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BOUNDED LINEAR OPERATORS

We will be concerned with linear transformations or operators T : X → Y

where X and Y are normed, indeed, generally Banach spaces. For such a transfor-

mation T define the norm of T by

‖T‖ = sup{‖Tx‖Y : ‖x‖X = 1} = sup
x6=0

‖Tx‖
‖x‖ .

When ‖T‖ <∞, T is called bounded, and this is equivalent to T being continuous

as a function from X to Y . We denote by B(X,Y ) (or B(X) when X = Y )

the set of bounded linear operators from X to Y . With the norm defined above

this is normed space, indeed a Banach space if Y is a Banach space. Since the

composition of bounded operators is bounded, B(X) is in fact an algebra. If X

is finite dimensional then any linear operator with domain X is bounded and

conversely (requires axiom of choice). In the special case that Y is the scalar field,

always either R or C, B(X,Y ) is denoted by X∗. This is the dual space of X. As

simple examples of these notions consider the following.

For infinite-dimensional X it is not apparent that X∗ contains anything but

the zero functional. The (Helly)- Hahn-Banach theorem is the basic tool which

overcomes this difficulty, and does much more besides. There are various equivalent

forms of this result of which we consider two.

Extension Form: Given a gauge function p on a real vector space X, and a

linear functional φ defined on a subspace Y which satisfies |φ| ≤ p on Y , there is

an extension φ̃ of φ to all of X satisfying |φ̃| ≤ p.

This is a result for real vector spaces as the proof explicitly uses the order

structure of R. However, Bohnenblust and Sobczyk showed that the complex case

of the extension form is an almost immediate consequence.

Separation Form: Given two disjoint convex non-empty sets in a real vector

space, one of which has an internal point, there is a hyperplane which separates
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the two sets.

There are several other equivalent results; the import of the separation form

is the highlighting of the crucial role of convexity.

A topological vector space is both a vector and a topological space such that

the operations of addition and scalar multiplication are continuous.

PROPOSITION A topological vector space admits a non-zero continuous linear

functional if and only if it has a proper, open convex subset.

For a normed space X, let X∗ be the (Banach) space of continuous linear

functionals on X, and denote by σ(X,X∗) the topology on X determined by the

functionals in X∗; this is the weak topology on X.

Consequences of Hahn-Banach for a normed space X include the following:

• The space X∗ of continuous linear functionals is total, that is, it separates

points of X. This is just saying σ(X,X∗) is Hausdorff.

• For x ∈ X, ‖x‖ = sup{|x∗(x)| : x∗ ∈ X∗, ‖x∗‖ ≤ 1}.

• A subspace Y of X is (norm) dense in X if and only if any continuous linear

functional that vanishes on Y is zero (if and only if it is weakly dense).

• (Mazur) If x ∈ X lies in the weak closure of a set Y then x lies in the norm

closure of the convex hull of Y . In particular, there exists a sequence of convex

combinations of elements of Y which converges in norm to x.

The topology σ(X,X∗) for a normed space X is only given by a norm when

X is finite dimensional, in which case it is equivalent to the norm topology.

Since X∗ is a Banach space (even if X is not complete), repeating the process

gives the space X∗∗ = (X∗)∗. For x ∈ X, the functional Jx defined on X∗ by

(Jx)(x∗) = x∗(x) clearly lies in X∗∗, indeed the map J : x 7→ Jx is an isometry

of X into X∗∗. If J is onto then X∗∗ is called reflexive. (NB. X and X∗∗ may be

isometrically isomorphic without X being reflexive.) The importance of reflexivity

comes from the following compactness results. On X∗ we have the weak topology
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σ(X∗, X∗∗) as above, but we also have the weaker σ(X∗, JX) = σ(X∗, X), the

weak*-topology.

THEOREM (Banach-Alaoglu) The closed unit ball in X∗ is σ(X∗, X)-compact.

(It follows that every Banach space can be considered as a space of continuous

functions on some compact space.)

If X is reflexive then clearly σ(X,X∗) = σ(X∗∗, X∗), so that the unit ball of

X is weakly compact. This condition is in fact equivalent to reflexivity.

If X,Y are Banach spaces and T ∈ B(X,Y ), define T ∗ : Y ∗ → X∗ by

(T ∗y∗)(x) = y∗(Tx) for x ∈ X, y∗ ∈ Y ∗. T ∗ is the adjoint of T , and Hahn-Banach

gives ‖T ∗‖ = ‖T‖.

