Almost H-projective structures and their description as parabolic geometries

Katharina Neusser

Australian National University
Mathematical Sciences Institute

Kioloa, March 2013
1. Almost complex manifolds

Suppose that \((M, J)\) is an almost complex manifold with \(\dim \mathbb{R}(M) = 2n\).

We denote the Nijenhuis tensor of \(J\) by
\[
N(X, Y) = [X, Y] - [JX, JY] + J([JX, Y] + [X, JY]).
\]

\(N\) is a two-form with values in \(TM\), which is of type \((0, 2)\), i.e.
\[
N(JX, Y) = -JN(X, Y).
\]

Theorem (Newlander-Nirenberg 1957) \((M, J)\) is a complex manifold \(\iff N \equiv 0\).

A complex connection on an almost complex manifold \((M, J)\) is an affine connection \(\nabla\) that preserves the complex structure \(\nabla J = 0\).
1. Almost complex manifolds

Suppose that (M, J) is an almost complex manifold with $\dim_{\mathbb{R}}(M) = 2n$. The Nijenhuis tensor of J is given by:

$$N(X, Y) = [X, Y] - [JX, JY] + J([JX, Y] + [X, JY]).$$

N is a two-form with values in T^*M, which is of type $(0, 2)$, i.e. $N(JX, Y) = -JN(X, Y)$.

Theorem (Newlander-Nirenberg 1957) (M, J) is a complex manifold if and only if $N \equiv 0$.

A complex connection on an almost complex manifold (M, J) is an affine connection ∇ that preserves the complex structure $\nabla J = 0$.
1. Almost complex manifolds

Suppose that \((M, J)\) is an almost complex manifold with \(\dim_{\mathbb{R}}(M) = 2n\).

We denote the Nijenhuis tensor of \(J\) by

\[
N(X, Y) = [X, Y] - [JX, JY] + J([JX, Y] + [X, JY]).
\]

\(N\) is a two-form with values in \(TM\), which is of type \((0, 2)\), i.e.

\[
N(JX, Y) = -JN(X, Y).
\]
1. Almost complex manifolds

Suppose that \((M, J)\) is an almost complex manifold with \(\dim_{\mathbb{R}}(M) = 2n\).

We denote the Nijenhuis tensor of \(J\) by

\[
N(X, Y) = [X, Y] - [JX, JY] + J([JX, Y] + [X, JY]).
\]

\(N\) is a two-form with values in \(TM\), which is of type \((0, 2)\), i.e.

\[
N(JX, Y) = -JN(X, Y).
\]

Theorem (Newlander-Nirenberg 1957)

\((M, J)\) is a complex manifold \(\iff N \equiv 0\).
1. Almost complex manifolds

Suppose that \((M, J)\) is an almost complex manifold with \(\text{dim} \mathbb{R}(M) = 2n\).

We denote the Nijenhuis tensor of \(J\) by

\[N(X, Y) = [X, Y] - [JX, JY] + J([JX, Y] + [X, JY]). \]

\(N\) is a two-form with values in \(TM\), which is of type \((0, 2)\), i.e.

\[N(JX, Y) = -JN(X, Y). \]

Theorem (Newlander-Nirenberg 1957)

\((M, J)\) is a complex manifold \(\iff\ N \equiv 0.\)

A complex connection on an almost complex manifold \((M, J)\) is an affine connection \(\nabla\) that preserves the complex structure \(\nabla J = 0.\)
For any complex connection ∇ on (M, J) we have:

\[-4\text{-times the } (0, 2)\text{-part of its torsion } T_{\nabla} \text{ equals } -[T_{\nabla}(X, Y) - T_{\nabla}(JX, JY)] + J(T_{\nabla}(JX, Y) + T_{\nabla}(X, JY))\]

which coincides with the Nijenhuis tensor N.

the curvature has values in $\text{gl}(TM, J)$:

\[R_{\nabla}(X, Y) \circ J = J \circ R_{\nabla}(X, Y)\]

Proposition (Lichnerowicz, 1955)

On any almost complex manifold (M, J) there exist a complex connection such that $T_{\nabla} = -\frac{1}{4}N$. Such a complex connection is not unique. Complex connections ∇ with $T_{\nabla} = -\frac{1}{4}N$ are sometimes called minimal connections.

Corollary

There exists a complex torsion-free connection on $(M, J) \iff N \equiv 0$.
For any complex connection ∇ on (M, J) we have:

-4-times the $(0, 2)$-part of its torsion T^∇ equals

$$-[T^\nabla(X, Y) - T^\nabla(JX, JY)) + J(T^\nabla(JX, Y) + T^\nabla(X, JY))]$$

which coincides with the Nijenhuis tensor N.

\[\text{Proposition (Lichnerowicz, 1955)} \]
\[\text{On any almost complex manifold } (M, J) \text{ there exists a complex connection } \nabla \text{ such that } T^\nabla = -\frac{1}{4}N. \]
\[\text{Such a complex connection is not unique. Complex connections } \nabla \text{ with } T^\nabla = -\frac{1}{4}N \text{ are sometimes called minimal connections.} \]
\[\text{Corollary} \]
\[\exists \text{ a complex torsion-free connection on } (M, J) \iff N \equiv 0. \]
For any complex connection ∇ on (M, J) we have:

- 4-times the $(0, 2)$-part of its torsion T^∇ equals

$$- [T^\nabla(X, Y) - T^\nabla(JX, JY)) + J(T^\nabla(JX, Y) + T^\nabla(X, JY))]$$

which coincides with the Nijenhuis tensor N.

