lagrangian tori, subject

to assumptions listed in appendix B. Examples of such Lagrangian torus fibrations

are given by the symplectization of the unit cotangent bundle of Tn or the region in

a toric manifold where the torus action is free. Another space where these techniques

apply is given by the structure on R × (S1 × S2) considered by Taubes in [8].

A family of complex structures J ε is considered which can be viewed as collapsing

the torus fibers. Under this degeneration, holomorphic curves become solutions of a

finite dimensional problem. A perturbation of this finite dimensional problem gives

a moduli space of objects called J ε holomorphic graphs. Invariants associated to

the moduli space of holomorphic curves can then be computed using J ε holomorphic

graphs.

The qualitative properties of these J ε holomorphic graphs (and hence the moduli

space of holomorphic curves) are determined by studying the integral curves of a lat-

tice of vector fields determined by the original complex structure and the torus fibra-

tion. Sending ε to zero creates objects called holomorphic graphs. Loosely speaking,

an edge of a holomorphic graph consists of a closed geodesic in a torus fiber translated

along by a vector field determined by the homology class of the geodesic. The fact

1
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that homology classes of edge geodesics sum to zero at vertices gives a kind of con-

servation of momentum condition at vertices. Apart from this, vertices contain the

information of a model holomorphic map of a punctured Riemann surface to (CP 1)n

and determine the relative positioning of edges.

The class of manifolds under consideration are Lagrangian torus fibrations of the

form

Tn −→ Tn ! Bn

↓ π

Bn

with a structure group consisting of rotations of the torus fibers Tn. This means that

there is a well defined action of torus rotations on the fibers.

Tn × (Tn ! Bn)
m−−−−→ Tn ! Bn

Note that it would also be possible to work with torus fiber bundles that have a

structure group consisting of affine transformations of the torus, however the analysis

is complicated in this case by not having nice metrics. For a study of Lagrangian torus

fibrations, see [7]. In this article, it is pointed out by Mishachev that any Lagrangian

fibration admits a canonical affine structure on the fibers, identified with the affine

structure on T ∗Bn by lifting a covector in the the base manifold to the total space

and then taking its symplectic dual, which consists of a vectorfield tangent to the

fiber. Locally, we always have a symplectic action of Tn on the fibers given by the

flow defined by these vectorfields.

We need an (almost) complex structure

J2 = −Id : Tp(Tn ! Bn) −→ Tp(Tn ! Bn)

which is symmetric with respect to this structure in the sense that it is preserved by
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the torus rotations, and a symplectic form

ω ∈ Ω2(Tn ! Bn), dω = 0, ωn '= 0

which is also symmetric with respect to the torus rotations. ω needs to tame J

holomorphic curves in a sense described in section 3.1. The torus fibers should be

Lagrangian with respect to ω.

ω(v1, v2) = 0 for v1, v2 ∈ ker(dπ)

Note that our torus rotations and J provide a canonical trivialization of our tan-

gent space T (Tn ! Bn). Giving Tn coordinates x ∈ Rn/Zn, the torus multiplication

on fibers provides vertical vector fields we’ll denote as ∂xi and an identification of

each fiber with Rn/Zn up to translation. We then have the following important basis

for T (Tn ! Bn).

{∂xi, J∂xi}

We shall see that the dynamics of the vector fields generated by those above will

determine the moduli space of holomorphic curves. Note that as described in [7],

the existence of a torus fibration over a manifold Bn is equivalent to T ∗Bn carrying

an integrable affine structure. This affine structure is the one given by choosing a

one form λ over a ball in the base so that dλ = ω. λ then restricts to a closed one

form on each fiber, which represents a class in H1(Tn). The Lagrangian neighborhood

theorem implies that this gives coordinates for the base. A different choice of primitive

λ simply shifts these coordinates by a constant, so we have an identification of H1 of

the fiber with the tangent space of the base. The projection of {J∂xi} to the base

gives an identification of the tangent space of the base with H1 of the fibers. The

lattice defined by the projection of {J∂xi} is not necessarily the same as the lattice

defined by H1(Tn, Z). These two lattices do however obey a positivity condition due

to the constraint that ω is positive on holomorphic planes.

This basis {∂xi , J∂xi} gives an identification of (Tp(Tn!Bn), J) with Cn by sending

∂xk
to xk and J∂xk

to yk using the standard z = x+ iy coordinates for C. We can put
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a metric g on T (Tn ! Bn) in which {∂xi , J∂xi} gives an orthonormal frame. There is

a canonical flat connection, ∇ which preserves this trivialization.

We are interested in the moduli space of J holomorphic curves. A J holomorphic

curve is a map u : (S, j) −→ (Tn ! Bn, J) so that u∗J = j, where (S, j) denotes a

Riemann surface S with its complex structure j. This is equivalent to

∂̄u :=
1

2
(du − J ◦ du ◦ j) = 0

We consider J holomorphic curves tamed by ω so that

Eω(u) :=

∫

S

u∗(ω) < ∞

Consider the degenerating family of complex structures J ε for ε ∈ (0, 1] charac-

terized by

J ε∂x = εJ∂x for ∂x ∈ ker(dπ)

The conditions on our taming form ω have been chosen to ensure that ω tames J ε

holomorphic curves for all ε '= 0. In chapter 2, for ε small we will construct the moduli

space of bounded energy solutions of a slightly weakened ∂̄ equation, using as models

objects called J ε quasi holomorphic graphs described in sections 1.1, 2.5, and 1.1.4.

We shall show in chapter 3 that any bounded energy J ε holomorphic curve can be

constructed in this way. This is put together in chapter 4 by showing that the moduli

space of holomorphic curves is cobordant to the a moduli space of objects called J ε

holomorphic graphs.

It is shown in appendix B that the following spaces obey our technical assumptions.

Example 1.0.1. Cn/Zn

We can consider Cn/Zn as (CP 1 − {0,∞})n
. Pulling back a rotationally symmet-

ric symplectic form ω from (CP 1)
n

to Cn/Zn, we can consider holomorphic maps of

punctured Riemann surfaces to Cn/Zn which have finite ω energy. These extend by
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the removable singularity theorem to holomorphic maps to (CP 1)n. Prescribing the

homology class in Cn/Zn represented by a puncture corresponds to prescribing the

order of poles and zeros at that puncture in (CP 1)n. This integrable case will be an

important local model for the constructions that follow.

We could also consider different compactifications of Cn/Zn to toric manifolds. It

is interesting to note that the moduli space of holomorphic curves in Cn/Zn tamed by

any symplectic form pulled back from a compact toric manifold in this way is always

the same, however we need to consider different compactifications of our moduli space

depending on the compactification of Cn/Zn.

The degeneration of complex structures has been studied in this algebraic setting

by Grigory Mikhalkin and other tropical geometers, see for instance [6], [5]. This

thesis can be considered as a smooth version of this tropical scheme for counting

holomorphic curves, with an idea of what a perturbation theory of tropical curves

would be. The smooth notion of a holomorphic graph however is sufficiently different

from the more degenerate idea of a tropical curve that we are justified in using a

different name.

Example 1.0.2.

We can give Tn the flat metric from Rn/Zn. The unit cotangent bundle then is a

contact manifold with a Tn symmetry. We can give the symplectization Tn×(Rn−{0})
a cylindrical complex structure J given in coordinates (x, y) ∈ (Rn/Zn)× (Rn −{0})
by

J∂xi = |y| ∂yi

Example 1.0.3.

The symplectization of any compact three dimensional contact manifold with a

T2 symmetry, where locally, either the T2 action is free or there is a neighborhood

which has a contact form modeled on

dθ2 + r2dθ1

(r, θ1, θ2) ∈ D2 × S1
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and the T2 action is given by rotating θ1 and θ2.

1.1 The moduli space of holomorphic graphs

A holomorphic graph is a kind of decorated graph. The underlying graph has vertices

which have associated to them model maps of a stable punctured Riemann surface

into Cn/Zn, and edges associated to trivial holomorphic cylinders, the ends of which

may be attached to a vertex or free.

Recall that we have a torus fibration

Tn −→ Tn ! Bn

↓ π

Bn

a degenerating family of complex structures

J ε∂x = εJ∂x for ∂x ∈ ker(dπ)

and a symplectic form, ω which tames all J ε holomorphic curves. Labeling the vector

fields induced by the Tn = Rn/Zn action ∂xi , we also have a metric gε in which

{∂xi , J
ε∂xi} gives an orthonormal frame, and a flat connection, ∇ which preserves

this frame.

1.1.1 Trivial holomorphic cylinders

Given a point p ∈ Tn ! Bn and a lattice direction α ∈ Zn ⊂ TTn, consider the map

Cp,α(θ, t) : S1 × R −→ Tn ! Bn given by

Cp,α(θ, t) = expp(θα + tJα)

Here exp denotes the exponentiation given by our flat connection ∇. α ∈ Zn is

identified with a vertical tangent vector by our identification of Tp(Tn ! Bn) with Cn



1.1. THE MODULI SPACE OF HOLOMORPHIC GRAPHS 7

given by the basis {∂xi , J∂xi}.
Note that Cp,α is J ε holomorphic if S1×R is given the complex structure j∂θ = ε∂t.

Maps of this type and their images will be called trivial holomorphic cylinders. In

chapter 3, we will see that for ε small enough, J ε holomorphic maps of long cylinders

with bounded energy must converge to some trivial holomorphic cylinder at a uniform

rate which is exponential in the distance to the ends of the cylinder, thus we see that

parts of J ε holomorphic curves with bounded energy which are conformal to long

cylinders can be approximated by trivial holomorphic cylinders. Actually, if we add

in an averaging condition, each part of a holomorphic map conformal to a long cylinder

will be approximated by a unique trivial holomorphic cylinder.

An edge of a holomorphic graph consists of a subset of a trivial holomorphic

cylinder parametrized by the cylinder R/Z × (a, b) ⊂ R/Z × R. An end of an edge

can either go off to the edge of our manifold (which will require an edge of infinite

length) or be attached to a vertex.

1.1.2 Vertex model curves

A vertex of a holomorphic graph will correspond to an equivalence class of pairs [p, f ]

where p is a point in our manifold Tn ! Bn and f is a model holomorphic map

f : S −→ Cn/Zn

of the type considered in example 1.0.1. In particular, f is a holomorphic map of

a punctured Riemann surface which extends to a finite energy holomorphic map to

(CP 1)
n
. f should be thought of as a map to the torus fiber containing p. Identifying

the torus fiber containing p with Rn/Zn ⊂ Cn/Zn, we consider pairs [p, f ] up to the

following equivalence relation:

[p, f ] = [p + x0, f − x0 + Jx1]

x0, x1 ∈ Rn
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Equivalently, [p, f ] = [p̃, f̃ ] if expp

(
πRn/Znf

)
= expp̃

(
πRn/Zn f̃

)

f is a holomorphic map of a stable Riemann surface with labeled punctures which

extends to a holomorphic map to
(
CP1

)n
. Each edge attached to a vertex corresponds

to one of these punctures. At each puncture, f converges in the torus fiber containing

p to some closed geodesic α with an orientation induced from S. The image of the

end of the edge attached to this puncture must be α. In particular, as α also gives

a class in H1(Tn) and a corresponding lattice direction [α], we can choose a point

pi,α ∈ α, and then the edge attached to this puncture can be parametrized as

Cpi,α,[α](θ, t) = exppi,α
(θ[α] + tJ [α])

Lemma 1.1.1. Any holomorphic curve f : S −→ Cn/Zn from a punctured Riemann

surface S which extends to a holomorphic map of the entire Riemann surface to
(
CP1

)n
is determined up to translation by f∗ : H1(S) −→ H1(Cn/Zn) and the complex

structure of S.

Proof:

Consider one factor of the extension of f to
(
CP1

)n
. All poles and zeroes of this

map are determined by f∗, and hence this map is determined up to multiplication by

a constant. Multiplication in CP1 corresponds to translation in C/Z.

!
Note that this tells us that the edges attached to a vertex and the complex struc-

ture of its model curve determine a model curve up to translation. Translations in

the real or torus fiber directions will give us distinct model curves, however we want

to quotient out by any translation in the imaginary direction. To this end we add a

normalizing condition to our model curves. One that will come in useful later on is

the following.

Given a Riemann surface with punctures, we have a way of partitioning it into

subsets called ‘vertices’ and subsets called ‘edges’ which is similar to the partitioning

of a Riemann surface into ‘thick’ and ‘thin’ given by the uniformisation theorem. This
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decomposition is discussed in appendix C. We use the notation E to refer to a way of

partitioning Riemann surfaces in this way. The important fact that we use now about

this decomposition is that each puncture is surrounded by an ‘edge’ region which is

conformal to R/Z × (0,∞).

It is proved in section 3.3 that if f has finite energy, it must converge in these

coordinates to some map

lim
t→∞

f(θ, t) = ζ + θα + tJα ∈ Cn/Zn

ζ ∈ Cn/Zn, α ∈ Zn

Note that rotating our coordinates changes ζ by some multiple of α, but the

imaginary part of ζ is well defined. A normalizing condition on our holomorphic

model curves can them be

Imaginary part of

(
∑

punctures

ζ

)

= 0

Example 1.1.2. Trivalent Graphs

An easy to deal with subset of holomorphic graphs consist of the trivalent graphs

which have model curves at vertices consisting of three-punctured spheres. These

graphs are simple because there is only one possible complex structure on a three-

punctured sphere, and thus up to torus rotations only one possible model curve for

a given set of homological data. For example, suppose we take as coordinates for

our three punctured sphere C − {0, 1} with the third puncture at ∞. If the image

of a loop around 0 is α ∈ Zn and 1 is β ∈ Zn, then we know that the image of a

loop around ∞ is −α − β. We can choose a normalization so that our model curve

f : C − {0, 1} −→ Cn/Zn is given by

f(z) = α
log(z)

2πi
+ β

log(z − 1)

2πi
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The asymptotics of the real (torus) part of f are given by

lim
r→0

πRn/Znfi(re
2πiθ) = αθ +

β

2
at 0

lim
r→0

πRn/Znf(1 + re2πiθ) = βθ at 1

lim
r→∞

πRn/Znf(re−2πiθ) = (−α− β)θ at ∞

Note that these three geodesics in Tn will not necessarily have a point in common,

so we can’t make all the edges leaving a vertex leave from the same point p. We can

parametrize the trivial holomorphic cylinders attached to each puncture as follows:

attach to 0: expp(
β

2
+ θα + tJα)

attach to 1: expp(θβ + tJβ)

attach to ∞: expp(θ(−α− β) + tJ(−α− β))

Suppose we want to attach the other end of our edge attached to 1 to another

model curve located at p̃ at its 1 or ∞ punctures. The image of a positively oriented

loop around this puncture will need to be −β. The location of p̃ must be on this

edge, so

p̃ = expp(θβ + lJβ)

The only constraints on constructing these trivalent holomorphic graphs come from

the correct placement of the ends of edges, arising from equations such as the one

above. θ is the twist of this edge, and l its length. This can be thought of as changing

the domain of the holomorphic graph. Note that we needed to make choices such as

labeling the 0, 1 and ∞ punctures and giving a parametrization of their blow ups

to define the twist θ of an edge, so an edge’s twist is far from being a canonical

coordinate.

Often, we can calculate invariants of the moduli space of holomorphic curves using

the space of trivalent holomorphic graphs.
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1.1.3 J ε holomorphic E graphs: first attempt, Mε,∂̄0,E

A J ε holomorphic E graph is an object that can be thought of as mimicking the

behavior of a holomorphic map. In this section we will see a first attempt at saying

what a J ε holomorphic graph is. We will call the space of such objects Mε,∂̄0,E and

refer to the individual objects as ‘graphs’ u ∈ Mε,∂̄0,E. The reasons for choosing

this notation will be clear in section 1.1.6, when we define the correct space M ε,[∂̄0],E.

Our description in this section will not be perfect, as Mε,∂̄0,E will not be continuous

when the combinatorics of edges and vertices changes. Nevertheless, Mε,∂̄0,E can

be used to calculate invariants of the moduli space of holomorphic curves given some

transversality conditions and when it is possible to restrict the moduli space to regions

where the combinatorics of edges and vertices is constant. The shortcomings of the

description given in this section are remedied in section 1.1.6.

The E refers to a way of partitioning Riemann surfaces into subsets which are

called ‘edges’, conformal to R/Z × (a, b) and ‘vertices’ which are the connected com-

ponents of the compliments of the edges. This choice of edges is similar to the thin

parts of a Riemann surface when it is given the complete hyperbolic metric provided

by the uniformisation theorem. E must obey the axioms listed in appendix C. The

important difference from the usual thick-thin decomposition given by the uniformi-

sation theorem is that the decomposition must be preserved by surgeries on edges

which change the length of an edge. In particular, if we take a vertex region V and

replace each E edge region surrounding it, R/Z × (0, R) with R/Z × (0,∞), we get

a Riemann surface with punctures SV . The E edge regions of SV surrounding these

punctures will consist of these cylinders R/Z × (0,∞). Graphs in Mε,∂̄0,E obey the

restriction that all model curves have domains SV of this type.

We can associate a domain Riemann surface S to our graph u ∈ Mε,∂̄0,E, so that

every E vertex region V ⊂ S corresponds to a vertex of u with domain SV , and every

E edge region of S corresponds to an edge of u. An edge of a graph u ∈ Mε,∂̄0,E is

then part of a trivial holomorphic cylinder parametrized by a E edge region of S.
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The connections between vertex model curves and edges are reflected by the con-

nections between the vertex and edge parts of the domain. Parameterizing the edge

part of a holomorphic model curve [p, f ] surrounding a puncture by R/Z × (0,∞)

the domain of the edge attached to this puncture is considered as a subset of this,

R/Z × (0, R). Then the trivial holomorphic cylinder this edge parametrizes is given

by

C(θ, t) = expexpp ζ(θα+ tJ εα)

where lim
t→∞

f(θ, t) = ζ + θα + tJα

The map exp should be understood by the identification we have of T (Tn ! Bn), J ε

with Cn.

Note that apart from the stupid holomorphic curves that map entirely to a point,

every vertex model curve [p, f ] has at least one puncture. f is then determined by

the complex structure of the model curve and the location of one edge relative to p.

This means that the equivalence class of [p, f ] is determined by any edge attached to

it and the complex structure of the domain S.

The above observation motivates putting a topology on Mε,∂̄0,E that keeps track

of the complex structure of the domain surface and the trivial holomorphic cylinders

at its edges. A sequence of graphs {ui} ⊂ Mε,∂̄0,E is said to converge to a given graph

u∞ if the domain surfaces converge in Delinge-Mumford space, and for each edge of

u∞, the corresponding sequence of trivial holomorphic cylinders from ui converge.

(The exact choice of what we mean by ‘converge’ for a trivial holomorphic cylinder

depends on what compactification we wish to put on a space of holomorphic maps.)

The problem with Mε,∂̄0,E is that it will not be continuous when the combinatorics

of the E edge-vertex decomposition jumps. This is taken care of by a smoothing

procedure in section 1.1.6. For now the space of J ε holomorphic graphs Mε,[∂̄0],E

should be thought of as being like Mε,∂̄0,E except with some sort of interpolation to

make the moduli space smooth when the combinatorics of E edge markings changes.



1.1. THE MODULI SPACE OF HOLOMORPHIC GRAPHS 13

1.1.4 J ε quasi holomorphic graphs

The space of J ε holomorphic E graphs, Mε,[∂̄0],E can be used to calculate invariants

of the moduli space of holomorphic curves when some transversality conditions are

met. To get a good perturbation theory for these objects, we define the space of J ε

quasi holomorphic E graphs, Qε,E. Each connected component of Qε,E will be finite

dimensional, and we can view Mε,∂̄0,E and Mε,[∂̄0],E, the space of J ε holomorphic E

graphs, as embedded in this space. For a given genus and energy, we can choose an

ε small enough and a system of vertex and edge decompositions, E so that the space

of J ε holomorphic curves can also be considered as embedded in Qε,E and cobordant

to Mε,[∂̄0],E.

As with the graphs in Mε,∂̄0,E considered in the previous section, the data for a J ε

quasi holomorphic E graph u ∈ Qε,E will consist of a Riemann surface S with trivial

holomorphic maps on the edges, and equivalence classes of vertex model curves [p, f ]

associated to vertex regions, joined together in the manner suggested by S.