THE CATEGORY THEOREMS

A subset Y of a topological space X is called meagre, or of the first category,

in X if Y is a countable union of nowhere dense sets in X. If Y is non-meagre it

is of the second category (in X).

THEOREM (Baire) A complete metric space is non-meagre in itself. Equiva-

lently, a countable intersection of dense open sets in X is dense.

There is a more general result carrying the appellation of Mittag-Leffler, but

in practice the following special case often suffices.

COROLLARY If a Banach space X is a countable union of closed subsets (Yn)

then some Yk has interior in X.

THEOREM(Uniform boundedness principle, Banach-Steinhaus theorem) LetX,Y

be Banach spaces, and suppose (Tα) ⊆ B(X,Y ) is pointwise bounded. Then (Tα)

is (norm) bounded. That is,(
sup
α
‖Tαx‖ <∞ for every x ∈ X

)
⇒ sup

α
‖Tα‖ <∞ .

NB. That X is non-meagre in itself is critical for this result.

COROLLARIES

(i) A weakly bounded set is (strongly) bounded.
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(ii) Given (Tn) ⊆ B(X,Y ) such that Tx = limn Tn(x) exists for each x ∈ X,

then T ∈ B(X,Y ).

(iii) A Banach space cannot have countable dimension; Hamel bases in Banach

spaces are topologically ‘bad’.

THEOREM(Closed graph) Let X,Y be Banach spaces, T : X → Y a linear

transformation. If Gr(T ) is closed in X × Y then T is continous.

NB. Without completeness of both X and Y this result may fail.

THEOREM(Bounded inverse) Let X,Y be Banach spaces, T ∈ B(X,Y ) a bijec-

tion. Then T−1 ∈ B(Y,X).

THEOREM (Open mapping) Let X,Y be Banach spaces, T ∈ B(X,Y ) a surjec-

tion. Then T is open.

Remark. OMT ⇒ CGT is almost immediate.

Applications: Schauder bases, Hörmander-G̊arding criteria for hypoellipticity,

separating space of a linear operator.

HOLOMORPHIC FUNCTIONS AND THE SPECTRUM

Let X be a Banach space, D ⊆ C an open set. A function f : D → X is

holomorphic on D if for each z0 ∈ D, lim
h→0

f(z0 + h)− f(z0)
h

exists in X.

Essentially all of classical complex variable theory holds true in this situation,

with almost identical proofs. Note that the apparently weaker notion, of requiring

that for each φ ∈ X∗ the map φ ◦ f : D → C be holomorphic, is in fact equivalent

(use UBP on difference quotients).

If T is a linear transformation on a finite dimensional space then either

(i) T is invertible, or

(ii) zero is an eigenvalue of T .

On a general Banach spaceX the situation is much more complicated. Suppose

T ∈ B(X) and define disjoint subsets C as follows :
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Point Spectrum of T :

Pσ(T ) = {λ : (λI − T )x = 0 for some non− zero x ∈ X} = {λ : λI − T is not 1 : 1}

Continuous Spectrum of T :

Cσ(T ) = {λ : [(λI − T )X]− = X, (λI − T ) is 1 : 1 but has no bounded inverse}

Residual Spectrum of T :

Rσ(T ) = {λ : [(λI − T )X]− 6= X, (λI − T ) is 1 : 1}

Resolvent Set of T :

ρ(T ) = {λ : [(λI − T )X]− = X, (λI − T ) is 1 : 1 and has a bounded inverse}

= {λ : [(λI − T )] = X, (λI − T ) is 1 : 1 and has a bounded inverse}

Thus ρ(T ) is the complement of the spectrum σ(T ) = Pσ(T )∪Cσ(T )∪Rσ(T ) of T .

Pσ(T ) is the set of eigenvalues of T ; Cσ(T ) ∪Rσ(T ) = ∅ in the finite dimensional

case.

THEOREM Let X be a Banach space, T ∈ B(X). Then ρ(T ) is an open set, and

λ 7→ (λI − T )−1 is holomorphic thereon.

COROLLARY σ(T ) is a non-empty compact set, and

ν(T ) = sup{|λ| : λ ∈ σ(T )} = lim ‖Tn‖1/n .