- the curvature has values in $\mathfrak{gl}(TM, J)$:

$$R^\nabla(X, Y) \circ J = J \circ R^\nabla(X, Y).$$
For any complex connection ∇ on (M, J) we have:

- -4-times the $(0,2)$-part of its torsion T^∇ equals

$$-[T^\nabla(X, Y) - T^\nabla(JX, JY)) + J(T^\nabla(JX, Y) + T^\nabla(X, JY))$$

which coincides with the Nijenhuis tensor N.

- the curvature has values in $\mathfrak{gl}(TM, J)$:

$$R^\nabla(X, Y) \circ J = J \circ R^\nabla(X, Y).$$

Proposition (Lichnerowicz, 1955)

On any almost complex manifold (M, J) there exist a complex connection such that $T^\nabla = -\frac{1}{4}N$.
For any complex connection ∇ on (M, J) we have:

- -4-times the $(0, 2)$-part of its torsion T^∇ equals

 $$-\left[T^\nabla(X, Y) - T^\nabla(JX, JY)\right] + J\left[T^\nabla(JX, Y) + T^\nabla(X, JY)\right]$$

 which coincides with the Nijenhuis tensor N.

- the curvature has values in $\mathfrak{gl}(TM, J)$:

 $$R^\nabla(X, Y) \circ J = J \circ R^\nabla(X, Y).$$

Proposition (Lichnerowicz, 1955)

On any almost complex manifold (M, J) there exist a complex connection such that $T^\nabla = -\frac{1}{4} N$.

Such a complex connection is not unique. Complex connections ∇ with $T^\nabla = -\frac{1}{4} N$ are sometimes called minimal connections.
For any complex connection ∇ on (M, J) we have:

- 4-times the $(0, 2)$-part of its torsion $T \nabla$ equals

$$-[T \nabla(X, Y) - T \nabla(JX, JY)) + J(T \nabla(JX, Y) + T \nabla(X, JY))]$$

which coincides with the Nijenhuis tensor N.

- the curvature has values in $\mathfrak{gl}(TM, J)$:

$$R \nabla(X, Y) \circ J = J \circ R \nabla(X, Y).$$

Proposition (Lichnerowicz, 1955)

On any almost complex manifold (M, J) there exist a complex connection such that $T \nabla = -\frac{1}{4}N$.

Such a complex connection is not unique. Complex connections ∇ with $T \nabla = -\frac{1}{4}N$ are sometimes called **minimal connections**.

Corollary

There exists a complex torsion-free connection on $(M, J) \iff N \equiv 0.$
2. Almost H-projective structures

Two affine connections ∇ and $\hat{\nabla}$ on an almost complex manifold $\mathcal{M} = (M, J)$ are H-projectively equivalent:

\iff there exists a real 1-form $\Upsilon \in \Omega^1(M)$ such that

$$\nabla_X Y = \hat{\nabla}_X Y + \Upsilon(X)Y + \Upsilon(Y)X - \Upsilon(JX)JY - \Upsilon(JY)JX.$$

for all vector fields $X, Y \in \mathfrak{X}(M)$.

$\upsilon_{\Upsilon}(X)(Y) = \upsilon_{\Upsilon}(Y)(X)$,

Hence, if $\hat{\nabla}$ is a complex connection, then any H-projectively equivalent connection ∇ is complex too.

Since $\upsilon_{\Upsilon}(X)(Y) = \upsilon_{\Upsilon}(Y)(X)$, H-projectively equivalent connections have the same torsion.
2. Almost H-projective structures

Two affine connections ∇ and $\hat{\nabla}$ on an almost complex manifold (M, J) are H-projectively equivalent \iff there exists a real 1-form $\Upsilon \in \Omega^1(M)$ such that

$$\nabla_X Y = \hat{\nabla}_X Y + \Upsilon(X)Y + \Upsilon(Y)X - \Upsilon(JX)JY - \Upsilon(JY)JX$$

$$:= \upsilon_\Upsilon(X)(Y)$$

for all vector fields $X, Y \in \mathfrak{X}(M)$.
Two affine connections ∇ and $\hat{\nabla}$ on an almost complex manifold (M, J) are H-projectively equivalent if there exists a real 1-form $\Upsilon \in \Omega^1(M)$ such that

$$\nabla_X Y = \hat{\nabla}_X Y + \Upsilon(X) Y + \Upsilon(Y) X - \Upsilon(JX) JY - \Upsilon(JY) JX$$

for all vector fields $X, Y \in \mathcal{X}(M)$. Hence, if $\hat{\nabla}$ is a complex connection, then any H-projectively equivalent connection ∇ is complex too.

$\nu_\Upsilon \in \Omega^1(M, \text{gl}(TM, J))$
2. Almost H-projective structures

Two affine connections ∇ and $\hat{\nabla}$ on an almost complex manifold (M, J) are H-projectively equivalent if there exists a real 1-form $\Upsilon \in \Omega^1(M)$ such that

$$\nabla_X Y = \hat{\nabla}_X Y + \Upsilon(X)Y + \Upsilon(Y)X - \Upsilon(JX)JY - \Upsilon(JY)JX$$

for all vector fields $X, Y \in \mathfrak{X}(M)$.