Model maps corresponding to a vertex region V now will be continuous maps

f : SV −→ Cn/Zn. SV denotes the Riemann surface obtained by replacing the edges

R/Z × (0, R) surrounding V with semi infinite cylinders R/Z × (0,∞). f must have

the property that in these cylindrical coordinates

lim
t→∞

|f(θ, t) − ζ − θα− tJα| et = 0

α ∈ Zn, ζ ∈ Cn/Zn

Imaginary part of

(
∑

punctures

ζi

)
= 0

Considering the edge part attached to this boundary as the subset R/Z× (0, R) ⊂
R/Z × (0,∞), the trivial holomorphic edge attached to this boundary is given by

C(θ, t) = expexpp ζ(θα + tJ εα)

Here expp ζ is to be understood by the identification of (Tp(Tn ! Bn), J ε) with Cn
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We will consider these model maps up to the following equivalence relation:

[p, f ] = [p + x, f − x + g]

g : SV −→ Cn, x ∈ Rn/Zn

g = 0 at punctures

Said in words, the equivalence relation equates isotopy classes of maps with a

fixed set of asymptotics modulo an equivariant torus action. Coordinates on Qε,E are

locally given by keeping track of the trivial holomorphic cylinders from edges and the

complex structure of the domain S. The extra information carried by the vertices is

discrete. Note that the dimension of Qε,E can change when we change the complex

structure of the domain S so that edge regions are created or disappear. We will

discuss this in more detail in section 1.1.5.

We now give a notion of what it means for a family of quasi holomorphic graphs

to be continuous or smooth. To do this, we associate to each quasi holomorphic graph

in a family a map from its domain S to Tn ! Bn called a gluing. A family of quasi

holomorphic graphs is said to be continuous (or smooth) if we can choose a continuous

(or smooth) family of gluings. (For an example of a definition of continuous for a

family of maps with changing domains, see Definition 2.11.1).

A gluing of a holomorphic graph u with domain S is a smooth map

f : S −→ Tn ! Bn

so that f restricted to the edge regions of S is given by the trivial holomorphic

cylinders associated to edges of u, and f restricted to each vertex region is given by

exppi
fi, where [pi, fi] is a choice of model curve for the corresponding vertex of u which

is a trivial holomorphic cylinder on all edge regions. The energy of a holomorphic

graph, Eω(u) is defined to be the energy of a gluing Eω(f). Note that this doesn’t

depend on our choice of gluing. If we want to consider invariants that come from

placing restrictions on the moduli space of holomorphic curves such as passing through
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a particular point, or being tangent to a plane, we place the corresponding conditions

on a choice of gluings of quasi holomorphic graphs. We will show in chapter 4 that

a choice of gluing of Mε,[∂̄0],E
g,k,E gives the moduli space of solutions to a perturbed ∂̄

equation.

We can define a bundle E over Qε.

HE(S, Cn) −→E

↓

Qε,E

The fiber HE(S, Cn) is a vector space depending on the vertex regions {Vi} of S defined

as follows: Denote by SVi the Riemann surface with punctures created by attaching

semi infinite cylinders to the vertex region Vi. Now, let the space of holomorphic one

forms on SVi with poles of order at most 1 at punctures be Λ1,0(SVi). Then

HE(S, Cn) := ⊕i homC(Λ1,0(SVi), Cn)

Note that if we change the complex structure of the domain S so that one edge

region disappears, consolidating the vertex regions that it joins, the dimensions of

HE(S, Cn) and Qε,E drop by the same amount.

We now define a section ∂̄0 of this bundle, which should be thought of as an

approximate measure of how close to being holomorphic a quasi holomorphic graph

is.

First, note that given a smooth map v : SV −→ Cn which vanishes at punctures

of SV , the following identity holds:

∫

SV

∂̄v ∧ θ =

∫

SV

d(vθ) = 0 for θ ∈ Λ1,0(SV )

Choosing a of model curve [p, f ] for a vertex of a quasi holomorphic graph defines
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a map Λ1,0(SV ) −→ Cn by

θ .→
∫

SV

∂̄f ∧ θ

This doesn’t depend on the choice of representatives [p, f ] for our model curve

and therefore doing the same for all vertices defines a section

∂̄0 : Qε,E −→ E

We will define a gluing procedure in section 2 which will produce from a quasi

holomorphic graph u with domain S a map G(u) : S −→ Tn ! Bn, which will satisfy

∥∥∂̄G(u) − ∂̄0u
∥∥ ≈ 0

Here the above must be understood after an identification of HE(S, Cn) with a sub-

space of the Banach space B which is the target of the ∂̄ operator.

There is a family of edge-vertex decompositions ER, the edge regions of which

consist of the cylinders a distance R into the interior of E edge regions. We will show

that for R large enough and ε small enough (dependent on a choice of energy bound

E and genus), the moduli space of bounded energy J ε holomorphic curves with genus

g can be viewed as embedded in a subset of Qε,ER where ∂̄0 is within a neighborhood

of 0. Putting a metric on HER(S, Cn), we can choose this neighborhood to be

Qε,ER
g,k,E := {u ∈ Qε,ER :

∣∣∂̄0u
∣∣ < 1, Eω(u) ≤ E, genus = g, k punctures}

We will show that on this space of bounded energy approximately holomorphic

J ε quasi holomorphic graphs, there exists a section

∂̄1 : Qε,ER
g,k,E −→ E

so that the moduli space of J ε holomorphic curves corresponds to the intersection of
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∂̄1 with the zero section, and
∣∣∂̄1u − ∂̄0u

∣∣ ≤ 1

2

This section is defined by using an iteration procedure to obtain a map

G∞ : Qε,ER
g,k,E −→ maps to Tn ! Bn

satisfying

∂̄G∞(u) ∈ HER(S, Cn) ⊂ B

∂̄1 is then defined by

∂̄1(u) = ∂̄G∞(u) ∈ HER(S, Cn)

If E −→ Qε,ER
g,k,E was a vector bundle over a manifold, and we knew that ∂̄1 was

a continuous section, we would then have enough information to identify invariants

of the moduli space of holomorphic curves. This is often the case in moduli spaces

that we are interested in, but at other times E −→ Qε,ER
g,k,E can jump dimensions, so

we have to examine the behavior near this dimension jumping.

1.1.5 Local stabilization

We want to have some idea of what it would mean to have a continuous section of our

bundle E −→ Qε,E. The dimensions of the fiber and base can jump when we change

the complex structure of the domain S so that an edge region appears or disappears.

Given a decomposition into edge and vertex regions E satisfying the assumptions

listed in appendix C, we can define another decomposition ER as follows: The edge

regions in ER are in one to one correspondence with the edges in E which are longer

that 2R. In cylindrical coordinates on the edges of E, they consist of the subsets

R/Z × (a + R, b − R) ⊂ R/Z × (a, b)

This new decomposition will obey the axioms listed in appendix C for all R ≥ 0. We
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can make choices so that our gluing procedure will define inclusions

HER(S, Cn) ⊂ HE(S, Cn) ⊂ B

where B indicates the Banach space which is the target of the linearized ∂̄ operator.

This inclusion is an isomorphism when the edges of ER are in one to one correspon-

dence with the edges of E, and otherwise has complex codimension equal to n times

the difference in the number of edges. Note that in the case that dim(HE(S, Cn)) =

dim(HER(S, Cn)), the quasi holomorphic graphs in Qε,ER are in one to one correspon-

dence with the quasi holomorphic graphs in Qε,E.

Definition 1.1.3. A section s : U ⊂ Qε,E −→ E is continuous (smooth, transverse

to the zero section respectively) if around every graph u0 ∈ U with domain S0, there

exists a neighborhood U0 ⊂ Qε,E of u0 and some R ≥ 0 so that

1.

HER(S0, Cn) = HE(S0, Cn)

2. The dimension of HER(S, Cn) doesn’t jump in U0.

3. The subset

UER
0 := {u ∈ U0 so that s(u) ⊂ HER(S, Cn) ⊂ HE(S, Cn)}

is transversely cut out and homeomorphic (or diffeomorphic ) to an open neigh-

borhood of u0 considered as a graph in Qε,ER. This homeomorphism should

preserve the domain Riemann surface. Note that this means that UER
0 will not

exhibit dimension jumping behavior.

4. The restriction of s to UER
0 ,

s : UER
0 −→ HER(S, Cn)

is continuous (smooth, transverse to the zero section respectively).
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As there will be no bubbling of domains, we can take a finite cover of each com-

ponent of Deligne Mumford space to get rid of finite automorphisms, and not worry

about orbifolds and multisections.

Note the transverse intersection of a section s : Qε,E −→ E with the zero section

will be a manifold, and that a generic smooth section is transverse to the zero section.

Also, a generic family of sections will give a cobordism.

Theorem 1.1.4. For R large enough, and ε small enough dependent on R,

∂̄1 : Qε,ER
g,k,E −→ E

is a continuous section. The intersection of ∂̄1 with the zero set is homeomorphic to

the moduli space of holomorphic curves.

Chapters 2 and 3 are devoted to the proof of the above theorem.

1.1.6 Moduli space of J ε holomorphic graphs

What we want to be able to say is that ∂̄1 is a perturbation of ∂̄0 and that their

intersections with the zero section are cobordant. The problem with this is that ∂̄0 is

not continuous where dimensions jump. To remedy this, we just need to smooth ∂̄0

over where this dimension jumping happens. The following lemma helps us do this

explicitly.

Lemma 1.1.5. For ε small enough, dependent on E, g, k and R′, there is a well

defined projection

πR,R′ : Qε,ER
g,k,E −→ Qε,ER′

for all 0 ≤ R ≤ R′.

This preserves the domain Riemann surface, and satisfies

∂̄0 ◦ πR,R′ = ∂̄0

when HER(S, Cn) = HER′ (S, Cn).
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Moreover,

πR,R′ : {u ∈ Qε,ER
g,k,E so that ∂̄0u ∈ HER′ (S, Cn) ⊂ HER(S, Cn)} −→ Qε,ER′

is a diffeomorphism onto its image.

This is constructed in appendix C.3.

Now define the section

[∂̄0] :=

∫ 1

0

∂̄0 ◦ πR,(R+t)dt

Theorem 1.1.6. For R large enough and ε small enough,

[∂̄0] : Qε,ER
g,k,E −→ E

is a C1 smooth section hopotopic to ∂̄1. If [∂̄0] and ∂̄1 are transverse to the zero section,

the intersection of the homotopy with the zero section defines a cobordism contained

in the interior of Qε,ER
g,k,E between the intersection of [∂̄0] with the zero section and the

moduli space of holomorphic curves identified with the intersection of ∂̄1 with the zero

section.

The homotopy is given by the following family

[∂̄s] :=

∫ 1

0

((1 − s)∂̄0 + s∂̄1) ◦ πR,(R+t)dt for s ∈ [0, 1]

composed with a homotopy between [∂̄1] and ∂̄1. This theorem is proved in chapter

4.

We call intersection of [∂̄0] with the zero section the moduli space of J ε holomorphic

graphs, Mε,[∂̄0],ER

g,k,E . This moduli space can be used instead of the moduli space of

holomorphic curves. By taking a smooth gluing of Mε,[∂̄0],ER

g,k,E , it can be regarded as

the moduli space of solutions to some perturbed ∂̄ equation. This is proved in chapter

4.



Chapter 2

Gluing

2.1 Introduction

The purpose of this chapter is to use quasi holomorphic graphs to construct J ε holo-

morphic curves for ε small enough. The plan is to glue together the model holomorphic

curves at vertices of the graph using the positioning of the graph as a guide. This

will result in approximately J ε holomorphic curves. We will see that the linearization

of a weakened ∂̄ equation at these approximately holomorphic curves is surjective,

and use this to prove that there are close by solutions. The structure of the moduli

space J ε holomorphic curves within this moduli space can then be found by purely

topological means.

Recall that we have a torus fibration

Tn −→ Tn ! Bn

↓ π

Bn

and a degenerating family of complex structures

J ε∂x = εJ∂x for ∂x ∈ ker(dπ)

21
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Giving Tn coordinates x ∈ Rn/Zn, there is a metric gε in which {∂xi , J
ε∂xi} gives

an orthonormal frame, and a flat connection, ∇ which preserves this frame. ∇ is not

torsion free, and most of the estimates for the behavior of holomorphic curves in this

chapter involve its torsion tensor.

T(v, w) := ∇vw −∇wv − [v, w]

For this reason the major technical assumption used in this chapter is that |T|
and |∇T| are bounded.

‖T‖∞ + ‖∇T‖∞ < c

This will automatically be true for reasonable choices of J on compact manifolds

or manifolds with cylindrical ends. Note that

‖T‖ε∞ < εc

‖∇T‖ε∞ < ε2c
(2.1)

Here the superscript ε denotes the norm using gε. For convenience, the ε will also

usually be omitted from notation in what follows.

2.2 The linearized ∂̄ operator, D∂̄,u

We are interested in holomorphic maps

u : S −→ Tn ! Bn

Here S denotes a Riemann surface with complex structure j. This map is holomorphic

if

∂̄(u) :=
1

2
(du + J ◦ du ◦ j) = 0
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We need an expression for the linearization of ∂̄ at a map u:

D∂̄,u : Ω0(S, u∗T (Tn ! Bn)) −→ Ω0,1(S, u∗T (Tn ! Bn))

D∂̄,u maps from sections of the bundle over S consisting of the pullback of the

tangent bundle of Tn ! Bn to antiholomorphic one-forms with values in this bundle.

As we have a canonical holomorphic frame for T (Tn ! Bn) we really have

D∂̄,u : Ω0(S, Cn) −→ Ω0,1(S, Cn)

Note that this is the linearization of ∂̄ restricted to curves with a fixed complex

structure. The variations from changing complex structures will be included at a

later point.

The trivial parallel transport provided by ∇ makes D∂̄,u relatively easy to define.

D∂̄,u(ξ) :=
d

dt

∣∣∣∣
t=0

(
∂̄ expu(tξ)

)

Lemma 2.2.1.
d

dt

∣∣∣∣
t=0

(d expu(tξ)) = ∇ξ + T(ξ, du)

Proof:

Define U : R × S −→ Tn ! Bn by

U(t, z) = expu(z) tξ

d

dt

∣∣∣∣
t=0

(d expu(tξ)) =
∂

∂t
(∂zU) (0, z)

= (∇ξ∂zU) (0, z)

= ∇∂zU(0,z)ξ + T (ξ, ∂zU(0, z))

= ∇ξ + T(ξ, du)

!
Lemma 2.2.1 allows us to compute an expression for D∂̄,u
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Proposition 2.2.2.

D∂̄,u(ξ) =
1

2
(∇ξ + J ◦ ∇ξ ◦ j) +

1

2
(T(ξ, du) + J ◦ T(ξ, du ◦ j))

Note that in the above expression for D∂̄,u, the only terms which change when we

change our map u are du and the torsion tensor, T, which depends on position. Thus

we have

Proposition 2.2.3. If u1 and u2 are two maps S −→ Tn ! Bn, then

∣∣(D∂̄,u1
− D∂̄,u2

)
(ξ)

∣∣ ≤ (|Tu1 − Tu2| |du1| + |Tu2 | |du1 − du2|) |ξ|

Note that in the above proposition, |du| indicates the size of du in the gε metric.

In order to get estimates comparing D∂̄,u and D∂̄,expuφ, it is necessary to estimate

|d(expu φ) − du|. In the proofs below, expu φ will often be abbreviated to uφ

Lemma 2.2.4.

|d(expu φ) − du −∇φ| ≤ (‖T‖∞ |φ| |du| + |∇φ|) e‖T‖∞|φ| − |∇φ|

In particular, if ‖T‖∞ |φ| < 1, then

|d(expu φ) − du| ≤ 3 ‖T‖∞ |φ| (|du| + |∇φ|)

Proof:

|duφ − du −∇φ| ≤
∫ 1

0

∣∣∣∣
d

dt
(dutφ) −∇φ

∣∣∣∣ dt (2.2)

∣∣∣∣
d

dt
(dutφ) −∇φ

∣∣∣∣ = |T(φ, dutφ)|

≤ ‖T‖∞ |φ| |dutφ|
(2.3)

d

dt
|dutφ| ≤ |∇φ| + ‖T‖∞ |φ| |dutφ| (2.4)

Integrating 2.4 for ‖T‖∞ |φ| > 0 gives
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|dutφ| ≤
(
|du| + |∇φ|

‖T‖∞ |φ|

)
et‖T‖∞|φ| − |∇φ|

‖T‖∞ |φ| (2.5)

Substituting the estimate of |duφ| from 2.5 into 2.3 and 2.2 gives the desired result,

|duφ − du| ≤ (‖T‖∞ |φ| |du| + |∇φ|) e‖T‖∞|φ| − |∇φ|

!
Lemma 2.2.4 and Proposition 2.2.3 give the following pointwise estimate for the

behavior of D∂̄,u. This will be used in Proposition 2.3.3 to bound
∥∥∥D∂̄,u(ξ) − D∂̄,uφ

(ξ)
∥∥∥

after appropriate norms for φ and ξ (which dominate the L∞ norm) have been chosen.

Proposition 2.2.5. If ‖T‖∞ |φ| < 1, then

∣∣∣D∂̄,u(ξ) − D∂̄,uφ
(ξ)

∣∣∣ ≤
(
|φ| ‖∇T‖∞ |du| + 3 ‖T‖2

∞ |φ| (|du| + |∇φ|)
)
|ξ|

2.3 Banach norms

It would be nice to have a Banach manifold structure on the space of maps we are

dealing with so that ∂̄ has a continuous derivative D∂̄,u. This section describes a local

Banach space structure on a finite codimension subset of maps close to a particular

map u. Later, in section 2.7, we will be able to describe a Banach manifold structure

on an open set of maps which contains the holomorphic curves. Consider the set of

maps

uφ := expu φ

u : S −→ Tn ! Bn

φ : S −→ u∗T (Tn ! Bn) = Cn

Recall that the linearization of ∂̄ at u is given by

D∂̄,u(ξ) =
1

2
(∇ξ + J ◦ ∇ξ ◦ j) +

1

2
(T(ξ, du) + J ◦ T(ξ, du ◦ j))

= ∂̄ξ +
1

2
(T(ξ, du) + J ◦ T(ξ, du ◦ j))
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The objective now is to choose a norm for ξ and D∂̄,u(ξ) so that D∂̄,u is continuous.

First we choose a metric on the Riemann surface S that satisfies the assumptions

listed in appendix C.2. The important properties of this metric are that it is in the

conformal class defined by the complex structure on S, and it gives the regions marked

as edges the standard metric on R/Z× (a, b). (For a discussion of the partitioning of

S into vertex and edge regions, see appendix C)

One important feature of such a metric on S is that for ε small enough, bounded

energy J ε holomorphic curves will have uniformly bounded derivatives.

The Banach spaces that we will use will be Sobolev spaces with exponential

weights Lp,δ
k with the norm

(‖ξ‖k,p,δ)
p =

∫

S

wδ
∑

|α|≤k

|Dαξ|p

The weight w on each cylindrical part is given by the exponential of the distance to

the edge of the cylinder, and 1 elsewhere. For D∂̄,u to be well behaved, we will choose

0 < δ < 1
2 .

We will consider D∂̄,u as a map

D∂̄,u : Lp,δ
1 (Ω0(S, Cn)) −→ Lp,δ(Ω0,1(S, Cn))

The following is a standard Sobolev embedding lemma:

Lemma 2.3.1. If p > 2, then on the unit disk the inclusion of Lp
1 into C0 is compact.

This implies a similar fact for S with the metric we have chosen:

Lemma 2.3.2. For 2 < p < ∞, there exists a constant cs so that

cs ‖ξ‖1,p,δ ≥
∥∥wδξ

∥∥
∞ ≥ ‖ξ‖∞

This implies the following proposition that tells us that D∂̄,uφ
is well behaved for

φ ∈ Lp,δ
1 small if |du| is bounded.
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Proposition 2.3.3. If ‖T‖∞ (cs ‖φ‖1,p,δ + 1) ≤ 1.

∥∥∥D∂̄,u − D∂̄,uφ

∥∥∥ ≤ cs (‖∇T‖∞ + 3 ‖T‖∞) ‖du‖∞ ‖φ‖1,p,δ

Moreover,

(D∂̄,u − D∂̄,uφ
) : Lp,δ

1 (Ω0(S, Cn)) −→ Lp,δ(Ω0,1(S, Cn))

is compact.

Proof:

Lemma 2.3.2 tells us that ‖T‖∞ |φ| < 1 so we can apply Proposition 2.2.5 which

tells us

∣∣∣D∂̄,u(ξ) − D∂̄,uφ
(ξ)

∣∣∣ ≤
(
|φ| ‖∇T‖∞ |du| + 3 ‖T‖2

∞ |φ| (|du| + |∇φ|)
)
|ξ|

We integrate this to obtain

∥∥∥(D∂̄,u − D∂̄,uφ
)(ξ)

∥∥∥
p,δ

≤
∥∥|φ| ‖∇T‖∞ |du| + 3 ‖T‖2

∞ |φ| (|du| + |∇φ|)
∥∥

p,δ
‖ξ‖∞

≤
(
(‖∇T‖∞ + 3 ‖T‖2

∞) ‖du‖∞ ‖φ‖p,δ

+ 3 ‖T‖2
∞ ‖du‖∞ ‖φ‖∞ ‖∇φ‖p,δ

)
‖ξ‖∞

≤ (‖∇T‖∞ + 3 ‖T‖∞) ‖du‖∞ ‖φ‖1,p,δ ‖ξ‖∞

Thus we see that (D∂̄,u−D∂̄,uφ
) : L∞ −→ Lp,δ is bounded. Therefore composing with

the compact inclusion Lp,δ
1 ↪→ L∞ from Lemma 2.3.2 gives a compact map.