COMPACT OPERATORS

If X,Y are Banach spaces, a linear map T : X → Y is compact if it maps

bounded sets into pre-compact sets. If C(X,Y ) denotes the collection of such T ,

then C(X,Y ) is a norm closed subspace of B(X,Y ). Ascoli-Arzela shows that

T ∈ C(X,Y ) if and only if T ∗ ∈ C(Y ∗, X∗). C(X,Y ) contains the set F(X,Y ) of

finite rank operators. Here F(X,Y ) is the span of the one-dimensional operators

x∗ ⊗ y : x 7→ x∗(x)y (x ∈ X,x∗ ∈ X∗, y ∈ Y ) .
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Thus C(X,Y ) contains F(X,Y )−. Whether F(X,Y )− = C(X,Y ) is a very deep

question, related to the approximation property :

X has the approximation property (AP) if the identity operator on X is ap-

proximable by elements of F(X) uniformly on compact sets of X.

A non-obvious fact is that X has the AP if and only if F(Y,X)− = C(Y,X)

for all Y . As a simple example of these results we show:

THEOREM Any Hilbert space, indeed any space Lp(µ), 1 ≤ p ≤ ∞, has the

approximation property.

SPECTRAL THEORY OF COMPACT OPERATORS

THEOREM (Riesz-Schauder) If T ∈ C(X) then σ(T ) is at most countable with

only possible limit point 0. Further, any non-zero point of σ(T ) is an eigenvalue of

finite multiplicity.

COROLLARY (Fredholm alternative) If T ∈ C(X) then either I−T is invertible

or 1 ∈ Pσ(T ), that is, 1 ∈ ρ(T ) ∪ Pσ(T ).

COMPACT SELF-ADJOINT OPERATORS ON HILBERT SPACE

In the case of T ∈ B(H) for a Hilbert space H, the definition of adjoint

operator is modified slightly to use (x, T ∗y) = (Tx, y) as the defining relation for

the adjoint T ∗, and then T ∗ ∈ B(H). In this latter case, T is self-adjoint if T = T ∗.

Self-adjoint operators are very special; they are the generalization of real symmetric

matrices.

THEOREM (Hilbert-Schmidt) Let T be a self-adjoint compact operator on a

separable Hilbert space H. Then there is an orthonormal basis (en) of H such that

Ten = λnen where λn → 0.

LEMMA If T is a self-adjoint operator on a Hilbert space then σ(T ) ⊆ R,

Rσ(T ) = ∅, and ν(T ) = ‖T‖.

THEOREM If T is a compact operator on a Hilbert space H, then there exist

orthonormal sequences (xn), (yn) in H, and non-negative reals (λn), such that
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T =
∑
n λnxn ⊗ yn, the series being norm convergent.

In the self-adjoint case we can take yn = xn and λn ∈ σ(T ), to give T =∑
n λnxn ⊗ xn, with Txn = λnxn.

As an indication of where this ‘spectral theory’ is heading, take the self-adjoint

case above, and let Xλ =
⊕

λn≤λ{x : Tx = λnx}. Set Pλ to be the projection onto

Xλ. Then λ 7→ Pλ is strongly right continuous‡ and the above series for T can be

written as the Riemann-Stieltjes integral

T =

M∫
m−

λdPλ ,

where m = min σ(T ),M = max σ(T ).

One then defines f(T ) =
M∫
m−

f(λ)dPλ , for suitable functions f , giving rise to

the functional calculus homomorphism f 7→ f(T ).

More generally, for any operator T on a Hilbert space H, such that TT ∗ = T ∗T

(T is normal), there is a unique ‘spectral measure’ E defined on the Borel subsets

of C and with range in the projections on H such that for x, y ∈ H

(Tx, y) =
∫
σ(T )

λdµx,y .

where for x, y ∈ H the measure is defined on a Borel set S by µx,y(S) = (E(S)x, y).

‡ The strong topology on B(H) referred to here is that determined by the seminorms T 7→‖Tx‖ for x∈H. There

is also the weak topology, determined by the seminorms T 7→|(Tx,y)| for x,y∈H.
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SIGNED AND COMPLEX MEASURES

Recall that a complex measure µ on a σ-algebra Σ of subsets of a set X,

is a is a function µ : Σ → C such that for each disjoint sequence (Ei) ⊆ Σ,

µ(∪iEi) =
∑
i µ(Ei).