- $\nu_\Upsilon \in \Omega^1(M, \text{gl}(TM, J))$

Hence, if $\hat{\nabla}$ is a complex connection, then any H-projectively equivalent connection ∇ is complex too.
2. Almost H-projective structures

Two affine connections ∇ and $\hat{\nabla}$ on an almost complex manifold (M, J) are H-projectively equivalent : \iff there exists a real 1-form $\Upsilon \in \Omega^1(M)$ such that

$$\nabla_X Y = \hat{\nabla}_X Y + \Upsilon(X)Y + \Upsilon(Y)X - \Upsilon(JX)JY - \Upsilon(JY)JX$$

$$:= \upsilon_\Upsilon(X)(Y)$$

for all vector fields $X, Y \in \mathfrak{X}(M)$.

- $\upsilon_\Upsilon \in \Omega^1(M, \text{gl}(TM, J))$
- Hence, if $\hat{\nabla}$ is a complex connection, then any H-projectively equivalent connection ∇ is complex too.
- Since $\upsilon_\Upsilon(X)(Y) = \upsilon_\Upsilon(Y)(X)$, H-projectively equivalent connections have the same torsion.
Definition

Suppose that \((M, J)\) is an almost complex with \(\dim \mathbb{R} > 2\).
Definition

Suppose that \((M, J)\) is an almost complex with \(\dim_{\mathbb{R}} > 2\).

- An **almost H-projective structure** on \((M, J)\) is an \(H\)-projective equivalence class \([\nabla]\) of complex connections whose torsion is of type \((0, 2)\).
Definition

Suppose that (M, J) is an almost complex with $\dim_{\mathbb{R}} > 2$.

- An **almost H-projective structure** on (M, J) is an H-projective equivalence class $[\nabla]$ of complex connections whose torsion is of type $(0, 2)$.

- If (M, J) is a complex manifold, then an almost H-projective structure $[\nabla]$ on (M, J) is torsion-free and called an **H-projective structure**.

Remark

A smooth curve $c : I \to M$ is J-planar with respect to a complex connection ∇ \iff $\nabla \dot{c} \dot{c} \in \text{span} \{ \dot{c}, J \dot{c} \}$.

Two complex connections are H-projectively equivalent \iff they have the same J-planar curves.
Definition

Suppose that \((M, J)\) is an almost complex with \(\dim_{\mathbb{R}} > 2\).

- An **almost H-projective structure** on \((M, J)\) is an \(H\)-projective equivalence class \([\nabla]\) of complex connections whose torsion is of type \((0, 2)\).
- If \((M, J)\) is a complex manifold, then an almost \(H\)-projective structure \([\nabla]\) on \((M, J)\) is torsion-free and called an **\(H\)-projective structure**.

Remark

A smooth curve \(c : I \to M\) is \(J\)-planar with respect to a complex connection \(\nabla\) \(\iff \nabla \dot{c} \dot{c} \in \text{span}\{\dot{c}, J\dot{c}\}\).

Two complex connections are \(H\)-projectively equivalent \(\iff\) they have the same \(J\)-planar curves.
Definition

Suppose that \((M, J)\) is an almost complex with \(\dim_{\mathbb{R}} > 2\).

- An **almost H-projective structure** on \((M, J)\) is an \(H\)-projective equivalence class \([\nabla]\) of complex connections whose torsion is of type \((0, 2)\).
- If \((M, J)\) is a complex manifold, then an almost \(H\)-projective structure \([\nabla]\) on \((M, J)\) is torsion-free and called an **\(H\)-projective structure**.

Remark

- A smooth curve \(c : I \to M\) is \(J\)-planar with respect to a complex connection \(\nabla\) if and only if \(\nabla_{\dot{c}} \dot{c} \in \text{span}\{\dot{c}, J\dot{c}\}\).
Definition

Suppose that \((M, J)\) is an almost complex with \(\dim \mathbb{R} > 2\).

- An **almost \(H\)-projective structure** on \((M, J)\) is an \(H\)-projective equivalence class \([\nabla]\) of complex connections whose torsion is of type \((0, 2)\).
- If \((M, J)\) is a complex manifold, then an almost \(H\)-projective structure \([\nabla]\) on \((M, J)\) is torsion-free and called an **\(H\)-projective structure**.

Remark

- A smooth curve \(c : I \rightarrow M\) is **\(J\)-planar** with respect to a complex connection \(\nabla : \iff \nabla \dot{c} \dot{\dot{c}} \in \text{span}\{\dot{c}, J\dot{c}\}\).
- Two complex connections are **\(H\)-projectively equivalent** \(\iff\) they have the same \(J\)-planar curves.
3. Parabolic geometries

Suppose that G is a Lie group and P a closed subgroup of G.

Definition

A Cartan geometry of type (G, P) on a manifold M is given by a principal P-bundle $\pi: G \rightarrow M$ together with a Cartan connection, i.e. a one form $\omega \in \Omega^1(G, g)$ such that:

1. ω is P-equivariant: $(r_p)_* \omega = \text{Ad}(p)^{-1} \circ \omega$, $\forall p \in P$.

2. ω reproduces generators of fundamental vector fields $\omega(u) : T_u G \rightarrow g$ is a linear isomorphism for all $u \in G$.

The principal P-bundle $G \rightarrow G/P$ equipped with the Maurer Cartan form $\omega_{MC} \in \Omega^1(G, g)$ is called the homogeneous model of a Cartan geometry of type (G, P).

If G is semisimple and P a parabolic subgroup, then a Cartan geometry of type (G, P) is called a parabolic geometry of type (G, P).
3. Parabolic geometries

Suppose that G is a Lie group and P a closed subgroup of G.