!

Now we have seen that D∂̄,u : Lp,δ
1 −→ Lp,δ is quite well behaved near maps with

bounded derivatives.
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2.4 Model left inverse Q

Recall that as we sent ε to 0, the torsion tensor becomes smaller and D∂̄,u converges

to the linear ∂̄ operator. Consider the integrable problem

f : S −→ Cn/Zn

where S is a Riemann surface with punctures and f extends to a continuous map to

(CP 1)
n
. Consider the linearized ∂̄ operator

D∂̄,f := ∂̄ : Lp,δ
1 (S, Cn) −→ Lp,δ(Ω0,1(S, Cn))

It is a standard result that ∂̄ is Fredholm for the above spaces if δ /∈ 2πZ (see [4]).

In particular, we will be interested in the case where 0 < δ < 1
2 .

Assume that our domain S has at least one puncture. Then a section φ ∈
Lp,δ

1 (S, Cn) must approach 0 at that puncture. The kernel of ∂̄ consists of holo-

morphic maps S −→ Cn that vanish at punctures. Therefore ∂̄ restricted to Lp,δ
1 is

injective. As ∂̄ is Fredholm, this means that there must exist a bounded left inverse

Q : Lp,δ(Ω0,1(S, Cn)) −→ Lp,δ
1 (S, Cn)

Q ◦ ∂̄ = Identity

A choice of left inverse Q is equivalent to a choice of projection πQ := ∂̄ ◦ Q onto

∂̄(Lp,δ
1 ). This is the same as choosing a kernel for Q. The kernel of Q is dual to the

cokernel of ∂̄.

An antiholomorphic one form ν ∈ Lp,δ(Ω(S, Cn)) is in ∂̄(Lp,δ
1 ) for 0 < δ < 1

2 if and

only if, ∫

S

ν ∧ θ = 0

for all holomorphic one forms θ with at most simple poles at the punctures of S.

Calling the space of such holomorphic one forms Λ1,0(S), we see that the cokernel of
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∂̄ is equal to

ker πQ = homC(Λ1,0(S), Cn)

where the above isomorphism is given by

ν .→
∫

S

ν ∧ · ∈ homC(Λ1,0(S), Cn)

In section 2.9 we will see some extra compatibility constraints that we want Q to

satisfy. To do this, it will be important to choose the kernel of πQ to consist of smooth

one forms supported on some subsets of the Riemann surface S. The characterization

above tells us we are able to choose one forms with support in any given open set in

S which span ker πQ. The space of such choices is convex, so there is no obstruction

to choosing a continuous family such left inverses Q. If we restrict attention to model

Riemann surfaces with a compact subset of (non nodal) complex structures, then this

family can be chosen to be uniformly bounded.

2.5 Quasi holomorphic model curves

We now define a new type of quasi holomorphic model curve which will exist for

complex structures where there are no genuine holomorphic model curves. Given any

smooth map F : S −→ Cn/Zn which consists of trivial holomorphic cylinders close

to punctures of S, consider the map

f = F − Q(∂̄F )

f is characterized by having asymptotics given by the chosen trivial holomorphic

cylinders and satisfying the equation

πQ∂̄f := ∂̄ ◦ Q(∂̄f) = 0

We call solutions of the above weakened ∂̄ equation quasi holomorphic. We can

measure how far such a quasi holomorphic map is from being holomorphic by taking
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∂̄ of it

∂̄f ∈ ker πQ ⊂ Lp,δ

We can define the finite dimensional ∂̄0 equation on the space of quasi holomorphic

maps by identifying kerπQ with homC(Λ1,0, Cn)

∂̄f = ∂̄0f ∈ homC(Λ1,0, Cn)

Recall that the definition of vertices of quasi holomorphic graphs given in section

1.1.4 involved an equivalence class [p, f ], where p is a point in Tn!Bn, and f : SV −→
Cn/Zn satisfies

lim
t→∞

|f(θ, t) − ζ − θα− tJα| et = 0 on edge regions surrounding punctures

α ∈ Zn, ζ ∈ Cn/Zn

Imaginary part of

(
∑

punctures

ζi

)
= 0

Here SV is created from the vertex region V ⊂ S by adding semi infinite cylinders

with the coordinates (θ, t) ∈ R/Z × (0, R). These model curves are considered up to

the following equivalence relation:

[p, f ] = [p + x, f − x + g]

g : SV −→ Cn, x ∈ Rn/Zn

g = 0 at punctures

Given such an equivalence class [p, F ] and a point p, there is a unique quasi

holomorphic model curve f so that [p, F ] = [p, f ]. We can consider the alternative

definition for quasi holomorphic model curves to be an equivalence class [p, f ] where

f is a quasi holomorphic map satisfying a normalizing condition as above and [p, f ]
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is defined up to the equivalence relation

[p, f ] = [p + x, f − x]

x ∈ Rn/Zn

2.6 Exponentiating out model curves

This section describes how to take a quasi holomorphic model curve

f : S −→ Cn/Zn

πQ ◦ ∂̄f = 0

and exponentiate it out to a map G(f) : S −→ (Tn ! Bn, J ε) which consists of trivial

holomorphic cylinders outside a compact set and satisfying

‖dG(f) − df‖p,δ ≈ 0

Consider the end of a model curve f : S −→ Cn/Zn near a puncture zi. After

we give a neighborhood of zi its cylindrical coordinates (θ, t) ∈ R/Z × [0,∞), there

exists a trivial holomorphic cylinder Ci so that

e3t |f(θ, t) − Ci(θ, t)|

and

e3t |d(f(θ, t) − Ci(θ, t))|

are uniformly bounded for t ≥ 1. Note that these cylindrical coordinates come from

an edge-vertex decomposition E as described in appendix C.

Lemma 2.6.1. There exists a constant c(E, g) so that all quasi holomorphic model

curves f with energy less than E, and genus less than g, satisfying πQ∂̄f = 0 and
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∥∥∂̄f
∥∥ ≤ 1, satisfy the following

e3t |f(θ, t) − Ci(θ, t)| ≤ c(E, g)

and

e3t |d(f(θ, t) − Ci(θ, t))| ≤ c(E, g)

for all t ≥ 1

Proof:

To see this, note that such a cylinder C can be found using the removable sin-

gularity theorem on f considered as a map to (CP 1)
n
. f is holomorphic on this E

edge region, and has energy controlled by E and the L2 norm of ∂̄f . Note that the

energy of f bounds the number of punctures, and the genus is bounded by g so the

E vertex regions on which ∂̄f is supported are bounded, and the L2 norm of ∂̄f is

controlled by our Lp,δ norm. The proof of Proposition 3.2.4 can then be used to bound

df on the interior of our E edge region. The function d(f − C) is then holomorphic,

bounded for t ≥ 1
2 and converges to 0 as t → ∞. The Schwartz lemma then implies

that e2πtd(f − C) must be uniformly bounded for t ≥ 1. Integrating this gives that

e2πt(f − C) is also uniformly bounded for t ≥ 1.

!
In what follows we will first modify f so that it coincides with a trivial holomor-

phic cylinder close to each of its punctures, and then exponentiate out the resulting

modified model curve. Choose a smooth cutoff function

ψ : R −→ [0, 1]

so that ψ(t) = 0 for t ≤ 0, ψ = 1 for t ≥ 1, and |dψ| ≤ 2. We can use ψ to obtain a

cutoff function in cylindrical coordinates around the ith puncture

ψR,i : R/Z × (0,∞) −→ [0, 1]

ψR,i(t, θ) := ψ (t − (R + 1))
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Extend ψR,i to be 0 elsewhere Now modify f close to punctures

f̃ := (1 −
∑

i

ψR,i)f +
∑

i

ψR,iCi

We can modify f similarly close to all other punctures. What we obtain is a map

f̃ : S −→ Cn/Zn which consists of trivial holomorphic cylinders close to punctures.

In particular, the edges regions surrounding punctures in the decomposition ER de-

scribed in appendix C are trivial holomorphic cylinders.

Lemma 2.6.2. There exists a constant c(E, g) < ∞ so that all quasi holomorphic

model curves f of energy less than E and genus g satisfy

∥∥∥f − f̃
∥∥∥

1,p,δ
≤ c(E, g)e−2R

when we use the cutoff functions ψRi.

We want now to take f̃ and exponentiate it out to an approximately J ε holo-

morphic curve. Taking expp f̃ is not quite good enough as the ends of the resulting

curve will not in general be trivial holomorphic cylinders. This is because the trivial

holomorphic cylinders around the punctures of f̃ are given by

Ci(θ, t) := θαi + tJαi + ζi

and ζi may not be a multiple of αi.

Define the function ψζ :=
∑
ζiψR,i, and exponentiate f out from exppi

ψζ instead.

G([p, f ]) := expexpp ψζ
f̃ − ψζ

Note that although each ζi depends on the S1 choice of cylindrical coordinates for

the edge region around the puncture at zi, G([p, f ]) is independent of this choice, and

well defined depending only on the equivalence class [p, f ] so long as quasi holomor-

phic representatives are used. The exponentiations in the above expression can be

understood after identifying Tp(Tn ! Bn), J ε with Cn/Zn.
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For notational convenience, when the point p from which we exponentiate out

from is not important, we will often write

G(f) := G([p, f ])

Note that G([p, f ]) restricted to the ER edge regions surrounding punctures of S

coincides exactly with the trivial holomorphic cylinders that attach to the model

curve [p, f ] in J ε quasi holomorphic ER graphs, as described in section 1.1.4. This

means that we can extend G to Qε,ER. Explicitly, for a quasi holomorphic graph u,

G(u) restricted to edge regions is given by the associated trivial holomorphic cylinders,

and G(u) restricted to a vertex region V with model curve [p, f ] is given by

G(u)|V := G([p, f ])|V

The next step is to show that ∂̄G(f) is close to ∂̄f . For this to be true when

T '= 0, the parts of G(f) which are not trivial holomorphic cylinders must not be

too far apart. The space of vertex model curves appearing in Qε,ER
g,k,E is contained in a

compact set of model curves and independent of ε, so there is a bound independent of

ε on the diameter of model curves restricted to vertex regions. (Recall that Qε,ER
g,k,E is a

subset of the space of J ε quasi holomorphic graphs u with edge-vertex decompositions

given by ER, genus g, k punctures, and energy ≤ E which satisfy
∥∥∂̄0u

∥∥ < 1. The

closure of this set of model curves f will then have bounded energy, genus less than

g, and satisfy πQ∂̄f = 0 and
∥∥∂̄0f

∥∥ ≤ 1. As the number of punctures is bounded by

the energy for maps to Cn/Zn, this makes this set of curves compact. )

Lemma 2.6.3. For quasi holomorphic model curves f appearing in Qε,ER
g,k,E, there

exists a constant c < ∞ so that for ε small enough dependent on R,

‖d (G(f)) − df‖p,δ ≤ ce−R

Proof:

This uses the fact, proved in section 3 that the energy of a quasi holomorphic graph

bounds the energy of its model curves. dG(f) = df̃ on ER edge regions surrounding
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punctures where f̃ and G(f) are both trivial holomorphic cylinders. On the rest of our

Riemann surface S, the Lp,δ norm is controlled by the L∞ norm, and f is bounded.

First, recall that Lemma 2.2.4 tells us that

|d(expu φ) − du −∇φ| ≤ (‖T‖∞ |φ| |du| + |∇φ|) e‖T‖∞|φ| − |∇φ|

By using Lemma 2.2.4 with u = p and φ = ψζ , noting that ψζ and dψζ are

bounded, we can get
∣∣d expp(ψζ) − dψζ

∣∣

as small as we like by choosing ε small and recalling that ‖T‖∞ is proportional to ε.

Now by using Lemma 2.2.4 with u = expp(ψζ) and φ = f̃ −ψζ noting that every term

and its derivative are bounded

∣∣∣dG(f) − d(expp(ψζ) − d(f̃ − ψζ))
∣∣∣

can be made as small as we like by choosing ε small. Putting these two expressions

together, we can make ∣∣∣dG(f) − d(f̃)
∣∣∣

as small as we like, and the result follows after using Lemma 2.6.2.

!

2.7 Banach Structure

Define BE(S, Cn) ⊂ Lp,δ
1 (S, Cn) to consist of sections φ : S −→ Cn so that the average

of φ around each circle at the center of a E edge region is 0

∮
φ = 0 at center of E edges

This is well defined because φ ∈ Lp,δ
1 must be continuous.
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Our space of maps will be modelled on

BE(S, Cn) −→BE

↓

Qε,E
g,k,E

From a quasi holomorphic graph u ∈ Qε,E
g,k,E with domain S and a section φ ∈

BE(S, Cn), we can create a map S −→ Tn ! Bn by

u, φ .→ expG(u) φ

Lemma 2.7.1. This map is injective restricted to u ∈ Qε,ER
g,k,E and ε(‖φ‖1,p,δ +1) small

enough.

Proof:

Suppose that we have f = expu φ for ε ‖φ‖1,p,δ small. We need to show that if

f = expũ φ̃ for ε
∥∥∥φ̃

∥∥∥
1,p,δ

small, then u = ũ and φ = φ̃. First note that Lemma 2.3.2

tells us that ‖φ‖∞ is controlled by ‖φ‖1,p,δ. An application of Lemma 2.2.4 gives that

∂

∂t
expp(t) φ ≈ ∂

∂t
p(t) and

∂

∂t
expp φ(t) ≈ ∂

∂t
φ(t)

for ε |φ| small enough. This implies that moving the cylinder which we exponentiate

out from to obtain our map will change the average of the required φ in the opposite

direction, so for ε ‖φ‖1,p,δ small enough, the trivial holomorphic cylinders representing

the edges of u and φ restricted to these edge regions are uniquely determined by the

requirement that the average of φ around the middle of edge regions is 0.

As explained in Appendix C.3, for ε small enough, once we know the edges of a

graph u ∈ Qε,ER
g,k,E approximating f in this way, the vertex model curves are determined

uniquely, so we have u determined uniquely for ε(‖φ‖1,p,δ +1) small enough and hence

φ is also determined uniquely because of the above estimate.

!
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2.8 Gluing map

We now wish to describe a map, which we’ll call dGER which takes variations ξi ∈
Lp,δ

1 (SVi , Cn) of the model curves at the vertices Vi of some quasi holomorphic ER

graph u with domain S and glues them together to a variation over S in Lp,δ
1 (S, Cn),

dGER : ⊕verticesL
p,δ
1 (SVi , Cn) −→ Lp,δ

1 (S, Cn)

To start off, ξi can be considered as a variation over the vertex region Vi ⊂ S and

the edges surrounding it without alteration. If ξi and ξj are the variations coming

from the vertices at either end of a ER edge region, dGER averages them over the E

edge region containing this ER edge using a cutoff function. Choose a cutoff function,

ρR : [R, R] −→ [0, 1]

so that ρR = 1 near −R and 0 near R, |dρR| ≤ 1
R and ρR(t) + ρR(−t) = 1. In

cylindrical coordinates centered over the center of an edge traveling from vertex i to

vertex j,

dGER(⊕ξ)(θ, t) = ρR(t)ξi(t, θ) + ρR(−t)ξj(θ, t)

Note that these cylindrical coordinates exist, because ER edge regions consist of the

subsets R/Z × (a + R, b − R) ⊂ R/Z × (a, b) of E edge regions.

We can define dGER on any set of sections dξi of T ∗Si ⊗ Cn analogously. Thus, it

makes sense to talk of dGER applied to ⊕dξi or ⊕∂̄ξi.
The fact that the cutoff function satisfies dρ ≤ 1

R implies the following lemma.

Lemma 2.8.1. If ξi ∈ Lp,δ
1 ,

‖d(dGER(⊕ξi)) − dGER(⊕dξi)‖p,δ ≤
1

R
‖⊕ξi‖p,δ

We now want to define a cutting map C0 which is an approximate right inverse

to dGER, which we will then use to construct an exact right inverse, CER. Recall that

a subset of the model domain SV can be identified with the vertex region V and the

edges regions surrounding it. Define C0 of a section ξ ∈ Lp,δ to be ξ cut off half way
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along each edge and considered as a section over SV . So C0 gives a bounded map

C0 : Lp,δ(S) −→ ⊕verticesL
p,δ(SVi)

Lemma 2.8.2. There exists a right inverse CER to

dGER : ⊕iL
p,δ(SVi) −→ Lp,δ(S)

with

‖CER‖ ≤ 2

Proof:

‖dGER ◦ C0(ξ) − ξ‖p,δ ≤
1

2
‖ξ‖p,δ

so GER ◦ C0 is invertible, with ‖(dGER ◦ C0)−1‖ ≤ 2. Define

CER := C0 ◦ (dGER ◦ C0)
−1

CER is a right inverse to dGER with ‖CER‖ ≤ ‖C0‖ ‖dGER ◦ C0‖ ≤ 2

!
We can construct an approximate left inverse to ∂̄ restricted to BE(S, Cn) using

the left inverse Q considered in section 2.4. In particular, consider the map

dG ◦ Q ◦ C : Lp,δ −→ Lp,δ
1

Lemma 2.8.3.

dG ◦ Q ◦ C(Lp,δ(Ω0,1(S, Cn))) = BE(S, Cn) ⊂ Lp,δ
1 (S, Cn)

Proof:

Recall that Q ◦ ∂̄ = Id on Lp,δ
1 , and the image of C consists of sections in Lp,δ

that vanish half way along edges. This means that the image of Q ◦C at each vertex

model curve is all sections of Lp,δ that are holomorphic everywhere past half way

along the edges. Therefore, if the circle halfway along an edge is given coordinates θ,
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all the non positive Fourier coefficients of φi(θ) and nonnegative Fourier coefficients

of φj(θ) will vanish where φi and φj denote the sections over the vertex model curves

at each end of the edge. Any section in Lp,δ
1 over the interior of these vertex model

curves which obeys these conditions at its boundary circles can be extended to a

section in the image of Q ◦ C. Applying dG to these gets a section which restricts to
1
2(φ1(θ) + φ2(θ)). As φ1 can be anything on one side and φ2 is unrestricted on the

other, the only restriction that the image of dG ◦Q◦C obeys is the average of sections

over these circles at the center of edges is 0. This is the condition that dG ◦ Q ◦ C is

in BE(S, Cn).

!

2.9 Self similarity of Q

Lemma 2.9.1. If S has at least one puncture or ER edge region, there exists a bounded

left inverse to ∂̄ restricted to BER(S, Cn),

QER : Lp,δ(Ω0,1(S, Cn)) −→ BER(S, Cn)

so that ‖QER‖ restricted to connected components of Deligne Mumford space is uni-

formly bounded. Moreover ker QER can be chosen to consist of smooth one forms

supported in E vertex regions of S.

Proof:

The proof is by induction on the possible number of internal edges of S, which is

k − 3 + 3g where S has genus g and k punctures.

First, note that ∂̄ is injective and Fredholm on BER(S, Cn), so there must be some

bounded left inverse QER . The extra cokernel created by restricting ∂̄ to BER(S, Cn)

can be spanned by Cn⊗Span{∂̄fi} where fi is some real valued function that is equal

to 1 on the ith internal E edge region that contains a ER edge region and 0 on all

other edges. So as when we were defining Q, the kernel of QER can be chosen to

consist of smooth one forms which are supported in E vertex regions.

Also note that we can choose QER to depend continuously on S when restricted
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to complex structures where the ER edge regions have fixed combinatorics, so QER

is uniformly bounded when restricted to any compact subset of Deligne Mumford

space with nodal Riemann surfaces removed. We now need to worry about Riemann

surfaces with very long internal E edges.

The case to start off the induction is the 3 punctured sphere, with (k−3+3g) = 0.

There is only one of these, so we have no trouble choosing QER bounded.