Given such µ, need there be a positive measure λ such that λ(E) ≥ |µ(E)| for

all E ∈ Σ ? For any E ∈ Σ, such λ would have to satisfy

λ(E) ≥ sup
{∑

i

|µ(Ei)| : ∪iEi = E,Ei ∩ Ej = ∅, i 6= j
}
.

Let us denote the right side here by |µ|(E); |µ| is the total variation of µ.

THEOREM |µ| is a finite positive measure.

It follows that a (signed) measure µ = µ+ − µ−, where µ+, µ− are positive

measures, and |µ| = µ+ + µ−.

If λ is a positive measure on Σ, and µ is a complex measure on Σ, then µ

is absolutely continuous with respect to λ if λ(E) = 0 ⇒ µ(E) = 0(E ∈ Σ). One

writes µ¿ λ. The name comes from the following.

THEOREM µ ¿ λ if an only if, given ε > 0, there is δ > 0 such that λ(E) <

δ ⇒ |µ(E)| < ε for all E ∈ Σ.

Two measures λ, µ on Σ are mutually singular if there exist disjoint A,B ∈ Σ

such that λ(E) = 0 for any E ∈ Σ, E ⊆ A, and µ(E) = 0 for any E ∈ Σ, E ⊆ B.

One writes λ ⊥ µ.

THEOREM Let λ be a σ-finite positive measure on Σ, µ a complex measure on

Σ.

(i) (Lebesgue decomposition) There exist unique mutually singular measures

µa, µs on Σ such that µ = µs + µa, µs ⊥ λ, µa ¿ λ.

(ii) (Radon-Nikodym) There is a unique h ∈ L1(λ) such that

µa(E) =
∫
E

hdλ (E ∈ Σ) .

The function h is generally denoted by
dµ

dλ
, the Radon-Nikodym derivative of
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µ with respect to λ.

COROLLARY Let µ a complex measure on Σ. Then | dµ
d|µ| | = 1 off a |µ|-null set.

COROLLARY Let µ a real measure on Σ. Then there exist disjoint sets A,B ∈ Σ

such that A ∪B = X, and µ+(E) = µ(E ∩A), µ−(E) = µ(E ∩B) for E ∈ Σ.

THEOREM Suppose that 1 ≤ p <∞, that λ is a σ-finite positive measure on a

set X, and φ ∈ Lp(λ)∗. Then there is a unique g ∈ Lq(λ), where
1
p

+
1
q

= 1, with

‖g‖q = ‖φ‖, and φ(f) =
∫
fgdλ (f ∈ Lp(λ).

This proves the (Lp, Lq) duality for p and q conjugate indices with 1 ≤ p <∞;

(L∞)∗ 6= L1 in general. The Riesz theorem that C(Ω)∗ = M(Ω), for Ω locally

compact Hausdorff, follows in a similar manner from the positive case, and this

latter uses the result that for φ ∈ C(Ω)∗, φ ≥ 0, the quantity

E 7→ inf{sup{φ(f) : 0 ≤ f ≤ χ(U)} : U ⊃ E,U open}

defines an outer measure on Ω. The resulting measure is Borel and implements φ.

Let us remark at this point that measures taking values in a Banach space are

of major importance. The elementary results there are like those for C, but the

theory has ramifications well beyond us here.
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FUBINI-TONELLI THEOREMS

Returning to the (positive) measure situation, let (X,Σ, µ) and (Y, T, ν) be

two measure spaces. The problem is to define (X × Y,Σ× T, µ⊗ ν) such that for

suitable f , ∫
X×Y

fd(µ⊗ ν) =
∫
X

(∫
Y

fdν
)
dµ =

∫
Y

(∫
X

fdµ
)
dν .

The trick is to build up from sets we would certainly wish to be in any such Σ×T ,

namely those of the form A×B with A ∈ Σ, B ∈ T . These are termed measurable

rectangles.

LEMMA The collection of finite disjoint unions of measurable rectangles forms

an algebra.

We define Σ × T = S to be the smallest σ-algebra containing this algebra.

This is not very explicit, indicative of some of the technical difficulties present.

Note that some books define Σ × T as the completion of S with respect to µ ⊗ ν

defined below.

EXAMPLE Lebesgue measure on R2 : if Σ is the Lebesgue measurable sets of

R, Σ× Σ is not the Lebesgue measurable sets of R2.