Definition

A Cartan geometry of type (G, P) on a manifold M is given by a principal P-bundle $G \to M$ together with a Cartan connection, i.e. a one form $\omega \in \Omega^1(G, g)$ such that:

1. ω is P-equivariant:

 $$ (r_p)_* \omega = \text{Ad}(p)^{-1} \circ \omega, \quad \forall p \in P $$

2. ω reproduces generators of fundamental vector fields

3. $\omega(u): T_u G \to g$ is a linear isomorphism for all $u \in G$.

The principal P-bundle $G \to G/P$ equipped with the Maurer Cartan form $\omega_{MC} \in \Omega^1(G, g)$ is called the homogeneous model of a Cartan geometry of type (G, P).

If G is semisimple and P a parabolic subgroup, then a Cartan geometry of type (G, P) is called a parabolic geometry of type (G, P).

Katharina Neusser (ANU)
3. Parabolic geometries

Suppose that G is a Lie group and P a closed subgroup of G.

Definition

A **Cartan geometry** of type (G, P) on a manifold M is given by a principal P-bundle $G \rightarrow M$ together with a **Cartan connection**, i.e. a one form $\omega \in \Omega^1(G, \mathfrak{g})$ such that:

1. ω is P-equivariant: $(r^p)^* \omega = \text{Ad}(p)^{-1} \circ \omega, \forall p \in P$
2. ω reproduces generators of fundamental vector fields
3. $\omega(u) : T_uG \rightarrow \mathfrak{g}$ is a linear isomorphism for all $u \in G$.

Katharina Neusser (ANU) Almost H-projective structures Kioloa, March 2013 6 / 20
3. Parabolic geometries

Suppose that G is a Lie group and P a closed subgroup of G.

Definition

A **Cartan geometry** of type (G, P) on a manifold M is given by a principal P-bundle $\mathcal{G} \to M$ together with a **Cartan connection**, i.e. a one form $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$ such that:

1. ω is P-equivariant: $(r^p)^*\omega = \text{Ad}(p)^{-1} \circ \omega$, $\forall p \in P$
2. ω reproduces generators of fundamental vector fields
3. $\omega(u) : T_u\mathcal{G} \to \mathfrak{g}$ is a linear isomorphism for all $u \in \mathcal{G}$.

- The principal P-bundle $G \to G/P$ equipped with the Maurer Cartan form $\omega_{MC} \in \Omega^1(G, \mathfrak{g})$ is called the **homogeneous model** of a Cartan geometry of type (G, P).
3. Parabolic geometries

Suppose that G is a Lie group and P a closed subgroup of G.

Definition

A Cartan geometry of type (G, P) on a manifold M is given by a principal P-bundle $G \to M$ together with a Cartan connection, i.e. a one form $\omega \in \Omega^1(G, g)$ such that:

1. ω is P-equivariant: $(r^p)^* \omega = \text{Ad}(p)^{-1} \circ \omega$, $\forall p \in P$
2. ω reproduces generators of fundamental vector fields
3. $\omega(u) : T_u G \to g$ is a linear isomorphism for all $u \in G$.

- The principal P-bundle $G \to G/P$ equipped with the Maurer Cartan form $\omega_{MC} \in \Omega^1(G, g)$ is called the **homogeneous model** of a Cartan geometry of type (G, P).

- If G is semisimple and P a parabolic subgroup, then a Cartan geometry of type (G, P) is called a **parabolic geometry** of type (G, P).
Curvature

The curvature $K \in \Omega^2(\mathcal{G}, \mathfrak{g})$ of a Cartan geometry $(\mathcal{G} \to M, \omega)$ is given by

$$K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].$$

It is horizontal and P-equivariant.
Curvature

The curvature $K \in \Omega^2(G, g)$ of a Cartan geometry $(G \to M, \omega)$ is given by

$$K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].$$

It is horizontal and P-equivariant.

- For the homogeneous model $(G \to G/P, \omega_{MC})$ of a Cartan geometry the curvature K vanishes identically.
Curvature

The curvature $K \in \Omega^2(G, \mathfrak{g})$ of a Cartan geometry $(G \to M, \omega)$ is given by

$$K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].$$

It is horizontal and P-equivariant.

- For the homogeneous model $(G \to G/P, \omega_{MC})$ of a Cartan geometry the curvature K vanishes identically.
- Conversely, if $K \equiv 0$, then the Cartan geometry is locally isomorphic to its homogeneous model.
Curvature

The curvature \(K \in \Omega^2(G, \mathfrak{g}) \) of a Cartan geometry \((G \to M, \omega)\) is given by

\[
K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].
\]

It is horizontal and \(P \)-equivariant.

- For the homogeneous model \((G \to G/P, \omega_{MC})\) of a Cartan geometry the curvature \(K \) vanishes identically.
- Conversely, if \(K \equiv 0 \), then the Cartan geometry is locally isomorphic to its homogeneous model.

Natural vector bundles

Any \(P \)-module \(V \) gives rise to a vector bundle \(V = G \times P V \cong G \times V / \sim \), where \((u, v) \sim (u \cdot p, p^{-1} \cdot v) \forall p \in P \).

Any \(P \)-module homomorphism \(V \to W \) induces a vector bundle homomorphism \(V \to W \).

Katharina Neusser (ANU) Almost H-projective structures Kioloa, March 2013 7 / 20
Curvature

The curvature $K \in \Omega^2(\mathcal{G}, \mathfrak{g})$ of a Cartan geometry $(\mathcal{G} \to M, \omega)$ is given by

$$K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].$$

It is horizontal and P-equivariant.