Suppose that ‖QER‖ ≤ cm for all Riemann surfaces S with (k − 3 + 3g) ≤ m for

some R greater than Rm+1 from axiom 5 in Appendix C. This means that ER edge

decompositions will be compatible with cutting and gluing on Riemann surfaces with

(k − 3 + 3g) ≤ (m + 1)

Now consider QER restricted to surfaces S with (k − 3 + 3g) = m + 1. First,

note that QER restricted to these surfaces with all internal E edges bounded by 2l is

uniformly bounded, so we need to consider a surface with at least one edge longer

than 2l. Consider the map

dGEl
◦ QER ◦ CEl

for some l ≥ R. Note that as in the proof of Lemma 2.8.3, the image of this is

contained in BER(S, Cn). The QER in the above expression acts on sections over

Riemann surface with (k − 3 + 3g) ≤ m, so it is bounded by cm. Also recall that

‖C‖ ≤ 2. Therefore, we can use Lemma 2.8.1 to say

∥∥∂̄ ◦ dGEl
◦ QER ◦ CEl

− dGEl
◦ ∂̄ ◦ QER ◦ CEl

∥∥ ≤ 2

l
cm

note that π := dGEl
◦ ∂̄ ◦QER ◦CEl

is a projection, as the projection ∂̄ ◦QER preserves

the image of C and C ◦ dG is the identity restricted to the image of C. Also note

that QER ◦ CEl
◦ π = QER ◦ CEl

. So by choosing l ≥ 4cm, we get

∥∥∂̄ ◦ dGEl
◦ QER ◦ CEl

◦ π − π
∥∥ ≤ 1

2
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Therefore π ◦ ∂̄ is invertible and bounded below by 1
4cm

, so ∂̄ has a left inverse

QER = (π ◦ ∂̄)−1 ◦ π

bounded by 8c2
m.

Note that the QER constructed this way satisfies

ker QER = dGEl
(ker QER)

so the ker QER is spanned by smooth one forms with support inside E vertex regions.

The lemma is now proved by induction, and noting that ‖QER‖ can be chosen smaller

than
∥∥QER′

∥∥ for R′ ≥ R.

!

Proposition 2.9.2. We can choose a left inverse to ∂̄,

QER : Lp,δ(Ω0,1(S, Cn)) −→ BER(S, Cn)

so that

1.

ker Q ⊂ ker QER2
⊂ ker QER1

for all R2 ≥ R1

2. QER depends smoothly on the complex structure of S in regions where the com-

binatorics of the ER edge decomposition doesn’t change.

3. There exists a series of constants cm < ∞ so that if S has genus g and k

punctures and (k − 3 + 3g) ≤ m, then

‖QER‖ ≤ eRδcm

4. There exists a series of constants Rm < ∞ so that if S satisfies (k−3+3g) ≤ m,
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ker QER is self similar for R ≥ Rm, in the sense that

ker QER = dGER(ker QER) = dGER (ker Q)

Proof:

We construct QER more carefully from the QE discussed in Lemma 2.9.1. We

know that QER must equal QE restricted to the image ∂̄(BE(S, Cn)). Recall that we

decided to span the extra cokernel of ∂̄ created by restricting to BE(S, Cn) by taking

Cn ⊗ Span{∂̄fi} where fi is some smooth real valued function equal to 1 on the ith

edge and vanishing on all other E edge regions. Actually, we can construct ker QE to

contain Cn ⊗ Span{∂̄fi} where fi is one on the ith (not necessarily internal) E edge,

and vanishes on all other E edges. These fi should obey one linear constraint that
∑

fi = 1. These can easily be constructed to be self similar in the sense that

{∂̄fi} ⊂{ dGER(⊕∂̄fj)} for all R

As ker QE is finite dimensional and just consists of smooth one forms, we can use

the L2 metric on it, and choose ker QER to be the orthogonal compliment in ker QE

of ker QE ∩ ∂̄(BER(S, Cn)). As we chose our fi to be self similar, there exists some

constant c (depending on (k − 3 + 3g)) so that if fi is one on the ith edge which has

length R,

‖fi‖1,p,δ ≤ ceδR
∥∥∂̄fi

∥∥
p,δ

The projections defined by ∂̄ ◦QE and the complimentary projection onto kerQE are

controlled by ‖QE‖, which Lemma 2.9.1 tells us is uniformly bounded depending on

(k − 3 + 3g). Therefore the QER we’ve defined satisfies

‖QER‖ ≤ cmeδR for (k − 3 + 3g) ≤ m

As noted in the end of the proof of Lemma 2.9.1, there exists an l(m, R) so that

ker QER = dGEl
(ker QER) for l ≥ l(m, R) and (k − 3 + 3g) ≤ m
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As we chose the functions fi to be self similar, and the metric for taking the orthogonal

compliment is self similar, this tells us that there exists some Rm so that

ker QER = dGER(ker QER) for all R ≥ Rm and (k − 3 + 3g) ≤ m

Note that we can define

Q = lim
R→∞

QER

so Q = QER on surfaces with no internal ER edges. Therefore the last property stated

is satisfied. The first two properties are satisfied by construction.

!
Define the projection

πQ,ER := ∂̄ ◦ QER

For R large enough, the above proposition implies that kerπQ,ER = dGER(ker πQ).

This is important, because then we can use Lemma 2.6.3 to say that we can make

πQ,ER∂̄G
(
Qε,ER

g,k,E

)
as small as we like by choosing R large and ε small. The next step

is to use the implicit function theorem to modify G to G∞ so that

πQ,ER ∂̄G∞ = 0

2.10 Implicit function theorem

We want now to modify the gluing map G to G∞ so that for any quasi holomorphic

graph u ∈ Qε,ER
g,k,E,

πQ,ER(∂̄(G∞(u))) = 0

We do this iteratively. Each iteration will be of the form

Gk(u) = expG(u) φk

where

φ0 = 0
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φk+1 = φk − QER(∂̄(Gk(u)))

In order to prove that this sequence of maps will converge to one with the desired

properties, we need to examine how ∂̄ expG(u) φ changes with φ.

Lemma 2.10.1. For quasi holomorphic graphs u ∈ Qε,ER
g,k,E,

∥∥∥∥
d

ds
d(expG(u) φs) −

d

ds
(dφs)

∥∥∥∥
p,δ

≤ c

∥∥∥∥
dφs

ds

∥∥∥∥
1,p,δ

where c can be made arbitrarily small by choosing ε ‖φs‖1,p,δ small.

Proof:

define

F (s, t) = expG(u) tφs

dF (s, t) = d(expG(u) tφs)

We are interested in ∂
∂sdF (s, 1).

Using Lemma 2.2.1
∂

∂t
dF = d(φs) + TF (φs, dF )

so

∣∣∣∣
∂2

∂t∂s
dF − ∂

∂s
d(φs)

∣∣∣∣ =

∣∣∣∣
∂2

∂s∂t
dF − ∂

∂s
d(φs)

∣∣∣∣

≤ |∇T|
∣∣∣∣
∂F

∂s

∣∣∣∣ |φs| |dF | + ‖T‖∞

∣∣∣∣
∂

∂s
φs

∣∣∣∣ |dF |

+ ‖T‖∞ |φs|
∣∣∣∣
∂

∂s
dF

∣∣∣∣

Applying Lemma 2.2.4 along with the observation ‖T‖∞ |dφs| ≤ 1 if ε ‖φs‖1,p,δ is

small enough gives

|dF (s, t)| ≤ 4(|dF (s, 0)| + |d(φs)|)

Note that Lemma 2.2.4 is valid regardless of the domain of u. Using this with
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u(s) = F (s, 0) = G(u) and φ(s) = φs, and the same assumption that

‖T‖∞ |φs| ≤ 1

gives ∣∣∣∣
∂F

∂s

∣∣∣∣ ≤ 3

∣∣∣∣
∂

∂s
(φs)

∣∣∣∣ = 3

∣∣∣∣
∂φs

∂s

∣∣∣∣

∥∥∥∥
∂2

∂t∂s
dF − ∂

∂s
d(φs)

∥∥∥∥
p,δ

≤ 12 ‖∇T‖∞

∥∥∥∥
∂φs

∂s

∥∥∥∥
p,δ

‖φs‖∞ ‖dF (s, 0)‖∞

+ 12 ‖∇T‖∞

∥∥∥∥⊕
∂φs

∂s

∥∥∥∥
∞
‖φs‖∞ ‖d(φs)‖p,δ

+ 4 ‖T‖∞

∥∥∥∥
∂

∂s
φs

∥∥∥∥
p,δ

‖dF (s, 0)‖∞

+ 4 ‖T‖∞

∥∥∥∥
∂

∂s
φs

∥∥∥∥
∞
‖d(φs)‖p,δ

+ ‖T‖∞ ‖φs‖∞

∥∥∥∥
∂

∂s
dF

∥∥∥∥
p,δ

So by choosing ε small enough, we get

∥∥∥∥
∂2

∂t∂s
dF − ∂

∂s
d(φs)

∥∥∥∥
p,δ

≤ c1

∥∥∥∥
∂φs

∂s

∥∥∥∥
p,δ

+ c2

∥∥∥∥
∂

∂s
dF

∥∥∥∥
p,δ

for c1 > 0 and c2 > 0 as small as we like. Integrating this, we can bound
∥∥ ∂
∂sdF

∥∥
p,δ

by 2
∥∥∂φs

∂s

∥∥
1,p,δ

, and then integrating again gives

∥∥∥∥
∂

∂s
dF (s, 1) − ∂

∂s
d(φs)

∥∥∥∥
p,δ

≤ c

∥∥∥∥
∂φs

∂s

∥∥∥∥
1,p,δ

for c > 0 as small as we like.

!
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Recall that we have defined

Gk(u) = expG(u) φk

where

φ0 = 0

φk+1 = φk − QER(∂̄(Gk(u)))

Proposition 2.10.2. For quasi holomorphic graphs u ∈ Qε,ER
g,k,E, it is possible to choose

ε > 0 small enough and R large enough that φk form a Cauchy sequence. In the limit,

G∞(u) = expG(u) φ∞ satisfies

πQ,ER(∂̄(G∞(u))) = 0

Moreover, this is the unique solution to the above equation for maps of the form

expG(u) φ for φ ∈ BER(S, Cn) with ‖φ‖1,p,δ ≤ 1. By choosing ε and R, it can be

arranged that ‖φ∞‖1,p,δ is as small as desired.

Proof:

Given any constant 0 < c < 1, we can also choose ε and R so that Lemma 2.6.3

gives that
∥∥πQ,ER(∂̄G(u))

∥∥ ≤ c

2 ‖QER‖

this is because the left hand side shrinks with R faster than e−(2−δ)R and Proposition

2.9.2 tells us that ‖QER‖ grows like eδR and δ < 1
2 .

Choose ε small enough that Lemma 2.10.1 can be used to show that

∥∥∥∥
d

ds
d(expG(u) φs) −

d

ds
(dφs)

∥∥∥∥
p,δ

≤ 1

2

∥∥∥∥
dφs

ds

∥∥∥∥
1,p,δ

(2.6)
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for ‖φ‖1,p,δ ≤ 1. In particular, this means that if ‖φ‖1,p,δ +
‖ξ‖p,δ

‖QER‖
≤ 1, then

∥∥∂̄ expG(u)(φ+ QERξ) − ∂̄ expG(u) φ− ξ
∥∥

p,δ
≤ 1

2
‖ξ‖p,δ

This also implies that any solution with ‖φ‖1,p,δ ≤ 1 will be unique.

Suppose that
∥∥πQ,ER(∂̄Gk(u))

∥∥ ≤ 2−kc

2 ‖QER‖

‖φk‖1,p,δ ≤ c(1 − 2−k)

Then
∥∥πQ,ER(∂̄Gk+1(u))

∥∥ ≤ 2−k−1c

2 ‖QER‖

‖φk‖1,p,δ ≤ c(1 − 2−k−1)

Therefore the above inequalities hold by induction, and the proposition is proved.

!

To summarize, what we have now is a map G∞ which takes quasi holomorphic

graphs in Qε,ER
g,k,E and produces curves satisfying the equation

πQ,ER(∂̄(G∞(u))) = 0

To find genuine holomorphic curves, we also want to solve the equation

∂̄1 := (Id − πQ,ER)(∂̄(G∞(u))) = 0

Note that (Id − πQ,ER) projects onto a finite dimensional space, so if we can prove

that (Id−πQ,ER)∂̄G∞ is continuous, then solutions of the above equation can be found

by topological methods.
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2.11 Continuity of G∞

The strategy for proving that G∞ is continuous will be to check that for every u0 ∈
Qε,ER

g,k,E there will exist a neighborhood u0 ∈ U ⊂ Qε,ER
g,k,E and a continuous family of

maps fu for u ∈ U so that

fu0 = G∞(u0)

and fu = expG(u) φu for some φu ∈ BE(S, Cn)

Then applying the iteration procedure from the proof of Proposition 2.10.2 will give

us that G∞ must be continuous.

To say what we mean by ‘continuous’, we may want to use a weaker metric from the

canonical one we have been using up until now so that the space of holomorphic curves

can be compactified. An appropriate metric G must satisfy the following properties

listed in Appendix B. Essentially, the torus action and J should be well behaved

in the G metric. In particular, the canonical frame for the tangent space defined

by the torus action and J should be bounded and have its derivatives bounded. The

additional assumption that the curvature of G is bounded gives the following estimate:

distG(expp1
φ, expp2

φ) ≤ distG(p1, p2)e
c|φ|

Also, the change in the torsion tensor T measured in the canonical metric should be

bounded by distance in G, ie

|Tp1 − Tp2| ≤ c distG(p1, p2)

To define the meaning of a ‘continuous’ family of maps from Riemann surfaces

with changing conformal structures, we use the following somewhat ad hoc definition.

Definition 2.11.1. Say a sequence of maps fi : Si −→ Tn ! Bn converges to f :

S −→ Tn ! Bn if

1. Si converges to S in Deligne Mumford space
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2. There exists a R ≥ 0 so that all ER edge regions in S are infinite cylinders and

a N ∈ Z so that for all i ≥ N there exist identifications of the ER vertex regions

of Si with the ER vertex regions of S so that in these identifications

(a) the complex structures ji converge to j in the sense that

‖ji − j‖1,p,δ converges to 0

(b) fi converges to f in on these ERi vertex regions in the sense that

‖distG(fi, f)‖∞ + ‖dfi − df‖p,δ converges to 0

(c) If a ER edge region of Si is conformal to R/Z × (0, 2l), then identifying

the first half of this with the subset R/Z × (0, l) ⊂ R/Z × (0,∞) of the

corresponding ER edge region of S, then fi converges on this subset to f

as above in the sense that

‖distG(fi, f)‖∞ + ‖dfi − df‖p,δ converges to 0

We will call a family of quasi holomorphic graphs u for which the combinatorics

of the E edge markings is constant continuous if G(u) is continuous. Note that this

means that a continuous family of quasi holomorphic graphs is characterized by

1. The complex structure of the domain changes continuously

2. The position of edge holomorphic cylinders change continuously in the G metric

3. The relative positioning of the ends of edges at a vertex changes continuously

in the canonical metric.

We now consider the effect on ∂̄f of small changes of complex structure which

can be considered as changing j on the domain of f . We will deal separately with

‘large’ changes of complex structure which resolve nodes into long edge regions later.

Consider a smooth family jt of complex structures on S.
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d

dt
(∂̄jtf) =

d

dt
(
1

2
(df + Jdfjt)

=
1

2
Jdf

djt

dt

The following lemma is immediate.

Lemma 2.11.2. If ‖df‖∞ is bounded, then

∥∥∥∥
d

dt
(∂̄jtf)

∥∥∥∥
p,δ

≤ ‖df‖∞

∥∥∥∥
djt

dt

∥∥∥∥
p,δ

If ‖df1 − df2‖p,δ is bounded, then

∥∥∥∥
d

dt
(∂̄jtf1) −

d

dt
(∂̄jtf2)

∥∥∥∥
p,δ

≤ ‖df1 − df2‖p,δ

∥∥∥∥
djt

dt

∥∥∥∥
∞

This is enough to control the change in ∂̄ of any of the maps which we are interested

in for small changes of complex structure that do not change the nodal structure of

our domain, as we can choose representatives for these variations in complex structure

with bounded L∞ and Lp,δ norms. Variations of complex structure near the boundary

of the Deligne Mumford space are taken care of by Lemma 2.11.5.

Lemma 2.11.3. Given any ER edge region R/Z × (0, l) and family of trivial holo-

morphic cylinders continuous in the G metric,

Cv(θ, t) := exppv
(θα + tJ εα) for (θ, t) ∈ R/Z × (0, l)

the family

expCv
φ

is continuous for any φ ∈ Lp,δ
1

Proof:
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define

Fv(s) = expCv
sφ

dFv(s) = d(expCv
sφ)

Using Lemma 2.2.1
∂

∂s
dFv = φ+ TFv(φ, dFv)

so using the assumptions on G listed in Appendix B

∣∣∣∣
∂

∂s
dFv1 −

∂

∂s
dFv2

∣∣∣∣ ≤ εc distG(Fv1 , Fv2) |φ| |dFv1 | + ‖T‖∞ |φ| |dFv1 − dFv2 |

≤ εc distG(Cv1 , Cv2)e
εc|φ| |φ| |dFv1 | + ‖T‖∞ |φ| |dFv1 − dFv2 |

Integrating this using dCv1 = dCv2 for the initial conditions and noting that |φ| is

bounded by ‖φ‖1,p,δ gives that expCv
φ is a continuous family.

!
The same proof gives the following

Lemma 2.11.4. If p(v) is a family of points continuous in the G metric and φ ∈ Lp,δ
1

is defined on some ER vertex region, then the family of maps defined on this ER vertex

region by

expp(v) φ

is continuous.

The following lemma deals with ‘large’ changes in complex structure that resolve

nodes in our domain Riemann surfaces.

Lemma 2.11.5. Take a trivial holomorphic cylinder

C(θ, t) = expp(θα + tJ εα) for (θ, t) ∈ R/Z × (0,∞)

of finite length in the G metric. Choose a smooth cutoff function ρ : R −→ [0, 1] so

that ρ(t) = 1 for t ≤ −1 and ρ(t) = 0 for t ≥ 1. Then for any φ1, φ2 ∈ Lp,δ
1 , the
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family

expC(θ,t)

(
ρ(t − l)φ1(θ, t) + ρ(l − t)φ2(2l − t)

)
for (t, θ) ∈ R/Z × (0, 2l)

is a continuous family when parametrized by the length of C restricted to (t, θ) ∈
R/Z × (0, 2l) in the G metric plus l

1+l .

Proof:

Because multiplication by ρ and shifting are continuous operations on Lp,δ
1 we

know that (ρ(t − l)φ(θ, t) + ρ(l − t)φ2(2l − t)) will be continuous in l for l bounded.

Note also that the first half of this converges to φ1 on R/Z × (0,∞) and the second

half converges to φ2 on R/Z × (−∞, 0), reparametrizing from the other end of the

cylinder. The Lemma then follows from Lemma 2.10.1 and Lemma 2.11.3.

!

Proposition 2.11.6. For R large enough and ε small enough, G∞ is continuous at

regular points of Qε,ER
g,k,E around which the combinatorics of the ER edge markings do

not jump.

Proof:

Choose some graph u0 ∈ Qε,ER
g,k,E so that in a neighborhood of u0, the combina-

torics of ER edge markings do not change. We will show that G∞ is continuous at

u0. Consider the map fu0 := G∞(u0). We define a continuous family of maps fu

parametrized by quasi holomorphic graphs u in a neighborhood of u0. We do this

as follows. Consider the domain S of u0. We will only consider quasi holomorphic

graphs u with domains that have the same ER edge marking combinatorics, so we

have correspondences between the edge and vertex regions of S and those of u. We

then choose a family of maps identifying S with all infinite edge regions removed

with the corresponding regions in u. By choosing our neighborhood small enough,

we can choose this family continuous with the resulting family of complex structures

ju continuous using the Lp,δ
1 norm. We also choose these identifications so that they

continue as complex maps halfway along the remaining edges of u into the remaining

(infinitely long) edges regions of S.



2.11. CONTINUITY OF G∞ 53

We will define an attempt at fu, which we will call f̃u separately on each vertex

and edge region, and then smooth this together into fu using a cutoff function.

Now define f̃u on the internal edge regions of S which aren’t infinitely long and

all external edge regions as follows:

If fu0 = expCu0
φ

Define f̃u := expCu
φ

Above, Cu indicates the corresponding trivial holomorphic cylinder which is an edge

of u parametrized so that its center corresponds to the center of our edge region in

S. (Note that we might need to extend or shorten Cu to make this fit.)

Define f̃u on a neighborhood of vertex regions of S as follows: Choose the location

of a family of vertex model curves given by u to be p(u). We can choose p(u) to be

continuous when measured in the G metric.