To relate Σ× T back to Σ and T , we use

LEMMA If E ∈ Σ× T , then for every x ∈ X, y ∈ Y ,

Ex = {t : (x, t) ∈ E} ∈ T, Ey = {s : (s, y) ∈ E} ∈ Σ .

Indeed, if f is Σ × T -measurable, then for each x ∈ X, y ∈ Y , t 7→ f(x, t) is

T -measurable and s 7→ f(s, y) is Σ-measurable.

We need another characterization of Σ× T .

DEFINITION. A collection S ⊆ P(X) is a monotone class if

{
(Ai), (Bi) ⊆ S, Ai ↑, Bi ↓

}
⇒
{
∪iAi ∈ S,∩iBi ∈ S

}
.

THEOREM Let S0 be an algebra of sets on X. Then the smallest σ-algebra

containing S0 is the smallest monotone class containing S0.
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THEOREM Let (X,Σ, µ) and (Y, T, ν) be two σ-finite measure spaces, E ∈ Σ×T .

Then

x 7→ ν(Ex) is σ-measurable,

y 7→ µ(Ey) is T -measurable, and∫
X

ν(Ex)dµ =
∫
Y

µ(Ey)dν .

Proof. In the finite case the collection of sets with the desired property is a mono-

tone class containing the measurable rectangles.

EXAMPLES.

(i) [0, 1], with µ = Lebesgue measure, ν = counting measure, and E the

diagonal in [0, 1]2.

(ii) (Sierpinski) X = Y = [0, 1], Σ = T the σ-algebra of countable and co-

countable sets, with µ = ν determined by µ(X) = 1, µ(S) = 0 if |S| = 1; and

E = {(x, y) : x < y}.

DEFINITION. For E ∈ Σ× T , set

µ⊗ ν(E) =
∫
X

ν(Ex)dµ =
∫
Y

µ(Ey)dν .

We now have (X×Y,Σ×T, µ⊗ν) defined, with a special case of the integration

result built in. The MCT now gives the following.

THEOREM Let (X,Σ, µ) and (Y, T, ν) be two σ-finite measure spaces,

f : X × Y → R∗ a non-negative Σ× T -measurable function. Then

(a) y 7→
∫
X
f(x, y)dµ(x)) is T -measurable,

(b) x 7→
∫
Y
f(x, y)dν(y)) is Σ-measurable,

(c)∫
X

∫
Y

f(x, y)dν(y)dµ(x) =
∫
X×

f(x, y)dµ⊗ν(x, y) =
∫
Y

∫
X

f(x, y)dµ(x)dν(y) .

THEOREM Let (X,Σ, µ) and (Y, T, ν) be two σ-finite measure spaces,

f : X × Y → R∗ a Σ⊗ T -measurable function. Suppose that one of∫
X

∫
Y

|f(x, y)|dν(y)dµ(x),
∫
X×Y

|f(x, y)|dµ⊗ ν(x, y),
∫
Y

∫
X

|f(x, y)|dµ(x)dν(y)

Printed for RJL 10:32 a.m. May 30



MATH3325 Functional Analysis & Measure Theory page 12

is finite. Then

(a) x 7→ f(x, y) ∈ L1(µ) for ν-a.a. y,

(b) y 7→ f(x, y) ∈ L1(ν) for µ-a.a. x,

(c) y 7→
∫
X
f(x, y)dµ(x) ∈ L1(ν),

(d) x 7→
∫
Y
f(x, y)dν(y) ∈ L1(µ),

(e)∫
X

∫
Y

f(x, y)dν(y)dµ(x) =
∫
X×Y

f(x, y)dµ⊗ν(x, y)) =
∫
Y

∫
X

f(x, y)dµ(x)dν(y) .

EXAMPLE The result may fail without finiteness of the integrals, as is shown

by the function

f(x, y) =
x2 − y2

(x2 + y2)2
x, y ∈ (0, 1) .

As noted above, if Σ is the Lebesgue measurable sets of R, Σ × Σ ⊃ B(R2),

but is not the Lebesgue measurable sets of R2. Since any Lebesgue measurable

function on R2 is equal a.e. to a Borel function this creates no difficulty. Indeed

most applications will be to continuous functions.

EXAMPLE. The function f(x, y) = e−xy sin x on R2 gives, via a Fubini argu-

ment,

lim
r→∞

r∫
0

sinx
x

dx =
π

2
.
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