- For the homogeneous model $(G \to G/P, \omega_{MC})$ of a Cartan geometry the curvature K vanishes identically.
- Conversely, if $K \equiv 0$, then the Cartan geometry is locally isomorphic to its homogeneous model.

Natural vector bundles

- Any P-module V gives rise to a vector bundle

$$V := \mathcal{G} \times_P V := \mathcal{G} \times V / \sim,$$

where $(u, v) \sim (u \cdot p, p^{-1} \cdot v)$ $\forall p \in P$.
The curvature \(K \in \Omega^2(G, \mathfrak{g}) \) of a Cartan geometry \((G \to M, \omega)\) is given by

\[
K(\xi, \eta) = d\omega(\xi, \eta) + [\omega(\xi), \omega(\eta)].
\]

It is horizontal and \(P \)-equivariant.

- For the homogeneous model \((G \to G/P, \omega_{MC})\) of a Cartan geometry the curvature \(K \) vanishes identically.
- Conversely, if \(K \equiv 0 \), then the Cartan geometry is locally isomorphic to its homogeneous model.

Natural vector bundles

- Any \(P \)-module \(\mathcal{V} \) gives rise to a vector bundle

\[
\mathcal{V} := G \times_P \mathcal{V} := G \times \mathcal{V} / \sim, \quad \text{where } (u, v) \sim (u \cdot p, p^{-1} \cdot v) \ \forall p \in P.
\]

- Any \(P \)-module homomorphism \(\mathcal{V} \to \mathcal{W} \) induces a vector bundle homomorphism \(\mathcal{V} \to \mathcal{W} \).
The Cartan connection induces an isomorphism as follows:

\[G \times_P g/p \cong TM \]

\[[u, X + p] \mapsto T_u p \omega^{-1}(X). \]

Consequently, all tensor bundles over \(M \) are associated vector bundles.
The Cartan connection induces an isomorphism as follows:

$$\mathcal{G} \times_P g/p \cong TM$$

$$[u, X + p] \mapsto T_u p \omega^{-1}(X).$$

Consequently, all tensor bundles over M are associated vector bundles.

Since the curvature $K \in \Omega^2(G, g)$ is P-equivariant and horizontal, it can be equivalently viewed as section of

$$\Lambda^2 T^* M \otimes \mathcal{A}M \cong \mathcal{G} \times_P \Lambda^2 (g/p)^* \otimes g,$$

where $\mathcal{A}M = \mathcal{G} \times_P g$.
The Cartan connection induces an isomorphism as follows:

\[G \times_P g/p \cong TM \]

\[[u, X + p] \mapsto T_u p \omega^{-1}(X). \]

Consequently, all tensor bundles over \(M \) are associated vector bundles.

Since the curvature \(K \in \Omega^2(G, g) \) is \(P \)-equivariant and horizontal, it can be equivalently viewed as section of

\[\Lambda^2 T^*M \otimes \mathcal{A}M \cong G \times_P \Lambda^2(g/p)^* \otimes g, \]

where \(\mathcal{A}M = G \times_P g \).

In this picture \(K \) corresponds to the following \(P \)-equivariant function

\[\kappa : G \rightarrow \Lambda^2(g/p)^* \otimes g \]

\[\kappa(u)(X + p, Y + p) = K(\omega^{-1}(X)(u), \omega^{-1}(X)(u)). \]
Prolongation procedures of Tanaka (1979), Morimoto (1993), and Čap-Schichl (2000)

Normalising the curvature of a regular parabolic geometry induces an equivalence of categories between regular normal parabolic geometries and certain underlying geometric structures, which admit descriptions in more conventional geometric terms.
Prolongation procedures of Tanaka (1979), Morimoto (1993), and Čap-Schichl (2000)

Normalising the curvature of a regular parabolic geometry induces an equivalence of categories between regular normal parabolic geometries and certain underlying geometric structures, which admit descriptions in more conventional geometric terms.

Consider the complex for computing the homology $H_*(p_+, g)$ of the nilradical p_+ of the parabolic subalgebra p with values in g:

$$0 \leftarrow g \leftarrow \partial^* p_+ \otimes g \leftarrow \partial^* \Lambda^2 p_+ \otimes g \leftarrow ...$$
Prolongation procedures of Tanaka (1979), Morimoto (1993), and Čap-Schichl (2000)

Normalising the curvature of a regular parabolic geometry induces an equivalence of categories between regular normal parabolic geometries and certain underlying geometric structures, which admit descriptions in more conventional geometric terms.

- Consider the complex for computing the homology $H_\ast(p_+, g)$ of the nilradical p_+ of the parabolic subalgebra p with values in g

 \[
 0 \leftarrow g \leftarrow \partial^* p_+ \otimes g \leftarrow \Lambda^2 p_+ \otimes g \leftarrow \ldots
 \]

- Since ∂^* is P-equivariant, its induces bundle maps

 \[
 \partial^* : \Lambda^i T^* M \otimes AM \rightarrow \Lambda^{i-1} T^* M \otimes AM.
 \]
Prolongation procedures of Tanaka (1979), Morimoto (1993), and Čap-Schichl (2000)

Normalising the curvature of a regular parabolic geometry induces an equivalence of categories between regular normal parabolic geometries and certain underlying geometric structures, which admit descriptions in more conventional geometric terms.