If fu0 = expp(u0) φ

Define f̃u := expp(u) φ

Define f̃u on edge regions corresponding to internal pairs of infinitely long edge

regions of S as follows:

If fu = expC1
φ1 on one cylinder

and fu = expC2
φ2 on its mate

Define f̃u0(θ, t) = expCu0
(ρ(t − l)φ1(θ, t) + ρ(l − t)φ2(θ, 2l − t))

The expression above is for (θ, t) ∈ R/Z× (0, 2l) where this parametrizes the correct

edge region of u conformally, and Cu is the corresponding trivial holomorphic cylinder.
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Lemmas 2.11.2, 2.11.3, 2.11.4, and 2.11.5 tell us that f̃u so defined will be continu-

ous families on their respective regions. Note also that f̃u will match up approximately

in a way that approaches 0 in our canonical metric when u approaches u0 So we can

smooth f̃u using a cutoff function in a collar neighborhood of each vertex region to

produce a continuous family of maps fu for which fu0 is our original function. In

particular, we know that
∥∥πQ,E∂̄fu

∥∥
1,p,δ

approaches 0 as u approaches u0. Applying

the iteration procedure from Proposition 2.10.2 will converge in a neighborhood of

u0 if R is large enough and ε small enough. This will produce a family of functions

satisfying πQ,E∂̄ = 0 which must correspond to G∞ in some neighborhood of u0 be-

cause of the uniqueness statement in Proposition 2.10.2. Moreover, this family must

approach fu0 as u approaches 0. Therefore, G∞ is continuous at u0.

!

Now we want to show that ∂̄ ◦ G∞ is a continuous section

∂̄ ◦ G∞ : Qε,ER
g,k,E −→ E

as defined in Definition 1.1.3. We need this special definition because the bundle

ker QER := HER(S, Cn) −→E

↓

Qε,ER
g,k,E

(which ∂̄ ◦ G∞ is a section of) jumps dimensions in the fiber and base when the

combinatorics of ER edge markings changes. Note that we have chosen QER so that

ker QER̃
⊂ ker QER for all R̃ ≥ R

as Proposition 2.9.2 tells us we can. The idea is that if kerQER jumps, we can increase

R a little to R̃ so that there is locally no jumping of kerQER̃
. The analysis in this

case will then tell us that ∂̄ ◦G∞ is well behaved. To do this we need a way of relating
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G∞ on Qε,ER
g,k,E and Qε,ER̃

g,k,E.

Lemma 2.11.7. If R is large enough and ε small enough, there exists a map

πR,R̃ : Qε,ER
g,k,E −→ Qε,ER̃

for R + 1 ≥ R̃ ≥ R so that for every u ∈ Qε,ER
g,k,E satisfying

πQ,ER̃
∂̄G∞u = 0

G∞(u) = G∞(πR,R̃u)

Proof:

Note that in order for the above to make sense, we may need to extend G∞ to

Q̃ε,ER̃
g,k,E := {u ∈ Qε,ER̃ so that

∥∥∂̄0u
∥∥ < 2, E(u) ≤ E, genus(u) = g, k punctures}

This differs from Qε,ER̃
g,k,E only in that the requirement on ∂̄ of the model curves is

weakened so
∥∥∂̄0u

∥∥ < 2 rather than
∥∥∂̄0u

∥∥ < 1. All proofs concerning Qε,ER̃
g,k,E work for

Q̃ε,ER̃
g,k,E so long as R̃ is large enough and ε small enough. The reason that we may need

to do this is the image of πR,R̃

(
Qε,ER

g,k,E

)
may not be in Qε,ER̃

g,k,E, but it can be verified

using Lemma 2.2.4 that for ε small enough it will be contained in Q̃ε,ER̃
g,k,E.

πR,R̃ is defined in Appendix C.3, here we only need to verify its extra properties.

With that plan, choose some u so that

πQ,ER̃
∂̄G∞(u) = 0

Choose R large enough and ε small enough so that Proposition 2.10.2 works using

the Lp,δ
1 norm for both δ = 0.4 and δ = 0.1, and we have

G∞(u) = expG(u) φ

with ‖φ‖1,p,0.4 < 1
2 .

The edges of πR,R̃u correspond to a subset of the edges of u and we use the same
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trivial holomorphic cylinders. As in Appendix C.3, for every vertex region of πR,R̃u,

there is some point p ∈ Tn ! Bn so that the attached edges start at expp ζi with ζi

bounded and
∑

i ζi = 0. Then consider the map F : V −→ Cn/Zn on the vertex

region V

u = expexpp(
∑

ζiψi)(F −
∑

ζiψi)

with notation as in section 2.6. F will be bounded, and we can use Lemma 2.2.4 to

prove that for ε sufficiently small

∥∥∂̄F − ∂̄G∞u
∥∥

p,0.4

is small. We also have that F is close in Lp,0.4
1 to the appropriate trivial holomorphic

cylinders starting at ζi. We can then extend F to all the model domain SV so that

for ε small enough,
∥∥QER̃

∂̄F
∥∥

1,p,0.1
≤ ce−0.2R̃

This uses that the growth of QER in the norm with δ = 0.1 is e0.1R as proved in

Proposition 2.9.2. Note that in particular, by choosing R large enough, this can be

made as small as we like. Our model curve will then be given by

[p, f ] := [p, F − QER̃
∂̄F ]

We can then use Lemma 2.2.4 to prove that G([p, f ]) is close in the Lp,0.1
1 norm to

G∞(u).

The quasi holomorphic graph with these model curves and edges as above will be

πR,R̃u ∈ Qε,ER̃. We know already that G∞(u) is close to the edge trivial holomorphic

cylinders in Lp,0.4
1 , so it is close in Lp,0.1

1 . The above argument gives that it is also

close in Lp,0.1
1 in vertex regions, so for some φ ∈ BER̃

(S, Cn) with ‖φ‖1,p,0.1 < 1

G∞(u) = expπR,R̃(u) φ



2.11. CONTINUITY OF G∞ 57

The fact that πQ,ER̃
∂̄G∞(u) = 0 implies that

G∞(u) = G∞(πR,R̃u)

because of the uniqueness statement in Proposition 2.10.2.

!

Theorem 2.11.8. For R large enough, and ε small enough,

∂̄ ◦ G∞ : Qε,ER
g,k,E −→ E

is a continuous section in the sense defined by Definition 1.1.3.

Proof:

At regular points of Qε,ER
g,k,E where there is a neighborhood in which the combi-

natorics of ER edge regions don’t jump, we’ve seen that for R large enough and ε

small enough, ∂̄ ◦ G∞ is continuous, as around those points we just use the normal

definition.

Now consider an arbitrary graph u0 ∈ Qε,ER
g,k,E. There exists some R̃ ≥ R so that

ker QER = ker QER̃
at u0, and ker QER̃

doesn’t jump in a neighborhood of u0. We

know that if we have chosen R large enough and ε small enough,

∂̄ ◦ G∞ : Qε,ER̃
g,k,E −→ ker QER̃

will be continuous.

We are interested in solutions of the equation

πQ,ER̃

(
∂̄ ◦ G∞

)
= 0 on Qε,ER

g,k,E

in some neighborhood U of u0. Call the set of solutions UER̃. The uniqueness state-

ment in Proposition 2.10.2 implies that this is the same thing as looking for solutions
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to the equation

πQ,ER̃

(
∂̄f

)
= 0

for maps f in some open set in the space of maps. Note that Lemma 2.10.1 used

as in Proposition 2.10.2 implies that ∂̄ ◦ G∞ is transverse to 0 at UER̃ restricted to

variations in BER̃
(S, Cn), so UER̃ is transversely cut out.

Lemma 2.11.7 combined with the uniqueness statement of Proposition 2.10.2 tells

us that UER̃ will be the intersection of G∞

(
Q̃ε,ER̃

g,k,E

)
with the above open set. The

inverse image of this open set under

G∞ : Q̃ε,ER̃
g,k,E −→ maps to Tn ! Bn

will an open set U ′ ⊂ Q̃ε,ER̃
g,k,E. Note the proof of Lemma 2.7.1 along with Proposition

2.11.6 tells us that for ε small enough G∞ will provide a homeomorphism

G∞ : U ′ −→ UER̃

Noting that ∂̄G∞ is continuous on U ′ gives that all the conditions for ∂̄G∞ to be

continuous at u0 ∈ Qε,ER
g,k,E.

!



Chapter 3

Convergence to graphs

The goal of this chapter is to show that all bounded energy J ε holomorphic curves are

in the image of the gluing map G∞ which is the subject of the previous chapter. This

is achieved by showing that any bounded energy J ε holomorphic curve in Tn ! Bn

will be close to a J ε quasi holomorphic graph of the type described in section 1.1.4

for ε small enough. The first task is to describe the properties of the taming form ω

which will keep our holomorphic curves well behaved.

3.1 Taming form

The class of manifolds under consideration are Lagrangian fibrations of the form

Tn −→ Tn ! Bn

↓ π

Bn

ω is a symplectic form on Tn ! Bn which is symmetric with respect to the torus

rotations, and which vanishes when restricted to torus fibers. The first requirement

is that ω is positive on J holomorphic planes, this together with the condition that

torus fibers are Lagrangian implies that ω is positive on any J ε holomorphic plane.

Lemma 3.1.1. ω is positive on J ε holomorphic planes for any ε ∈ (0, 1]

59
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Proof:

This is a simple computation. Represent an arbitrary vector as v1 + J εv2 where

v1 and v2 are vertical vectors tangent to torus fibers. Then

ω(v1 + J εv2, J
εv1 − v2) = ε(ω(v1, Jv1) + ω(v2, Jv2)) + ε2(ω(Jv2, Jv1))

By assumption ω(v1, Jv1) and ω(v2, Jv2) are both positive, so the only way the above

expression can be negative is if ω(Jv2, Jv1) is negative. In that case, the above

expression is greater than

ε(ω(v1, Jv1) + ω(v2, Jv2)) + ω(Jv2, Jv1)) = εω(v1 + Jv2, J(v1 + Jv2)) ≥ 0

!
As we are in the non compact setting, we have some extra requirements on ω

(these are listed in appendix B and checked for some spaces). First, we require that

the ω energy,

Eω :=

∫

S

u∗ω

is constant for any continuous family of holomorphic curves u. Actually, we want

the same to be true for slightly more flexible families of maps. We will say a smooth

map from a punctured Riemann surface u : S −→ Tn ! Bn has holomorphic ends if

there is some open neighborhood of the punctures of S on which u is holomorphic.

If the energy of u is finite, this will place some restrictions on the behavior of u near

punctures; for example, if Tn ! Bn has cylindrical ends, the punctures will either be

removable singularities or converge to cylinders over Reeb orbits, if Tn !Bn arises as

a dense open set in some compact symplectic manifold, then punctures will need to

be removable singularities in this compact manifold. We assume that the ω energy is

constant on any continuous family of maps with J ε holomorphic ends.

The non compactness of our problem and the need to tame a degenerating family

of complex structures requires us to have a little more flexibility in our taming forms.

Call Λω,E the set of taming forms ω̃ which are positive on holomorphic planes, vanish

restricted to torus fibers, give constant integrals restricted to connected components
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of the space of maps with holomorphic ends, and so that Eω̃(u) = Eω(u) for any J ε

holomorphic map u with Eω(u) ≤ E. If D ⊂ S is part of the domain of a holomorphic

map u, define the energy of the map restricted to D to be

ED(u) := sup
ω̃∈Λω,Eω(u)

∫

D

u∗ω̃

Note that ED(u) ≤ Eω(u).

The final condition on our manifold and ω is that for any energy bound E there

exists an r > 0 smaller than the injectivity radius of Bn and cE > 0 so that for every

p ∈ Tn ! Bn there exists a taming form ωp,E ∈ Λω,E so that

ωp (v, Jv) ≥ cE |v|2 (3.1)

for all tangent vectors v based at points within a distance r from p. This gives a way

of controlling the local area of our holomorphic curves.

The above assumptions are listed and checked for some spaces in appendix B.

Note that if we want a local area bound for J ε holomorphic curves, the above

forms will give us the estimate

ωp,E(v, J εv) ≥ εcE |v|2

This is not good enough. We will need to make an exact adjustment to ωp to con-

centrate it further around the point p in order to get a good local area bound for J ε

holomorphic curves.

First, use Lemma 2.2.4 to find a radius r > 0 smaller than the injectivity radius

of Bn and the r used in the definition of the ωp,E, so that in a ball of radius r around

any point p ∈ Tn ! Bn,
∣∣(d expp)(v) − v

∣∣ ≤ 1

2
|v|

We now describe an exact alteration to ωp,E in coordinates centered at p. If the
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coordinates for Tn = Rn/Zn are given by xi, then use the coordinates

expp(x +
∑

yiJ∂xi) .→ (x, y) ∈ Rn

Zn
× Rn

Note that in these coordinates our above estimate becomes

|J∂xi − ∂yi | ≤
1

2
(3.2)

Now consider the two-form

θp,ε := d
(∑

−f ε
i dxi

)

Here f ε
i is a smooth function of y supported in the ball of radius r satisfying the

following conditions involving the constant cE from the definition of ωp,E.

cE

4nε
≥ ∂f ε

i

∂yi
≥ −cE

4n

∣∣∣∣
∂f ε

i

∂yj

∣∣∣∣ <
cE

4n
for i '= j

and, for |yi| ≤ rε
3 and |y| ≤ r

3
∂f ε

i

∂yi
=

cE

4nε

∂f ε
i

∂yj
= 0, i '= j

The following lemma holds in the metric rescaled to be preserved by J ε.

Lemma 3.1.2. For ε < 1
6n

θp,ε(v, J εv) ≥ −εcE |v|2

and within rε
3 of the torus fiber at p,

θp,ε(v, J εv) ≥ cE

16n
|v|2
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Proof:

Decompose v as v1 + J εv2 where v1 and v2 are torus directions. Note that the

stated properties of fi together with our estimate 3.2 are enough to tell us:

θ(v, w) ≥ − |v| |w| 3cE

8ε

θ(v1, Jv1) ≥ −3cE

8
|v1|2

θ(v1, Jv1) ≥
cE

8nε
|v1|2

With the above estimates, we can show that θ(v, J εv) can’t be too negative

θ(v, J εv) = θ(v1, εJv1) + θ(v2, εJv2) + θ(εJv2, εJv1)

≥ −(|v1|2 + |v2|2 + |v|1 |v|2)ε
3cE

8

≥ −εcE |v|2

Also, within rε
3 of the torus fiber at p,

θ(v, J εv) = θ(v1, εJv1) + θ(v2, εJv2) + θ(εJv2, εJv1)

≥ (|v1|2 + |v2|2)
cE

8n
− |v|1 |v|2 ε

3cE

8

≥ cE

16n
|v|2

!

Define the set of taming forms Λω,E,ε to be the set of closed two forms that are

nonnegative on J ε holomorphic planes, vanish when restricted to torus fibers, and

give the same integral as ω when restricted to J ε holomorphic curves of energy less

than E. We have that

ωp,E,ε := ωp,E + θp,ε ∈ Λω,E,ε

We can use the forms ωp,E,ε to prove the following lemma.

Lemma 3.1.3. Given an energy bound E, there exists an r > 0 and cE > 0 so that
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for all positive ε ≤ 1 and p ∈ Tn ! Bn, there exists a taming form ωp,E,ε ∈ Λω,E,ε so

that in the metric corresponding to J ε,

ωp,E,ε(v, J εv) > cE |v|2

for tangent vectors v within r of the torus fiber at p. Moreover, ωp,E,ε can be chosen

so that

lim
ε→0

(expε
p)

∗ωp,E,ε = cEω0

where expε
p(x, y) := expp(x+

∑
yiJ ε∂xi) and ω0 is a standard taming form on Rn/Zn×

Rn given by

ω0 =
∑

d (−f(yi)dxi)

where f is some increasing function.

A corollary of the above lemma is that if some component of the space of quasi

holomorphic graphs Qε,ER
g,k,E contains a graph u so that G∞u is holomorphic, then the

energy of the individual vertex model curves in that component is bounded.

3.2 Derivative bounds

In what follows we will obtain a first derivative bound for our holomorphic maps by a

bubbling type argument. First, we will apply a standard elliptic regularity lemma for

the linear ∂̄ operator to show that bounds on the first derivatives of J ε holomorphic

curves will imply second derivative bounds independent of ε.

Lemma 3.2.1. For a given integer k and 1 < p < ∞, there exists a constant c so

that

‖u‖Lp
k+1(D( 1

2 )) ≤ c
(∥∥∂̄u

∥∥
Lp

k(D(1))
+ ‖u‖Lp(D(1))

)

where Lp
k(D(1)) indicates the Lp norm on the first k derivatives in the unit complex

disk.

Lemma 3.2.2. If u : D(1) −→ Tn ! Bn is holomorphic, then remembering the

identification of Tp(Tn ! Bn) with Cn and using coordinates (x, y) for the unit disk,
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ux : D(1) −→ Cn satisfies

∂̄(ux) =
1

2
JT(uy, ux)

Proof:

∂̄(ux) =
1

2
(∇uxux + J∇uyux)

=
1

2
(∇ux(ux + Juy) + JT(uy, ux))

=
1

2
JT(uy, ux)

!
Note that the ∂̄ operator on derivatives is just the usual linear ∂̄ operator in our

trivialization. In particular we can apply Lemma 3.2.1 to ux in the case that du is

bounded to obtain

Lemma 3.2.3. for every 1 < p < ∞, there exists a constant c so that for any

holomorphic map u : D(1) −→ Tn ! Bn,

‖du‖Lp
1(D( 1

2 )) ≤ c(‖T‖∞ ‖du‖2
L∞(D(1)) + ‖du‖L∞(D(1)))

Following a bubbling type argument, we are now ready to get a derivative bound

for J ε holomorphic curves disks with bounded energy when ε is close to 0

Proposition 3.2.4. For a given energy bound E, there exists an εE > 0 so that for

all 0 < ε < εE, all J ε holomorphic curves with ω energy less than E satisfy a uniform

derivative bound.

In particular, given any domain in a bounded energy J ε holomorphic curve u

conformal to the complex unit disk, u : D −→ Tn ! Bn satisfies

|∇u(0)| bounded

Proof:

Suppose to the contrary that there exists a sequence ui : Si −→ Tn ! Bn of

bounded energy J εi holomorphic curves with a sequence of holomorphic inclusions of
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the unit disc D ⊂ Si, so that limi→∞ εi = 0 and

ui : D −→ Tn ! Bn

satisfies lim
i→∞

|∇ui(0)| = ∞

We will use a minor modification of the proof of the bubbling lemma 5.11 from [1]

to obtain a nontrivial holomorphic plane with bounded energy and a contradiction.

Note that all these maps satisfy

sup
ω̃∈Λω,E,εi

∫

D

u∗
i ω̃ ≤ E

First, we obtain a sequence of rescaled J εi holomorphic maps ũi : D(Ri) −→ Tn !Bn

as in the proof of lemma 5.11 in [1] so that

|∇ũi| ≤ 2

|∇ũi(0)| = 1

lim
i→∞

Ri = ∞

Suppose that Ri is also chosen so that

lim
i→∞

εiRi = 0

Write ũi in coordinates centered on ũi(0):

ũi = expũi(0) φi

Identifying (Tũi(0)(Tn ! Bn), J εi) with Cn, we get a sequence of functions

φi : D(Ri) −→ Cn
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Note that |φi| ≤ 2Ri so Lemma 2.2.4 tells us that there exists a constant c so that

|dũi − dφi| ≤ cεiRie
cεiRi |dφi|

so for i large enough, |dφi| ≤ 3, and

lim
i→∞

∣∣∂̄φi

∣∣ = 0

Lemma 3.2.3 implies that as |dũi| ≤ 2, the Lp
1 norm of dũi is bounded on compact

subsets of C. As the inclusion of Lp
1 into C0 is compact for p > 2, we can choose a

subsequence of ũi so that dũi converges in C0
loc, and hence φi converges in C1

loc to a

holomorphic map φ : C −→ Cn with energy less than E and |∇φ(0)| = 1. Recall that

Lemma 3.1.3 tells us that

E ≥
∫

C
cEφ

∗ω0 =

∫

C
cEφ

∗(−
∑

df(yi)dxi)

However, at least one component of φ is a nonconstant, entire holomorphic map

C −→ C, and hence must cover all of that component of Cn. Therefore the energy of

φ must be infinite, a contradiction.

!

3.3 Convergence of cylinders

In this section, we use the derivative bound from Proposition 3.2.4 to prove that the

parts of bounded energy J ε holomorphic curves conformal to long cylinders will be

close to trivial holomorphic cylinders for ε small.

Consider a J ε holomorphic curve u with energy less than E that has a subset of

its domain conformal to S1× [−1, R+1]. Proposition 3.2.4 tells us for ε small enough

that the restriction of u to the cylinder

u : S1 × [0, R] −→ Tn × Bn
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satisfies a derivative bound depending only on the energy E.

Now consider a nearby trivial holomorphic cylinder C : S1× [0, R] −→ Tn !Bn so

that u∗([S1]) = C∗([S1]) ∈ H1(Tn). Note that our derivative bound tells us that for ε

small enough, u(S1) must be contained in a ball in the base Bn which is smaller than

the injectivity radius of Bn, so u∗([S1]) = C∗([S1]) ∈ π1(Tn ! Bn). Recall that trivial

cylinders are holomorphic cylinders of the form C(θ, t) = expp(θv + tJ εv). Write u in

coordinates about this cylinder:

u(θ, t) = expC(θ,t) φ(θ, t)

The main lemma we will use will be Lemma 2.2.4 which tells us that

|du − dφ− dC| ≤‖ T‖∞ |φ| |dC| e‖T‖∞‖φ‖ + |dφ| (e‖T‖∞|φ| − 1)

Note that for ‖T‖∞ |φ| small, this gives a bound on |dφ| as we already have bounds

on |du| and |dC|. From now on, assume that ‖T‖∞ |φ| is small enough so we have a

bound on |dφ|. Note that this will give us a bound for |φ(θ1, t) − φ(θ2, t)|. Simplifying

the above expression, we have for ‖T‖∞ |φ| small enough,

|du − dφ− dC| ≤ c ‖T‖∞ |φ| (3.3)

We have ∫
∂φ

∂θ
(θ, t)dθ = 0

so

∣∣∣∣
d

dt

∫
φdθ

∣∣∣∣ ≤
∫ ∣∣∂̄φ

∣∣ dθ

≤ c ‖T‖∞ max
θ∈S1

|φ(θ, t)|

≤ c ‖T‖∞
(∣∣∣∣

∫
φdθ

∣∣∣∣ + max
θ1,θ2∈S1

|φ(θ1, t) − φ(θ2, t)|
)

(3.4)

C(θ, t) can be chosen so that
∫
φ(θ, 0)dθ = 0, so for ε small enough there is a
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constant cR so that integrating the above expression gives,

∣∣∂̄φ
∣∣ ≤ cRεmax |φ(θ1, t) − φ(θ2, t)| (3.5)

and

‖φ‖∞ ≤ (cRε+ 1) max |φ(θ1, t) − φ(θ2, t)| (3.6)

Now we can use the Cauchy integral formula on φ:

φ(θ0, t0) =

∫
φ(θ, 0)

1 − e−2πt0e2πi(θ−θ0)
dθ −

∫
φ(θ, R)

1 − e2π(R−t0)e2πi(θ−θ0)
dθ

+

∫ ∫
∂̄φ

1 − e2π(t−t0)e2πi(θ−θ0)
dθdt

(3.7)

We can now use this to bound
∣∣φ(θ, R

2 )
∣∣:

∣∣∣∣φ(θ,
R

2
)

∣∣∣∣ ≤ 3e−πR(cRε+ 1) max |φ(θ1, t) − φ(θ2, t)|

+ c̃RcRεmax |φ(θ1, t) − φ(θ2, t)|
(3.8)

where c̃R = max
∫

1

|1−e2π(t−t0)e2πi(θ−θ0)|dθdt

Lemma 3.3.1. For ε small enough, given any J ε holomorphic curve u of energy less

than E so that part of its domain is conformal to S1 × [−1, 3],

u : S1 × [0, 2] −→ Tn ! Bn

satisfies the following.

There exists a trivial holomorphic cylinder C : S1 × [0, 2] −→ Tn ! Bn so

u(θ, t) = expC(θ,t) φ(θ, t)

∫
φ(θ, 0)dθ = 0
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max |φ(θ1, 1) − φ(θ2, 1)| ≤ e−2 max
t∈[0,2]

|φ(θ1, t) − φ(θ2, t)|

|φ(θ, 1)| ≤ e−2 max
t∈[0,2]

|φ(θ1, t) − φ(θ2, t)|

moreover, if C̃ is a close by trivial holomorphic cylinder and u = expC̃ φ̃,

max
∣∣∣φ̃(θ1, 1) − φ̃(θ2, 1)

∣∣∣ ≤ e−2 max
t∈[0,2]

|φ(θ1, t) − φ(θ2, t)|

Now consider a bounded energy J ε holomorphic curve u with part of its domain

conformal to S1 × [−1, 2N + 1] −→ Tn ! Bn. For ε small enough, there exist a

series of trivial holomorphic cylinders C0, . . . , CN and φi so that u = expCi
φi and

∫
φi(θ, i)dθ = 0. Repeated application of Lemma 3.3.1 gives that

max
t∈[k,2N−k]

|φi(θ1, t) − φi(θ2, t)| ≤ e−2kc

dist (Ci−1(θ, i), Ci(θ, i)) ≤ ce−2i

For ‖T‖∞ small enough, Lemma 2.2.4 tells us that the growth of the distance

between trivial cylinders is small enough so that

max
t∈[0,i]

dist(Ci−1(θ, t), Ci(θ, t)) ≤ ce−i

Thus, we have

Proposition 3.3.2. Given an energy bound E, there exists a constant c so that for ε

small enough, for each part of a J ε holomorphic curve conformal to S1 × [−1, 2R+1]

there exists a unique trivial holomorphic cylinder C so that in coordinates u = expC φ,

∫

S1

φ(θ, R)dθ = 0

|φ(θ, t)| ≤ ce−min{t,2R−t}

and
∣∣∂̄φ(θ, t)

∣∣ ≤ ce−min{t,2R−t}
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Lemma 3.2.1 then gives us the immediate corollary that φ ∈ Lp,δ
1 for any weight

δ ≤ 1 is uniformly bounded.

3.4 Convergence to model curves

Proposition 3.4.1. Given an energy bound E, genus g, and number of punctures

k for a surface S there exists an R and ε > 0 so that the following is true. Any J ε

holomorphic map u : S −→ Tn!Bn with energy bounded by E can be approximated on

each ER vertex region V ⊂ S by a quasi-holomorphic model curve f : SV −→ Cn/Zn

in the sense that

u = expG(f) φ on SV

and ‖φ‖1,p,δ ≤ c

for c > 0 arbitrarily small.

Proof:

First, Proposition 3.3.2 can be used on the ends to show that for ε small enough

and R large enough u must be close in Lp,δ
1 to trivial holomorphic cylinders on ER edge

regions. In fact, as the exponential decay of u is like e−R and our exponential weights

grow like eδR, u must be within some constant times e−(1−δ)R of trivial holomorphic

cylinders on ER edges in Lp,δ
1 .

Each of these trivial holomorphic cylinders starts at a point pi. Next, note that

the derivative bound from Proposition 3.2.4 and the bounded diameter of ER vertex

regions V ⊂ S imply that u(V ) has bounded diameter. For ε small, we can choose a

point p so that each pi = expp ζi,
∑
ζi = 0 and

u = expexpp(
∑

ζiψi)(F −
∑

ζiψi)

for some map F : V −→ Cn/Zn. Note that the above expression is chosen to look a

lot like the expression for G introduced in section 2.6. Note also that F is bounded,
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so we can use Lemma 2.2.4 to prove that for ε sufficiently small

∥∥∂̄F − ∂̄u
∥∥

p,δ

is small. We also have that F is close in Lp,δ
1 to the appropriate trivial holomorphic

cylinders starting at ζi. We can therefore extend F to all of the model domain SV

which is asymptotic to these cylinders and has

∥∥(∂̄F )
∥∥

p,δ
≤ ce−(1−δ)R

and
∥∥QER(∂̄F )

∥∥
1,p,δ

≤ ce−(1−2δ)R

This is because Lemma 2.9.2 tells us that the norm of QER grows like eδR. We can

make this as small as we like by choosing R large as δ < 1
2 . Now consider the

quasi-holomorphic model curve f given by

f := F − QER ∂̄F

Lemma 2.2.4 can be used to prove that

u = expG(f) φ on V

and ‖φ‖1,p,δ is small.

Note that πQ(∂̄f) = 0 and (Id − πQ)∂̄f is small.

!

3.5 Convergence to holomorphic graphs

Now all the pieces are in place for us to prove that for ε small enough, any J ε holo-

morphic curve with small enough energy will be close to a glued together holomorphic

graph.
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The idea of what follows is to approximate the ER edge regions of our holomorphic

curve with edges of a holomorphic graph using Proposition 3.3.2, and approximate

what remains using Proposition 3.4.1.

Proposition 3.5.1. Given an energy bound E, genus g and number of punctures

k for a surface S, for R large enough and ε small enough (dependent on R), the

following is true. Any J ε holomorphic curve f : S −→ Tn ×Bn with energy less than

E is in the image of

G∞ : Qε,ER
g,k,E −→ maps to Tn ! Bn

Proof:

Recall that the edge regions of ER consist of the subsets R/Z × (a + R, b − R) ⊂
R/Z× (a, b) of E edge regions. Proposition 3.3.2 tells us that for ε small enough and

R large enough, our holomorphic curve f restricted to any of the ER edge regions can

be approximated by a unique trivial holomorphic cylinder C so that

f = expC φ so that

∮
φ = 0

on the circle at the center of the edge, and ‖φ‖1,p,δ is small. There exist quasi holo-

morphic model curves fi : SVi −→ Cn/Zn that match up with the ends of these trivial

holomorphic cylinder edges as in Proposition 3.4.1 so that f restricted to the vertex

region Vi

f = expG(fi) φ

where ‖φ‖1,p,δ and
∥∥∂̄fi

∥∥ are small if ε is small enough and R large enough. These

model curves and edges fit together to form a J ε quasi holomorphic graph u ∈ Qε,ER

so that

u = expG(u) φ

with ‖φ‖1,p,δ small. Note that the average of φ over all the circles at the center of ER

edge regions is zero, which is exactly the condition that φ ∈ BER(S, Cn). If we choose

R large enough and ε small enough that ‖φ‖1,p,δ < 1, and Proposition 2.10.2 holds,

then Proposition 2.10.2 tells us that this must be the unique φ satisfying the above

conditions so that πQER
∂̄ expG(u) φ = 0, therefore f is in the image of G∞. !
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Jε holomorphic graphs

Combining Propositions 2.10.2, 3.5.1 and Theorem 2.11.8, we have now proved The-

orem 1.1.4. In particular, there exists continuous section

∂̄ ◦ G∞ := ∂̄1 : Qε,ER
g,k,E −→ E

of the bundle

ker QER := HER(S, Cn) −→ E

↓

Qε,ER
g,k,E

and an embedding of the corresponding moduli space of J ε holomorphic curves

Mε
g,k,E −→ Qε,ER

g,k,E

as the intersection of ∂̄1 with the zero section.

Now we want to prove Theorem 1.1.6. In particular, we want to define a C1

smooth section

[∂̄0] : Qε,ER
g,k,E −→ E

so that the moduli space Mε,[∂̄0],ER

g,k,E which is the intersection of [∂̄0] with the zero

74
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section is cobordant in Qε,ER
g,k,E to Mε

g,k,E.

[∂̄0] is a smoothing of ∂̄0 defined by an averaging of ∂̄0. In particular, for ε small

enough, dependent on E, g, and R′, there is a well defined projection

πR,R′ : Qε,ER
g,k,E −→ Qε,ER′

for all 0 ≤ R ≤ R′. This is defined in Appendix C.3.

This preserves the domain Riemann surface, and satisfies

∂̄0 ◦ πR,R′ = ∂̄0

when the ER′ edge regions are in one to one correspondence with the ER edge regions.

Moreover,

πR,R′ : {u ∈ Qε,ER
g,k,E so that ∂̄0u ∈ HER′ (S, Cn) ⊂ HER(S, Cn)} −→ Qε,ER′

is a diffeomorphism onto its image whenever restricted to regions where kerQER′ or

equivalently HER′ (S, Cn) does not jump.

Now define the section

[∂̄0] :=

∫ 1

0

∂̄0 ◦ πR,(R+t)dt

It is easily verified using Lemma 2.2.4 that [∂̄0] is a C1 section in the sense of

Definition 1.1.3. If we want [∂̄0] transverse to the zero section we can take [∂̄0] − ν

where ν is some smooth section with the property that πQ,ER+1ν = 0. (We can either

take a finite cover to get rid of automorphisms or use a multi-section here. The fact

that we can take ν ∈ ker QER+1 follows from Lemma C.3.1.) We can do the same

thing to make ∂̄1 transverse to the zero section. This will correspond to solutions of

some perturbed ∂̄ equation.
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Now we want to define a family of continuous sections [∂̄t] so that the intersection

of [∂̄t] with the zero section for t ∈ [0, 1] defines a cobordism between Mε,[∂̄0],ER

g,k,E and

Mε
g,k,E.

Define

[∂̄t] :=

∫ 1

0

((1 − s)∂̄0 + s∂̄1) ◦ πR,R+sds

Note that Lemma 2.11.7 tells us that the intersection of [∂̄1] with the zero section

is the same as the intersection of ∂̄1 with the zero section, or Mε
g,k,E. For R large

enough, and ε small enough, [∂̄t] can be shown to be continuous restricted to Qε,ER
g,k,E

in the sense of Definition 1.1.3 using Lemmas 2.2.4, 2.10.1 and Proposition 2.11.6.

As Proposition 2.10.2 tells us that we can make ∂̄1 as close as we like to ∂̄0 by

making R large and ε small, this cobordism will be contained in the interior of Qε,ER
g,k,E.

We can also perturb this family to be transverse to the zero section. In many cases,

this tells us that in order to compute invariants of the moduli space of holomorphic

curves, we can calculate these invariants using the moduli space of J ε holomorphic

curves.

Recall that a smooth family of graphs in us ∈ Qε,E
g,k,E is characterized by the

existence of a smooth family of gluings. This is equivalent to the existence of a family

of sections φs ∈ BE(S, Cn) which vanish on E edge regions so that

expG(us) φs

gives a smooth family of maps. For R large enough, and ε small enough, we can

choose a gluing of Mε,[∂̄0],ER

g,k,E which is ‘small’ in the sense that ‖φs‖1,p,δ < 1. (This

follows from Lemma 2.10.1 and Lemma 2.6.3.)

Theorem 4.0.2. For R large enough and ε small enough, any smooth small gluing

of Mε,[∂̄0],ER

g,k,E is the moduli space of solutions of some perturbed ∂̄ equation. Moreover,

if Mε,[∂̄0],ER

g,k,E is transversely cut out, so is its gluing.

Proof:
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First, note that for any given R we can choose ε small enough so that the map

u, φ .→ expG(u) φ

is injective for u ∈ Qε,ER
g,k,E and ‖φ‖1,p,δ ≤ 5 as in section 2.7. Then the set of smooth

small gluings of any smooth family in Qε,ER
g,k,E is contractible. Therefore, we can extend

our small gluing of Mε,[∂̄0],ER

g,k,E to a small gluing of Qε,ER
g,k,E so that the restriction to any

smooth family of solutions to πQ,ER+1[∂̄0]u = 0 is a smooth family of gluings, and

the restriction to subsets where kerQER doesn’t jump is smooth. The information

contained in this gluing consists of an assignment of a section φu ∈ BER(S, Cn) to

every u ∈ Qε,ER
g,k,E. So our gluing is given by

u .→ expGu
φu

Note that we can get related gluings of Qε,ER+s

g,k,E for s ∈ [0, 1] by considering Qε,ER+s

g,k,E

as the solutions of πQ,ER+s[∂̄0]u inside Qε,ER
g,k,E.

We now want to define a perturbation of the ∂̄ equation so that the image of

Mε,[∂̄0],ER

g,k,E under this gluing is the solution space. Choose some cutoff function ρ :

[0, 5] −→ [0, 1] so that ρ(t) = 1 for t ≤ 4 and ρ vanishes in a neighborhood of 5.

Define

∂̄R
0

(
expG(u) φ

)
:= ρ(‖φ‖1,p,δ)

(
∂̄0u + ∂̄(φ− φu)

)
+ (1 − ρ(‖φ‖1,p,δ))∂̄

(
expG(u) φ

)

Extend ∂̄R
0 to be ∂̄ on any other map. We can define ∂̄R+s

0 analogously. Now define

[∂̄0]
Rf :=

∫ 1

0

∂̄R+s
0 fds

Suppose that R has been chosen large enough and ε small enough so that Proposi-

tions 2.10.2 and 3.5.1 and Lemma C.3.1 work using ER and ER+1, and so that Lemma
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2.10.1 tells us that

∥∥∥∥
d

ds
d(expG(u) φs) −

d

ds
(dφs)

∥∥∥∥
p,δ

≤ 1

2

∥∥∥∥
dφs

ds

∥∥∥∥
1,p,δ

for ‖φs‖ ≤ 5

This ensures that the solution set to [∂̄0]Rf = 0 is exactly the image of Mε,[∂̄0],ER

g,k,E

under our gluing. Note that [∂̄0]R is transverse to the zero section if [∂̄0] is.

!



Chapter 5

Examples

Definition 5.0.3. The use of the qualifier virtually when describing a moduli space

will mean that there is some perturbation of the ∂̄ equation so that the moduli space

is transversely cut out as described.

5.1 Holomorphic spheres in T ∗Tn

Any embedded Lagrangian torus in a symplectic manifold has a neighborhood sym-

plectomorphic to a neighborhood of the zero section in T ∗Tn. We can give this

neighborhood a complex structure which gives it a cylindrical end. This is talked

of as ’stretching the neck’ of the boundary of the neighborhood in symplectic field

theory, [2]. Giving T ∗Tn coordinates (x, y) ∈ Rn/Zn × Rn, a model for this kind of

end is given by the complex and symplectic structures

J
∂

∂x
= f(|y|) ∂

∂y

ω = d(− y

f(|y|)dx)

where f : R+ −→ R+ is 1 in a neighborhood of 0, asymptotic to the identity, and has

derivative bounded by 1. Note that this gives coordinates for a unit neighborhood

of the zero section in T ∗Tn with the standard symplectic structure. The verification

79
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that this satisfies the assumptions listed in Appendix B is the same as in section B.2.

Recall that the moduli space of J ε holomorphic spheres with k punctures and

energy less than E, Mε
0,k,E is given by the intersection of ∂̄1 : Qε,ER

0,k,E −→ E with the

zero section. This is cobordant inside Qε,ER
0,k,E to the moduli space Mε,[∂̄0]

0,k,E consisting

of the intersection of our section [∂̄0] with the zero section. In this case, if we do not

constrain the moduli space further, it will have codimension one boundary, maybe

with corners, so cobordisms need to be treated more delicately to extract invariants.

To avoid this, we shall put more constraints on the moduli spaces that we look for. In

particular, we will fix the complex structure and the image of a marked point. Note

that for these problems, there is no dimension jumping (which always is associated

with changes of complex structure.) Thus without complicating matters by using

the smoothed section [∂̄0], we can just consider the intersection of ∂̄0 with the zero

section, Mε,∂̄0,E
g,k,E . Theorem 4.0.2 tells us that in this case, for R large enough and ε

small enough the image under the gluing map, G
(
Mε,∂̄0,ER

g,k,E

)
is the moduli space of

solutions to some perturbed ∂̄ equation.

Lemma 5.1.1. Given any point p ∈ Tn×Rn, k homology classes in H1(Tn, Z) adding

up to zero, and a Riemann sphere S with k punctures and a marked point z, there

exists a unique graph u ∈ Mε,∂̄0,ER with underlying Riemann surface S so that the

marked point is sent to p,

G(u)(z) = p

and the k ends are sent to the k specified homology classes.

Proof:

The underlying Riemann surface S, homology classes of the ends, and the require-

ment that all model curves are holomorphic, specifies the types of model curves and

trivial holomorphic cylinders that must be glued together, all that remains is a choice

of where to exponentiate them out from. Concentrate first on the component of S

that contains the marked point z. If z is on an edge, sending z to p fixes the location

of the edge’s trivial holomorphic cylinder. If z is in a vertex region, we must send

z to p using the gluing map G described in section 2.6. This fixes the location from
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which the vertex region is exponentiated out from.

After fixing the location of the component containing z, the location of all other

components are fixed by the need to attach to the fixed component. As the genus is

zero, there is only one condition fixing the location of each component. Note that this

proof only works if there are no infinitely long internal edges with nonzero homology

classes.

!
This tells us what the answer for holomorphic spheres should be virtually. (Recall

the special sense in which ‘virtually’ is used, definition 5.0.3)

Lemma 5.1.2. Given a point p in Tn ×Rn, k homology classes in H1(Tn, Z) adding

up to zero, and a Riemann sphere S with k punctures and a marked point z, for ε

small enough, there is virtually one J ε holomorphic map u : S −→ Tn × Rn so that

u(z) = p and loops around the k punctures are sent to the specified k homology classes.