- Consider the complex for computing the homology $H_\ast(p_+, g)$ of the nilradical p_+ of the parabolic subalgebra p with values in g

 $0 \leftarrow g \leftarrow \partial^* \leftarrow p_+ \otimes g \leftarrow \Lambda^2 p_+ \otimes g \leftarrow ...$

- Since ∂^* is P-equivariant, its induces bundle maps

 $\partial^* : \Lambda^i T^* M \otimes \mathcal{A}M \rightarrow \Lambda^{i-1} T^* M \otimes \mathcal{A}M$.

- A parabolic geometry is normal : $\iff \partial^* \kappa = 0.$
The curvature κ of a normal parabolic geometry therefore gives rise to a P-equivariant function, called the **harmonic curvature**, $\kappa_h : \mathcal{G} \rightarrow H_2(p_+, g)$.

$H_2(p_+, g)$ is a completely reducible P-module, which can be explicitly computed via Kostant's version of the Bott-Borel-Weil Theorem (1961).

For a regular normal parabolic geometry, it can be shown that $\kappa = 0 \iff \kappa_h = 0$.

Katharina Neusser (ANU)
Almost H-projective structures
Kioloa, March 2013
10 / 20
• The curvature κ of a normal parabolic geometry therefore gives rise to a P-equivariant function, called the **harmonic curvature**, $\kappa_h : \mathcal{G} \to H_2(p_+, g)$.

• $H_2(p_+, g)$ is a completely reducible P-module, which can be explicitly computed via Kostant’s version of the Bott-Borel-Weil Theorem (1961).
The curvature κ of a normal parabolic geometry therefore gives rise to a P-equivariant function, called the harmonic curvature,

$$\kappa_h : G \to H_2(p_+, g).$$

$H_2(p_+, g)$ is a completely reducible P-module, which can be explicitly computed via Kostant’s version of the Bott-Borel-Weil Theorem (1961).

For a regular normal parabolic geometry, it can be shown that

$$\kappa = 0 \quad \iff \quad \kappa_h = 0.$$
4. Almost H-projective structures as parabolic geometries

Consider $\mathbb{R}^{2(n+1)}$ endowed with the complex structure $J = \begin{pmatrix} J_2 & \cdots & J_2 \end{pmatrix}$ where $J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

$\text{gl}(n+1, \mathbb{C}) \sim = \left\{ A \in \text{gl}(2(n+1), \mathbb{R}) : A J = J A \right\} = \left\{ \begin{pmatrix} A_1, 1 & \cdots & A_1, n+1 \\ \vdots & \ddots & \vdots \\ A_n, 1 & \cdots & A_n, n+1 \end{pmatrix} : A_{i,j} = (a_{i,j} - b_{i,j}) \right\}$.

Then $\text{sl}(n+1, \mathbb{C}) = \left\{ (-\text{tr} \ C (A)) Z X A : A \in \text{gl}(n, \mathbb{C}), X \in \mathbb{C}^n, Z \in \mathbb{C}^n^\ast \right\}$.

Katharina Neusser (ANU)
4. Almost H-projective structures as parabolic geometries

Consider $\mathbb{R}^{2(n+1)}$ endowed with the complex structure

\[J = \begin{pmatrix} J_2 & & \\ & \ddots & \\ & & J_2 \end{pmatrix} \]

where $J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.
4. Almost H-projective structures as parabolic geometries

Consider $\mathbb{R}^{2(n+1)}$ endowed with the complex structure

$$\mathcal{J} = \begin{pmatrix} J_2 & \cdots & \cdots \\ \cdots & \ddots & \cdots \\ \cdots & \cdots & J_2 \end{pmatrix}$$

where $J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

$$\text{gl}(n+1, \mathbb{C}) \cong \{ A \in \text{gl}(2(n+1), \mathbb{R}) : AJ = J A \} = \left\{ \begin{pmatrix} A_{1,1} & \cdots & A_{1,n+1} \\ \vdots & \ddots & \vdots \\ A_{n+1,1} & \cdots & A_{n+1,n+1} \end{pmatrix} : A_{i,j} = \begin{pmatrix} a_{i,j} & -b_{i,j} \\ b_{i,j} & a_{i,j} \end{pmatrix} \right\}.$$
4. Almost H-projective structures as parabolic geometries

Consider $\mathbb{R}^{2(n+1)}$ endowed with the complex structure

$$J = \begin{pmatrix} J_2 & \cdots & \cdots & J_2 \\ \vdots & \ddots & \ddots & \vdots \\ J_2 & \cdots & \cdots & J_2 \end{pmatrix}$$

where $J_2 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

$$\text{gl}(n+1, \mathbb{C}) \cong \{ A \in \text{gl}(2(n+1), \mathbb{R}) : AJ = JA \} = \left\{ \begin{pmatrix} A_{1,1} & \cdots & A_{1,n+1} \\ \vdots & \ddots & \vdots \\ A_{n+1,1} & \cdots & A_{n+1,n+1} \end{pmatrix} : A_{i,j} = \begin{pmatrix} a_{i,j} & -b_{i,j} \\ b_{i,j} & a_{i,j} \end{pmatrix} \right\}.$$ Then

$$\text{sl}(n+1, \mathbb{C}) = \left\{ \begin{pmatrix} -\text{tr}_\mathbb{C}(A) & Z \\ X & A \end{pmatrix} : A \in \text{gl}(n, \mathbb{C}), X \in \mathbb{C}^n, Z \in \mathbb{C}^{n^*} \right\}.$$
Hence, $\mathfrak{sl}(n + 1, \mathbb{C})$ admits a $|1|$-grading as follows:

$$\mathfrak{sl}(n + 1, \mathbb{C}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1,$$

where $\mathfrak{g}_0 \cong \mathfrak{gl}(n, \mathbb{C})$ and $\mathfrak{g}_{-1} \cong \mathbb{C}^n$ resp. $\mathfrak{g}_1 \cong \mathbb{C}^{n^*}$ as \mathfrak{g}_0-modules.
Hence, \(\mathfrak{sl}(n + 1, \mathbb{C}) \) admits a \(|1|\)-grading as follows:

\[
\mathfrak{sl}(n + 1, \mathbb{C}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1,
\]

where \(\mathfrak{g}_0 \cong \mathfrak{gl}(n, \mathbb{C}) \) and \(\mathfrak{g}_{-1} \cong \mathbb{C}^n \) resp. \(\mathfrak{g}_1 \cong \mathbb{C}^n^* \) as \(\mathfrak{g}_0 \)-modules.

The subalgebra

\[
p := \mathfrak{g}_0 \oplus \mathfrak{g}_1
\]

is a parabolic subalgebra of \(\mathfrak{g} \) with abelian nilradical \(p_+ = \mathfrak{g}_1 \).
Hence, $\mathfrak{sl}(n + 1, \mathbb{C})$ admits a $|1|$-grading as follows:

$$\mathfrak{sl}(n + 1, \mathbb{C}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1,$$

where $\mathfrak{g}_0 \cong \mathfrak{gl}(n, \mathbb{C})$ and $\mathfrak{g}_{-1} \cong \mathbb{C}^n$ resp. $\mathfrak{g}_1 \cong \mathbb{C}^n^*$ as \mathfrak{g}_0-modules.

The subalgebra

$$\mathfrak{p} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$$

is a parabolic subalgebra of \mathfrak{g} with abelian nilradical $\mathfrak{p}_+ = \mathfrak{g}_1$.

Set $G := PSL(n + 1, \mathbb{C})$ and let P be the stabiliser in G of the complex line generated by the first standard basis vector of $\mathbb{R}^{2(n+1)}$.

It follows that the adjoint action of G_0 on \mathfrak{g} induces an isomorphism $G_0 \cong GL(\mathfrak{g}_{-1}, J) \cong GL(n, \mathbb{C})$.

Katharina Neusser (ANU)
Almost H-projective structures
Kioloa, March 2013 12 / 20
Hence, $\mathfrak{sl}(n + 1, \mathbb{C})$ admits a $|1|$-grading as follows:

$$\mathfrak{sl}(n + 1, \mathbb{C}) = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1,$$

where $\mathfrak{g}_0 \cong \mathfrak{gl}(n, \mathbb{C})$ and $\mathfrak{g}_{-1} \cong \mathbb{C}^n$ resp. $\mathfrak{g}_1 \cong \mathbb{C}^n^*$ as \mathfrak{g}_0-modules.

The subalgebra

$$\mathfrak{p} := \mathfrak{g}_0 \oplus \mathfrak{g}_1$$

is a parabolic subalgebra of \mathfrak{g} with abelian nilradical $\mathfrak{p}_+ = \mathfrak{g}_1$.

Set $G := PSL(n + 1, \mathbb{C})$ and let P be the stabiliser in G of the complex line generated by the first standard basis vector of $\mathbb{R}^{2(n+1)}$.

Therefore, the Levi subgroup G_0 of P consists of equivalence classes of matrices of the form

$$\begin{pmatrix} \det_C(C)^{-1} & 0 \\ 0 & C \end{pmatrix}$$

where $C \in GL(n, \mathbb{C})$.

It follows that the adjoint action of G_0 on \mathfrak{g} induces an isomorphism $G_0 \cong GL(\mathfrak{g}_{-1}, J) \cong GL(n, \mathbb{C})$.
Theorem (Yoshimatsu (1978), Hrdina (2009))

Suppose that M is a manifold with $\dim_{\mathbb{R}}(M) = 2n > 2$. Then there is an equivalence of categories between

$$\{\text{Almost } H\text{-projective structures } (J, [\nabla]) \text{ on } M\}$$

$$\updownarrow \ 1:1$$

$$\{\text{Normal (real) parabolic geometries of type } (\text{PSL}(n+1, \mathbb{C}), P) \text{ on } M\}.$$
Theorem (Yoshimatsu (1978), Hrdina (2009))

Suppose that M is a manifold with $\dim_{\mathbb{R}}(M) = 2n > 2$. Then there is an equivalence of categories between

$$\{ \text{Almost } H\text{-projective structures } (J, [\nabla]) \text{ on } M \}$$

$$\Leftrightarrow 1 : 1$$

$$\{ \text{Normal (real) parabolic geometries of type } (\text{PSL}(n + 1, \mathbb{C}), P) \text{ on } M \} .$$