Proof:

First, note that as proved in section 2.11, G∞ is continuous and close to G. There-

fore Lemma 5.1.1 tells us that counting multiplicities, there is one J ε quasi holo-

morphic graph u with holomorphic model curves for which G∞(u) satisfies all the

requirements above apart from being holomorphic. The same proof as Lemma 5.1.1

gives that the same is true for quasi holomorphic model curves with ∂̄0 specified. As ∂̄1

is a perturbation of ∂̄0, for ε small enough, there will be virtually one J ε holomorphic

curve meeting the requirements.

!
Note that the above lemma only applies to holomorphic spheres with distinct

punctures. For nodal holomorphic spheres, we have to consider the compactifications.

This involves studying holomorphic curves in the cylindrical end of our manifold,

Tn × (Rn − {0}) with the complex structure introduced in example 1.0.2, we do this

in section 5.3.
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5.2 Curves with boundary on the zero section of

T ∗Tn

The zero section of T ∗Tn is a Lagrangian submanifold. One scheme for studying

holomorphic curves with boundary on an embedded Lagrangian torus inside an ar-

bitrary symplectic manifold is to use symplectic field theory to isolate a standard

neighborhood of the Lagrangian torus and study the holomorphic curves with bound-

ary in that setting. The advantage of this is that T ∗Tn with the complex structure

we consider has an antiholomorphic involution

Φ : T ∗Tn −→ T ∗Tn

Φ(x, y) = (x,−y)

which preserves the zero section. Instead of studying holomorphic curves with bound-

ary on the zero section, we can study holomorphic maps

u : (S, φ) −→ (T ∗Tn,Φ)

u ◦ φ = Φ ◦ u

Here (S, φ) denotes a Riemann surface with an antiholomorphic involution. Such a

map can be constructed from a curve with boundary on the zero section by reflecting.

To reverse the operation, note that the fixed point set of (S, φ) must be sent to the

zero section, so taking half the curve gives a holomorphic map with boundary on the

zero section.

We can find these holomorphic curves with involutions by considering quasi holo-

morphic graphs with involutions, and making sure that our gluing procedure preserves

involutions. Note that as we chose our edge and vertex markings to depend only on

the conformal structure of S, the E edge-vertex decomposition is conserved by these

involutions. The original gluing map G preserves any involution. The map which may

not preserve involutions is the model left inverse Q. Given a Riemann surface with

involution (S, φ), define the equivariant model left inverse
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Qφ(ν) :=
1

2
(Qν + (φ,Φ) ◦ Q ◦ (φ,Φ)ν)

Here (φ,Φ) indicates the action induced on a map by acting on the domain by φ

and the range by Φ.

Lemma 5.2.1.

Qφ : Lp,δ(Ω0,1(S, Cn)) −→ Lp,δ
1 (Ω0(S, Cn))

is a (φ,Φ) equivariant left inverse to

∂̄ : Lp,δ
1 (Ω0(S, Cn)) −→ Lp,δ(Ω0,1(S, Cn))

Proof:

First note that ∂̄ is (φ,Φ) equivariant,

(φ,Φ) ◦ ∂̄ = ∂̄ ◦ (φ,Φ)

If ξ ∈ Lp,δ
1 (S, Cn) then

Qφ∂̄ξ =
1

2
(Q∂̄ξ + (φ,Φ)Q(φ,Φ)∂̄ξ)

=
1

2
(ξ + (φ,Φ)Q∂̄(φ,Φ)ξ)

=
1

2
(ξ + (φ,Φ)(φ,Φ)ξ)

= ξ

so Qφ is a left inverse to ∂̄.

Qφ ◦ (φ,Φ) =
1

2
(Q ◦ (φ,Φ) + (φ,Φ) ◦ Q) = (φ,Φ) ◦ Qφ

so Qφ is (φ,Φ) equivariant.

!
We can do the same to define an equivariant version of QER , QER,φ.
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Define the equivariant gluing map G∞,φ in the same way as G∞ was defined in

section 2.8, using instead of QER, the equivariant left inverse QER,φ.

We can define Qε,E
g,k,E,φ ⊂ Qε,E

g,k,E, to be the subset of quasi holomorphic graphs in

Qε,E
g,k,E which are preserved by the action of (φ,Φ)

As in chapter 4, there is a bundle E over Qε,ER
g,k,E,φ with the sections [∂̄0] and ∂̄1.

We can take the (φ,Φ) invariant part of this bundle, Eφ. Constructing [∂̄0] and ∂̄1

equivariantly, they give sections

∂̄1, [∂̄0] : Qε,ER
g,k,E,φ −→ Eφ

Theorem 5.2.2. For R large enough, and ε small enough, there is an embedding

Mε
g,k,E,φ −→ Qε,ER

g,k,E,φ

of the moduli space of holomorphic maps with involutions so that the image is the

intersection of the section

∂̄1 : Qε,ER
g,k,E,φ −→ Eφ

with the zero section. Moreover M ε
g,k,E,φ is cobordant inside Qε,ER

g,k,E,φ to the moduli

space M ε,[∂̄0]
g,k,E,φ which is the intersection of [∂̄0] with the zero section. (If each moduli

space is transversely cut out.)

Proof:

First we recall the map from holomorphic curves to Qε,ER
g,k,E. This relies on Propo-

sition 3.3.2, which, for ε small enough, provides unique trivial holomorphic cylinders

approximating the thin parts of a Riemann surface S of length greater than R0. As

the normalizing condition used to choose these cylinders is (φ,Φ) invariant, if a holo-

morphic curve is (φ,Φ) invariant, the set of these approximating trivial holomorphic

cylinders will be invariant too. We can then implement Proposition 3.4.1 equivari-

antly using our equivariant left inverse Qφ to obtain vertex model curves. As every

step is (φ,Φ) invariant, we must obtain a graph in Qε,ER
g,k,E,φ. The fact that this map



5.2. CURVES WITH BOUNDARY ON THE ZERO SECTION OF T ∗TN 85

gives an embedding follows from Propositions 2.10.2 and 3.5.1.

The (φ,Φ) equivariant gluing map, G∞,φ maps Qε,ER
g,k,E,φ to (φ,Φ) invariant quasi

holomorphic curves. Taking ∂̄ of the resulting curves defines our section

∂̄1 : Qg,k,E,φ −→ Eφ

Holomorphic curves map to the intersection of ∂̄1 with the zero section of E . The

cobordism to M ε,[∂̄0]
g,k,E,φ is defined as in as section 4 by the intersection of

[∂̄t] =

∫ 1

0

((1 − t)∂̄0 + t∂̄1) ◦ πR+t,Rdt

with the zero section. πR+t,R is also defined equivariantly, so this defines an equivari-

ant family of sections.

!

Lemma 5.2.3. Given a punctured Riemann surface with antiholomorphic involution

(S, φ), any bounded energy map

u : S −→ Cn/Zn

so that u∗ : H1(S, Z) −→ H1(Cn/Zn, Z) and ∂̄u are both (φ,Φ) invariant satisfies

Φ ◦ u ◦ φ = u + constant

Proof:

∂̄(Φ ◦ u ◦ φ) = φ ◦ (∂̄u) ◦ φ = ∂̄u. Bounded energy maps u : S −→ Cn/Zn are

determined by u∗ : H1(S, Z) −→ H1(Cn/Zn, Z) and ∂̄u up to addition of constants.

!

Lemma 5.2.4. Given a complex disk D with k punctures and a choice of homology

class in H1(Tn, Z) for each puncture, for ε small enough (dependent on the choice of

homology classes), there exists a J ε holomorphic map

u : D −→ T ∗Tn
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so that u sends δD to the zero section of T ∗Tn, and the punctures of D have the

prescribed homology classes. This map is virtually (definition 5.0.3) unique up to

translation in the direction of Tn.

Proof:

Doubling the disk D gives a Riemann surface with involution (S, φ). We first need

to verify the above statement for (φ,Φ) invariant quasi holomorphic graphs u with

underlying Riemann surface S satisfying ∂̄0 = ν for any small ν ∈ Eφ. The lemma

will then follow as ∂̄1u is a perturbation of ∂̄0 when we restrict to a single complex

structure.

If a vertex component of S contains some of δD, then Lemma 5.2.3 tells us that

the model curve for this vertex will automatically be (φ,Φ) invariant. This model

curve can be exponentiated out from any point on the zero section of T ∗Tn.

As φ preserves the conformal structure of S, it preserves the E edge markings.

Thus any E edge region of S containing some of δD must be cut exactly in half by

δD, either longways or in the middle. An edge cut in the middle by δD contains all

of δD. The placement of such an edge is determined up to Tn translation. An edge

cut longways by δD must have homology class zero. The trivial holomorphic cylinder

associated with such an edge will just be a constant map to some point of the zero

section of T ∗Tn. A vertex attached to such an edge must also contain some of δD.

The puncture associated to our edge must be preserved by φ, and thus as the model

curve is (φ,Φ) invariant, the model curve must map this puncture to some point on

the zero section. Thus all the vertices and edges that contain some of δD and must be

located on the zero section can be attached together without leaving the zero section.

As in Lemma 5.1.1, after we have chosen the placement of one of these compo-

nents which must be on the zero section, the placement of all other components is

determined by the complex structure of S and ∂̄0u. The fact that S has zero genus

means that there are no further conditions that need to be fulfilled. Any such quasi

holomorphic graph which has ∂̄u ∈ Eφ will automatically be (φ,Φ) invariant due to

the symmetry of the construction.

We now have that there exists a J ε quasi holomorphic graph satisfying ∂̄0u = ν

for any small ν ∈ Eφ, and this graph is unique up to Tn translation. The same is



5.3. HOLOMORPHIC SPHERES IN TN × (RN − {0}) 87

true for ER markings with any R. For R large enough and ε small enough, ∂̄1 is

a perturbation of ∂̄0 when restricted to a single complex structure, and the Lemma

follows.

!

5.3 Holomorphic spheres in Tn × (Rn − {0})

We want to consider Tn × (Rn − {0}) with the cylindrical complex structure which

the end of the structure on Tn × Rn considered earlier is asymptotic to.

J
∂

∂x
= |y| ∂

∂y

This manifold has two ends. The end as |y| → ∞ will be referred to as the

positive end and the one around y = 0 the negative end. The curves relevant to the

compactification of the space of holomorphic spheres in Tn ×Rn will be holomorphic

spheres with several punctures, one of which is special and sent to a particular orbit

in the negative end.

Lemma 5.3.1. Given a closed geodesic α in Tn with class [α] ∈ H1(Tn, Z) and k

classes in H1(Tn, Z) summing to −[α], for any sphere S with k + 1 punctures, for

ε small enough, there is a J ε holomorphic map u : S −→ Tn × (Rn − {0}) so that

the first puncture is asymptotic to α at the negative end, and the other ends have the

appropriate homology classes. Up to scaling in the y direction and translating in the

direction of [α], there is virtually (definition 5.0.3) one of these maps.

Note that depending on the complex structure of S, the other ends of u may be

either positive or negative. Generically, they will be positive.

Proof:

As we are restricting to a fixed complex structure, ∂̄1 is a perturbation of ∂̄0.

We first solve the problem for quasi holomorphic graphs with ∂̄0 specified. The

requirement that the first edge is asymptotic to α fixes its position up to translation

in the [α] direction or scaling in the y direction, each of which is a symmetry. The
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other components of u are then fixed as in the proof of Lemma 5.1.1. Note also that

such solutions of ∂̄0u = 0 will be transversely cut out.

Now note that the ends of a graph u and G∞(u) are the same. Thus as ∂̄1 is a

perturbation of ∂̄0, we have for ε small enough the required result.

!



Appendix A

Notation

J := almost complex structure

ω := symplectic form

∇ := unique connection preserving J and torus action

T := torsion tensor of ∇
Tn ! Bn := Lagrangian torus fibration which is the ambient space.

Qε,E
g,k,E := space of J ε quasi holomorphic graphs u with genus g, k

punctures, and energy less than E with
∥∥∂̄0u

∥∥ < 1. See

sections 1.1.4 and 2.5.

E := a finite dimensional bundle over Qε,E
g,k,E defined in section

1.1.4.

HE(S, Cn) := the fiber of Qε,E
g,k,E. Defined in section 1.1.4. Equal to

ker QE, discussed in sections 2.4 and 2.9

∂̄0 := Section of E . A way of taking ∂̄ of quasi holomor-

phic graphs involving taking ∂̄ of each individual model

curve. See section 1.1.4.

[∂̄0] := A smoothing of ∂̄0. See sections 1.1.6 and 4.

Mε,[∂̄0],ER

g,k,E := Intersection of [∂̄0] with the zero section. Cobordant to

space of J ε holomorphic curves. See chapter 4.

E, ER := A decomposition of Riemann surfaces into edge and ver-

tex regions. See appendix C.
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Lp,δ
k := Weighted Lp space on k derivatives. The weight δ is

chosen so that 0 < δ < 1
2 . p is larger than 2. Defined in

section 2.3.

‖φ‖1,p,δ := The norm of φ in Lp,δ
1 . Note that this norm is always

measured in the rescaled metric in which J ε is an isome-

try and torus fibers have the standard metric on Rn/Zn.

BE(S, Cn) := The subspace of Lp,δ
1 (S, Cn) which consists of sections

which average to 0 over the center of E edge regions.

See section 2.7.

BE := Bundle over Qε,E
g,k,E with fiber BE(S, Cn) on which the

space of maps is locally modelled. Defined in section

2.7.

Q := Model left inverse to ∂̄ restricted to Lp,δ
1 (S, Cn). Defined

in section 2.4

QE := Model left inverse to ∂̄ restricted to BE(S, Cn). Defined

in section 2.9.

πQ,E := Projection onto the image of ∂̄ (BE(S, Cn)) with kernel

given by ker Q. Defined by πQ,E := ∂̄ ◦ QE. Introduced

in section 2.9.

D∂̄,u := Linearization of the ∂̄ operator at a map u. Introduced

in section 2.2.

G := ‘Gluing’ map. Takes quasi holomorphic graphs and pro-

duces maps to Tn ! Bn. Introduced in section 2.6

G∞ := Map which takes quasi holomorphic graphs in Qε,ER
g,k,E

and produces quasi holomorphic curves f satisfying

πQ,E∂̄f = 0. Discussed in section 2.10.

∂̄1 := Section of E defined by ∂̄1 := ∂̄ ◦ G∞. The intersection

of ∂̄1 with the zero section gives the moduli space of

holomorphic curves.

πR,R′ := Local submersion from Qε,ER
g,k,E to Qε,ER′ . Defined in ap-

pendix C.3.

Λω,E := Set of taming forms equivalent to ω for holomorphic

curves of energy less than E. Defined in section 3.1.



Appendix B

Technical assumptions

1. Torus fibers are Lagrangian

2. The symplectic form and J are preserved by the torus action on the fibers.

3. ω is positive on holomorphic planes

4. The ω energy is constant on continuous families of maps with holomorphic ends

5. The energy provides a bound on the local area of holomorphic maps. More

precisely, for any energy bound E there exist constants r > 0 and cE > 0

so that for any point p in the base manifold Bn, there exists a taming form

ωp,E ∈ Λω,E so that in the fibration over the ball of radius r around p

ωp(v, Jv) ≥ cE |v|2

(Recall that Λω,E is defined as the set of closed two-forms which are nonnegative

on holomorphic planes, vanish restricted to torus fibers and have the same

integral as ω on any J ε holomorphic curve with ω energy less than E.)

6. ‖T‖∞ and ‖∇T‖∞ are bounded.

7. Tn ! Bn is complete and has injectivity radius bounded below.
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8. If a weaker metric G is to be used to compactify the space of holomorphic curves,

then the curvature of G and the derivatives in G’s Levi Civita connection of the

canonical frame should be bounded so that

distG(expp1
φ, expp2

φ) ≤ distG(p1, p2)e
c|φ|

Also, the change in the torsion tensor T measured in the canonical metric should

be bounded by distance in G, ie

|Tp1 − Tp2| ≤ c distG(p1, p2)

B.1 Cn/Zn

Cn/Zn has an obvious torus action which preserves the usual complex structure. In

this case, g is the euclidean metric and ∇ the corresponding trivial connection. The

torsion tensor T = 0. To choose a taming form compatible with our requirements,

we consider Cn/Zn as the subset of a toric manifold where the Tn action is free.

For example, we could consider C/Z = C∗ ⊂ CP 1, and consider some rotationally

symmetric symplectic form on CP 1. All assumptions apart from 4, 5, and 8 are

immediate.

To understand 4, we must first understand what it means for a map to have

holomorphic ends. A map f from a punctured Riemann surface has holomorphic

ends if there exists a neighborhood of each puncture so that f is holomorphic. As

we can consider f as a map to our toric manifold, the removable singularity theorem

tells us that if f has finite energy, then f extends to a map of the entire Riemann

surface to the toric manifold. As ω is a closed differential form on this toric manifold,

the ω energy of f depends only on its homology class, so assumption 4 is satisfied.

To understand 5 we first recall that the set of taming forms Λω,E is defined as the

set of closed two forms which which are nonnegative on holomorphic planes, zero on

torus fibers, and have the same energy as ω on any J ε holomorphic curve. In this

case, any translation of ω as a form on Cn/Zn will represent the same cohomology



B.2. SYMPLECTIZATION OF UNIT COTANGENT BUNDLE OF TN 93

class on the compactification, so any translation of ω is in Λω,E. Assumption 5 is then

easily seen to be satisfied.

The final assumption we need to check is assumption 8. Note that any holomorphic

curve with bounded energy in the taming form pulled back from some toric manifold

will have bounded energy for any other taming form pulled back from a compact toric

manifold. Thus the moduli space of holomorphic curves is independent of the choice of

compactification. We want a compactification of this moduli space that corresponds

to the moduli space of holomorphic curves on our toric manifold. For this we want to

use a weaker metric G pulled back from a metric on the toric manifold. It is natural

in this case to use the metric

G(v1, v2) = ω(v1, Jv2)

The fact that the torus action extends to a smooth action on the toric manifold and

the derivative of J in the Levi-Civita connection of G is bounded gives us assumption

8.

B.2 Symplectization of unit cotangent bundle of

Tn

Give Tn the standard metric on Rn/Zn. The unit cotangent bundle has a Tn invariant

contact form. Identify the symplectization of the unit cotangent bundle with

Tn × (Rn − {0})

Giving Tn coordinates x ∈ Rn/Zn and (Rn − {0}) standard coordinates y, we have a

torus invariant almost complex structure J defined by

J
∂

∂xi
= |y| ∂

∂yi

The metric g in this case is the product of the standard symmetric metrics on



94 APPENDIX B. TECHNICAL ASSUMPTIONS

Tn × Sn−1 × R, so assumption 7 is satisfied. Note that this structure is cylindrical

because translation in the R direction preserves J and the metric. Unlike the last

example, J only gives an almost complex structure, and the torsion T of our flat

connection ∇ is non zero. Recall that ∇ is defined by declaring the frame {∂xi , J∂xi}
to be constant.

T(J∂xi , J∂xj ) = −[|y| ∂yi, |y|∂yj ]

= −∂ |y|
∂yi

|y|∂yj +
∂ |y|
∂yj

|y| ∂yi

T vanishes in the torus fiber directions. We see that |T| and |∇T| are bounded and

assumption 6 is satisfied. Of course, this has to be the case for smooth choices of J

on manifolds with cylindrical ends which are otherwise compact.

A choice of taming form which satisfies our conditions is given by

ω =
∑

dxi ∧ dfi(y)

where f : (Rn − {0}) −→ Rn is given by

f(y) =
h(|y|)
|y|

y

and h : R+ −→ (1, 2) is some surjective smooth increasing function. Assumptions 1,

2, and 3 are immediately seen to be satisfied.

To understand maps with holomorphic ends, we can use the modified removable

singularity theorem from [1] to see that any bounded energy map with holomorphic

ends will either extend as a holomorphic map over its punctures or converge to a Reeb

orbit at an end of our manifold. Our taming form is exact

ω = d(
∑

fi(y)dxi)

lim
|y|→0

∑
fi(y)dxi =

∑ y

|y|dxi and lim
|y|→∞

∑
fi(y)dxi =

∑ 2y

|y|dxi

So the ω energy of a map with holomorphic ends just depends on the integral of the
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above one forms over the Reeb orbits at its ends. The Reeb vector field is given by

∑ yi

|y|
∂

∂xi

so families of Reeb orbits all occur over the same point in Sn−1, and have a constant

integral. Therefore, a continuous family of maps with holomorphic ends will always

have the same energy, and assumption 4 is satisfied.

Assumption 5 is seen to be satisfied when we note that translations of ω in the R
direction are in Λω,E.

An appropriate choice for G that satisfies assumption 8 is

G(v, w) =
1

2
(ω(v, Jw) + ω(w, Jv))

This metric squashes down the R factor to a finite interval. The change in T is

still dominated by G distance, as translation in this R direction doesn’t affect T. A

more extreme choice for G is actually a pseudo metric which crunches down the R
factor to a point. This ’metric’ comes in useful when considering the moduli space of

holomorphic curves or graphs mod translations in the R factor.

B.3 Contact three manifolds with a T2 action

Take a compact contact three manifold M that has a T2 action preserving the contact

structure. Assume that there is a contact form λ0 preserved by the T2 action so that

each point in M either has a neighborhood on which the T2 action is free or the

neighborhood is modeled on an open neighborhood of {r = 0} in

(r, θ1, θ2) ∈ D2 × S1

λ0 = dθ2 + r2dθ1

with T2 acting by rotating the θ1 and θ2 coordinates. If we quotient M by the T2

action we either get S1 and M is some multiple cover of the unit cotangent bundle of
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T2, or we get an interval [0, 1] where the T2 action degenerates as above at each end,

with the coordinate that is part of the interval given by r2. M can be a sphere, a

Lens space, or S1 × S2 depending on how the T2 action degenerates at the ends. We

will only consider the latter cases, as covers of the unit cotangent bundle are covered

by section B.2.

As the Reeb vector field of this contact form may not be generic enough to fit

some needs, we will work with a more flexible model for the contact form λ near

where the T2 action degenerates

λ = (1 + h(r2))dθ2 + r2dθ1

where h is some smooth function which vanishes at 0, and λ describes a contact form

in some neighborhood of {r = 0}. The contact distribution is spanned by the vector

fields

r
∂

∂r
,

(
(1 + h(r2))

∂

∂θ1
− r2 ∂

∂θ2

)

for r '= 0. We can choose some complex structure J on the contact distribution, for

example,

J

(
(1 + h(r2))

∂

∂θ1
− r2 ∂

∂θ2

)
= r

∂

∂r

The direction of the Reeb vector field is given by the kernel of

dλ = dr ∧ (
r

2
dθ1 +

r

2
h′dθ2)

Reeb vector field R = c(r2)

(
−h′ ∂

∂θ1
+

∂

∂θ2

)

where c(r2) :=
1

(1 + h(r2)) − r2h′(r2)

The symplectization of M can be identified with M × R with symplectic form

desλ where the R coordinate is s. The complex structure that behaves well in a

symplectization pairs the Reeb vector field with ∂
∂s . So we have J given in coordinates
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close to where the T2 action degenerates as

J

(
∂
∂θ1
∂
∂θ2

)
= A

(
r ∂
∂r
∂
∂s

)

A :=

(
(1 + h) −r2

−ch′ c

)−1

Note that

lim
r→0

|A − Id|
r

= 0

The size of the torsion tensor T as r → 0 is controlled by the derivatives of A with

respect to r ∂
∂r , and |∇T| is controlled by the derivative of this with respect to r ∂

∂r ,

both of which approach 0. So assumption 6 is satisfied by this complex structure.

Note also that the vector fields J ∂
∂θ1

and J ∂
∂θ2

are smooth vector fields on M × R,

independent of s, and the torsion tensor depends smoothly on position in M . This

tells us that any metric which is the product of a smooth metric on M times any

metric on R will satisfy assumption 8.

An appropriate taming form is given by

ω = d(φ(s)λ)

where φ is some smooth surjective function R −→ (1, 2) with positive derivative. It is

shown in [1] that a bounded ω-energy holomorphic map of a punctured disk to M×R
must converge to a Reeb orbit at s = ±∞ or extend to a holomorphic map over the

puncture. Therefore, the ω energy of any map with holomorphic ends will depend on

the integrals of φλ over the Reeb orbits at its ends. As continuous families of Reeb

orbits always have the same λ integral, the ω energy will be constant on continuous

families of maps with holomorphic ends, and assumption 4 is satisfied.

The final assumption to check is assumption 5. First note that by translating

ω in the R direction, we can satisfy assumption 5 away from where the T2 action
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degenerates. We can now specialize to our neighborhood where

λ = (1 + h(r2))dθ2 + r2dθ1

For a generic contact form of the above type, for any given energy E, there will be a

radius rE > 0 so that no Reeb orbits appearing in holomorphic curves of energy less

that E exist in the region with r ≤ rE. The idea now is to alter λ in the neighborhood

where r ≤ rE. Our complex structure is such that the following forms are both non

negative on holomorphic planes

dλ = dr ∧ (
r

2
dθ1 +

r

2
h′dθ2)

and d ((φ− 1)λ)

We can change λ to

λ̃ = f(r2)dθ2 + g(r2)dθ1

where f and g satisfy

g(0) = 0

g(r2) = r2 for r ≥ rE

f(r2) = (1 + h(r2)) for r ≥ rE

(f ′, g′) = c(h′, 1) for some c(r) ≥ 0

dλ̃ will have the same integral as λ on any J ε holomorphic curve with energy less than

E. By making (f ′, g′) large in some region, we concentrate dλ̃ in the direction of r ∂
∂r .

By adding some translate of d(φ − 1)λ to this, we can get taming forms satisfying

assumption 5.



Appendix C

Vertex-edge decomposition, E

We need a family of decompositions ER of our domain Riemann surface S into subsets

labeled as vertices or edges which is reminiscent of the decomposition into thick and

thin parts given by the uniformisation theorem. Our decomposition should obey the

following axioms:

1. The E edge regions are disjoint open subsets of S conformal to R/Z × (a, b),

where a ∈ R ∪ {−∞}, b ∈ R ∪ {∞} and a < b. ER edge regions for R ≥ 0

consist of the subsets R/Z × (a + R, b − R) ⊂ R/Z × (a, b) of E edge regions.

2. E vertex regions are the closed subsets of S which are connected components

of the compliment of the edges.

3. The E edge and vertex regions depend only on the conformal structure of S.

The edge regions which are conformal to punctured disks change smoothly with

a smooth change of conformal structure.

4. For each edge, there exists some distance r so that the edge is the unique edge

contained in some connected component of the set of points in S with injectivity

radius less than r in the metric given by the uniformisation theorem.

5. there exists a sequence Rm so that the ER decomposition obeys the following

axioms for all R ≥ Rm on Riemann surfaces with (3g − 3 + k) ≤ m where k is

the number of punctures and g is the genus.

99
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(a) Take a ER vertex region V and replace each ER edge region R/Z × (0, R)

surrounding it with R/Z × (0,∞). This creates a new Riemann surface

SV . The ER edges of SV are exactly these subsets R/Z × (0,∞).

(b) Take a Riemann surface S with a node. The ER edge regions surrounding

each side of this node will be conformal to R/Z × (0,∞) on one side and

R/Z × (−∞, 0) on the other. Resolve this node by gluing these cylinders

together with the identification

(θ, t) ∼= (θ −Θ, t − l)

These cylinders are identified along a cylinder of length l. This gluing

produces a new Riemann surface with our two infinite cylinders replaced

by this new cylinder. The ER edge regions of our new Riemann surface

consist of this new cylinder and the images under this construction of all

the other ER regions of S.

(c) There exists a distance r(m, R) so that if S has genus g and k punctures

so that (k + 3g − 3) = m, the regions in S with injectivity radius less

than r(m, R) in the metric given by the uniformisation theorem are all

contained inside the ER edges of S.

By E edge regions moving smoothly in axiom 3, we mean that there exists locally

a smooth family of diffeomorphisms which are the identity on these edge regions. For

changes of complex structure resolving a node, the other edge regions are given by

axiom 5b. This counts as ‘smooth’.

The important axioms here that require us to modify the usual thick-thin decom-

position given by the uniformisation theorem are axioms 5a and 5b. These ensure

that our markings of edges and vertices are compatible with the operations of gluing.

An alternative description of quasi holomorphic graphs and the gluing procedure

uses as E regions on a Riemann surface the thick-thin decomposition coming from

the uniformisation theorem. For compatibility with gluing we then have to have the

E regions on vertex model curves depending on the global structure of the original
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Riemann surface. The results will then hold with only minor modifications after the

equivalent of Proposition 2.9.2 has been proved.

C.1 Construction of E

We construct E inductively as follows:

Pick some ρ > 0 so that the regions of injectivity radius less than ρ in the constant

curvature −1 metric provided by the uniformisation theorem are always annuli. The

E edge regions we construct will always be contained in these ρ-thin regions. There

is a holomorphic identification of each ρ-thin region surrounding a puncture with the

unit complex disk D, punctured at 0. This identification is unique up to rotations

of D. Note that the space of regions in D that are star shaped around 0 is convex.

More than this, the space of collections of star shaped regions in the ρ-thin regions

surrounding punctures that are preserved by automorphisms is also convex. We

shall construct E edge regions to be star shaped in these ρ-thin regions surrounding

punctures. This has the advantage of there being no topological obstructions to

defining our E decomposition in patches on Deligne-Mumford space and then making

them match up using a partition of unity.

Define the E edge regions of a three punctured sphere to be the standard disks of

radius 1
2 inside the ρ-thin regions. (Identifying the ρ-thin regions as above with the

standard complex unit disk punctured at 0). These are star shaped and preserved by

automorphisms. This also trivially satisfies the axioms of a E decomposition.

Suppose that we have constructed our E decomposition on parts of Deligne Mum-

ford space with (3g−3+k) ≤ m. Suppose that this decomposition satisfies the above

axioms and also has that each E edge region is contained inside some ρ-thin region,

and the E regions surrounding punctures are star shaped in their ρ-thin region.

We now want to define our E decomposition on a component of Deligne Mumford

space with (3g − 3 + k) = (m + 1). Due to axiom 5a, for R large enough the ER

decomposition has to be the decomposition already defined on the boundary strata,

which consists of nodal curves with components satisfying (3g − 3 + k) ≤ m. The
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ER decomposition in some neighborhood of the boundary strata is then determined

using axiom 5b.

We will start off on the boundary strata with the E decomposition already defined

for Riemann surfaces with (3g − 3 + k) ≤ m. We will alter this by removing E

edge regions shorter than some size Rm+1 and extend it to a neighborhood U of the

boundary strata so that it satisfies axiom 5b. We will then patch this together with

the E decomposition defined outside of a neighborhood of the boundary strata by

taking disks of radius 1
2 inside the ρ-thin disks surrounding punctures.

In particular, suppose we want to take a nodal Riemann surface and resolve some

node. Axiom 5c tells us that there must be a E edge region surrounding each half

of the node. Identify the E edge region of one half with R/Z × (0,∞) and the other

half with R/Z × (−∞, 0). (To do this, there is an unimportant choice of angular

parameter). A gluing involves an identification of parts of these two cylinders. These

identifications can be parametrized coordinates (Θ, l) ∈ R/Z × (0,∞). In particular,

take the identification

(θ, t) ∼= (θ −Θ, t − l)

This identifies our two cylinders on a cylinder of length l. The gluing given by this

identification replaces our pair of infinitely long cylinders with this one. Define the

E edge regions of this new surface for small r to consist of this new cylinder and the

image of all other E edge regions under this construction. Lemma C.1.1 below shows

that for some R0, this construction gives a well defined E decomposition for some

neighborhood U of the boundary strata corresponding to all gluings with l greater

than some R0. Moreover, on this neighborhood U , the edge regions will be contained

in the ρ-thin parts and the edge regions surrounding punctures will be star shaped.

We will alter this decomposition on this neighborhood U . First, set

Rm+1 = min

(
R0 + 1

2
, Rm

)

Then remove all edge regions shorter than 2Rm+1. This decomposition locally defined

on U will obey the above axioms.

Now define a second E decomposition, by taking the disks of radius 1
2 inside the
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ρ-thin disks surrounding punctures. This gives a well defined E decomposition outside

any neighborhood of the boundary strata, which satisfies all our axioms. Note that

the length of the longest internal edge before we deleted edges above is still well

defined on our neighborhood. We interpolate between these two locally defined E

decompositions using this as a parameter, using our disks of radius 1
2 outside of

our neighborhood U and if the length of the longest internal edge before deletion is

shorter than R0 + 1
4 , and using our previously defined decomposition if the length of

the longest internal edge before deletion is longer than R0 + 3
4 .

This gives a globally defined E decomposition on the components of Deligne Mum-

ford space with (3g − 3 + k) = (m + 1), which obeys all our axioms and the addition

assumptions. We can continue inductively to define this E decomposition on all of

Deligne Mumford space.

The following is based on the exposition given in [3]. We want to show that the

gluing procedure described above gives us a well defined E decomposition on some

neighborhood of the boundary strata. We will do this locally.

Suppose we have some nodal Riemann surface S with automorphism group GS.

The ER edge regions will be preserved as a set by GS, but they may be permuted or

twisted by the action of GS. We can choose a uniformising neighborhood (US, GS) for

S inside the boundary strata that keeps all the nodes of S as nodes. A ‘uniformising

neighborhood’ means an open subset US ∈ Rn with a group action GS and a diffeo-

morphism identifying US/GS with a neighborhood of S. These are the local charts

for orbifolds.

We can choose smooth identifications of the E edges surrounding our nodes of

surfaces in US with R/Z × (0,∞) on one side and R/Z × (−∞, 0) on the other

side. This may not be be well defined down in Deligne Mumford space, as our

automorphisms may act nontrivially on these identifications. This is called a small

disk structure in [3]. If there are k of these nodes, we then have a map defined by
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gluing on our k nodes as described above

Φ : US × Dk −→ Deligne Mumford space

D indicates the complex unit disk with coordinates e−2π(l+iΘ) with (Θ, l) ∈ R/Z ×
(0,∞). Our gluing map is defined as above by making the identification

(θ, t) ∼= (θ −Θ, t − l)

on each of our k nodes. Note that as our group action GS may act nontrivially on

our coordinates on the nodal E edges, the action of GS extends naturally to US ×Dk.

The following is proved in [3]:

Lemma C.1.1. There exists some open neighborhood ŨS of (S, 0) ⊂ US ×Dk so that(
ŨS , GS

)
together with the map Φ is a uniformising neighborhood of S.

To get that our gluing procedure gives a well defined E decomposition in a neigh-

borhood of the boundary strata, we just need to patch together a finite number of

these neighborhoods (noting that the boundary strata are compact.) Note that as

our E decomposition that we start with on the boundary strata satisfies axiom 5b,

gluings on k nodes close to the strata where there are k + 1 nodes will give the same

E decomposition as gluings starting from the strata with k + 1 nodes. Restricting to

a smaller neighborhood if necessary, we see that it is possible to keep the resulting

E edge regions inside the ρ-thin regions, and make the E edge regions surrounding

punctures star shaped inside their ρ-thin disks.

C.2 Metric

We want a family of metrics on our domain compatible with gluing and our complex

structure and so that Proposition 3.2.4 gives a uniform derivative bound. For this

we use the decomposition of a Riemann surface into edges and vertices discussed in

section C, and choose a metric so that the following are satisfied.
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1. The metric is in the conformal class given by the complex structure on the

Riemann surface.

2. The metric on edges is given by the standard metric on R/Z × (a, b).

3. The metric on a vertex region V depends only on the Riemann surface SV

created by replacing all edges surrounding V with semi infinite cylinders R/Z×
(0,∞).

4. The metric depends continuously on the complex structure of the Riemann

surface.

5. For every point p ∈ S there exists a holomorphic embedding of the unit disk

D −→ S sending 0 to p and with derivative at 0 greater than 1
2 .

C.3 πR,R′ : Qε,ER
g,k,E −→ Qε,ER′

The goal of this section is to define the map

πR,R′ : Qε,ER
g,k,E −→ Qε,ER′ for R′ ≥ R

πR,R′ will preserve the domain Riemann surface of a quasi holomorphic graph, but

as we are changing the ER edge markings, some things will need to be altered. Recall

that the edge regions of ER consist of subsets R/Z × (a + R, b − R) ⊂ R/Z × (a, b)

of the E edge regions parametrized conformally. If a E edge region is conformal to

a cylinder shorter than 2R, then it will not contribute to the ER edge regions. Two

things can happen to a ER edge when we change to ER′ markings for R′ ≥ R, it

can get shorter, or it can disappear entirely. The trivial holomorphic cylinders of the

edges of πR,R′u will consist of the restriction of the trivial holomorphic cylinders from

the edges of u restricted to ER′ edge regions.

If no edge regions disappear, then we can simply take the map on vertex model

curves [p, f ] to be the identity. Thus πR,R′ is practically the identity when no edges dis-

appear (or said another way, when QER = QER′ or when HER(S, Cn) = HER′ (S, Cn)).
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What we need to define πR,R′ in general is a way of assigning model curves when

some ER edge region contains no ER′ edge region.

Recall that the condition on joining a vertex model curve given by [p, f ], f : SV −→
Cn/Zn to an adjacent edge in a quasi holomorphic graph is given by considering the

edge as a subset R/Z × (0, R) ⊂ R/Z × (0,∞) of the edge region surrounding a

puncture in SV , and then parameterizing the edge as

C(θ, t) = expexpp ζ(θα+ tJ εα)

where lim
t→∞

f(θ, t) = ζ + θα + tJα

The above expression expp ζ is to be understood after identifying (Tp(Tn ! Bn), J ε)

with Cn. Note that this identification multiplies the part of ζ that projects to the

base manifold by ε. Recall also that a normalizing condition we put on f was that
∑
ζi is in the real (torus) subspace of Cn/Zn.

Because the torsion of our flat connection ∇ is bounded, there exists a radius r0

smaller than the injectivity radius of the base manifold, so that given any finite set

of points bi inside a ball in our base manifold of radius r0 there is a unique average b

so that

bi = expb vi for |vi| ≤ 2r0

and
∑

vi = 0

ζ is bounded for model curves appearing in Qε,ER
g,k,E, and the edges that disappear

have length bounded by 2(R′ − R). The number of internal edges is bounded by

3g − 3 + k. We can choose ε so that ε(max |ζ | + (6g − 6 + 2k + 2)(R′ − R)) < r0
2 .

This means that all the ends of the edges of πR,R′u attached to a ER′ vertex region

V will be contained in a ball of radius r0 in the base, and have a unique average.

We choose a point p in the torus fiber over this average point, and have the new

model curve [p, f ] living at this point p. Once we have chosen p we can choose the ζi

which get us from p to the ends of the attached edges. We can then define a function



C.3. πR,R′ : Qε,ER
G,K,E −→ Qε,ER′ 107

F : S −→ Cn/Zn so that

expexpp(
∑

ψiζi)

(
F −

∑
ψiζi

)
on V ⊂ SV

and F continues as the appropriate holomorphic cylinders. The notation above is

explained in Section 2.6. All that is important for now is that this makes F become

the correct trivial holomorphic cylinders near punctures. If we want our model curve

to be quasi holomorphic, then we take

f := F − Q∂̄F

This defines the map πR,R′ . Note that we needed to choose ε small depending on R′.

Note ker dπR,R′u can be identified with movements of the edge holomorphic cylin-

ders of u that are conformal to cylinders of length less than 2(R′ − R). If there are

m of these, by tracking a marked point on the center of each edge, we can identify

ker dπR,R′ = (Cn)m

Note also that the complex dimension of HER(S, Cn)/HER′ (S, Cn) is also nm.

Lemma C.3.1. There exists a canonical isomorphism

IS : (Cn)m = ker dπR,R′ −→ HER(S, Cn)/HER′ (S, Cn)

so that the derivative of ∂̄0 projected to HER(S, Cn)/HER′ (S, Cn) and restricted to

ker dπR,R′

D∂̄0
: ker dπR,R′ −→ HER(S, Cn)/HER′ (S, Cn)

satisfies
∥∥D∂̄0

− IS

∥∥ ≤ 1

2
∥∥I−1

S

∥∥

for ε small enough dependent on R′ and Qε,ER
g,k,E

Proof:
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In fact, IS = D∂̄0
in the integrable case. Recall that the way we defined QER in

Proposition 2.9.2, ker QER is spanned by ker QER′ and Cn ⊗ Span{∂̄fi} where fi is

some function that is equal to 1 on the ith ER edge region that contains no ER′ edge

region, and 0 on all other ER edge regions.

In the integrable case, shifting the ith edge edge by vi ∈ Cn will change ∂̄0 by

v ⊗ ∂̄fi. Considering this map on movements of ER edges that don’t contain ER′

edge regions defines the isomorphism IS. An application of Lemma 2.2.4 shows that

because the length of these edges and the size of model curves in Qε,ER
g,k,E is bounded,

that D∂̄0
converges to this integrable case as ε approaches 0

!
Note that the fact that ∂̄0 is C1 smooth when the ER decomposition doesn’t jump

and the above lemma implies that for ε small enough, πR,R′ provides a C1 smooth

diffeomorphism from solutions of the equation

∂̄0u ∈ HER′ (S, Cn) for u ∈ Qε,ER
g,k,E

to its image in Qε,ER′ when restricted to sets where the ER′ decomposition doesn’t

jump.
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