Given an almost H-projective manifold $(M, J, [\nabla])$, then J defines reduction of structure group

$$G_0 \xrightarrow{\phi} \mathcal{F}M$$

$$p_0 \downarrow \quad \downarrow q$$

$$M \xrightarrow{id} M$$

corresponding to the inclusion $G_0 \cong GL(g_{-1}, J) \hookrightarrow GL(g_{-1}) \cong GL(2n, \mathbb{R})$.
The bundle map ϕ can be encoded by a strictly horizontal G_0-equivariant 1-form $\theta \in \Omega^1(G_0, \mathfrak{g}_{-1})$. Any connection ∇ in the H-projective class can be viewed as a principal connection $\gamma \nabla \in \Omega^1(G_0, g_0)$. For $u \in G_0$ set $G_u := \{ \gamma \nabla(u) : \nabla \in [\nabla] \}$ and $G := \bigsqcup u \in G_0 G_u$. The projection $p: G \to M$ is a principal P-bundle, where the right action of an element $g_0 \exp(Z) \in P$ on an element $\gamma \nabla(u) \in G_u$ is given by the following connection form at $u \cdot g_0$:

$$\xi \mapsto \gamma \nabla(u \cdot g_0)(\xi) + [Z, \theta(\xi)].$$

Let $\pi: G \to G_0$ be the natural projection. The tautological 1-form $\tau \in \Omega^1(G, g_{-1} \oplus g_0)$ given by $\tau(\gamma \nabla(u))(\eta) = (\theta + \gamma \nabla(u))(T \pi \eta)$ can be extended to a normal Cartan connection $\omega \in \Omega^1(G, g)$ (which is unique up to isomorphism).
The bundle map ϕ can be encoded by a strictly horizontal G_0-equivariant 1-form $\theta \in \Omega^1(G_0, g_{-1})$.

Any connection ∇ in the H-projective class can be viewed as a principal connection $\gamma^\nabla \in \Omega^1(G_0, g_0)$.
• The bundle map ϕ can be encoded by a strictly horizontal G_0-equivariant 1-form $\theta \in \Omega^1(G_0, g_{-1})$.

• Any connection ∇ in the H-projective class can be viewed as a principal connection $\gamma^\nabla \in \Omega^1(G_0, g_0)$.

• For $u \in G_0$ set

$$G_u := \{ \gamma^\nabla(u) : \nabla \in [\nabla] \}$$

and $G := \bigsqcup_{u \in G_0} G_u$.

The projection $p : G \to M$ is a principal P-bundle, where the right action of an element $g_0 \exp(Z) \in P$ on an element $\gamma^\nabla(u) \in G_u$ is given by the following connection form at $u \cdot g_0$:

$$\xi \mapsto \gamma^\nabla(u \cdot g_0)(\xi) + [Z, \theta(\xi)].$$

Let $\pi : G \to G_0$ be the natural projection. The tautological 1-form $\tau \in \Omega^1(G_0, g_{-1} \oplus g_0)$ given by

$$\tau(\gamma^\nabla(u))(\eta) = (\theta + \gamma^\nabla(u))(T\pi\eta)$$

can be extended to a normal Cartan connection $\omega \in \Omega^1(G, g)$ (which is unique up to isomorphism).
The bundle map ϕ can be encoded by a strictly horizontal G_0-equivariant 1-form $\theta \in \Omega^1(G_0, g_{-1})$.

Any connection ∇ in the H-projective class can be viewed as a principal connection $\gamma^\nabla \in \Omega^1(G_0, g_0)$.

For $u \in G_0$ set

$$G_u := \{\gamma^\nabla(u) : \nabla \in [\nabla]\} \quad \text{and} \quad G := \bigsqcup_{u \in G_0} G_u.$$

The projection $p : G \to M$ is a principal P-bundle, where the right action of an element $g_0 \exp(Z) \in P$ on an element $\gamma^\nabla(u) \in G_u$ is given by the following connection form at $u \cdot g_0$:

$$\xi \mapsto \gamma^\nabla(u \cdot g_0)(\xi) + [Z, \theta(\xi)].$$
The bundle map ϕ can be encoded by a **strictly horizontal** G_0-equivariant 1-form $\theta \in \Omega^1(G_0, \mathfrak{g}^{-1})$

Any connection ∇ in the H-projective class can be viewed as a principal connection $\gamma^\nabla \in \Omega^1(G_0, \mathfrak{g}_0)$.

For $u \in G_0$ set

$$G_u := \{ \gamma^\nabla(u) : \nabla \in [\nabla] \}$$

and $G := \sqcup_{u \in G_0} G_u$.

The projection $p : \mathcal{G} \to M$ is a **principal** P-bundle, where the right action of an element $g_0 \exp(Z) \in P$ on an element $\gamma^\nabla(u) \in G_u$ is given by the following connection form at $u \cdot g_0$:

$$\xi \mapsto \gamma^\nabla(u \cdot g_0)(\xi) + [Z, \theta(\xi)].$$

Let $\pi : \mathcal{G} \to G_0$ be the natural projection. The **tautological** 1-form $\tau \in \Omega^1(\mathcal{G}, \mathfrak{g}^{-1} \oplus \mathfrak{g}_0)$ given by

$$\tau(\gamma^\nabla(u))(\eta) = (\theta + \gamma^\nabla(u))(T\pi \eta)$$

can be extended to a **normal Cartan connection** $\omega \in \Omega^1(\mathcal{G}, \mathfrak{g})$ (which is unique up to isomorphism).
5. The harmonic curvature

Recall that the harmonic curvature is a P-equivariant function $\kappa_h : G \to H^2(p, g)$. Since $H^2(p, g)$ is completely reducible, the harmonic curvature can be viewed as G_0-equivariant function $\kappa_h : G_0 \to H^2(p, g)$.

Consider the complex for computing the cohomology $H^*(g - , g)$:

$$0 \to g \to g^* \to \Lambda^2 g^* \to \ldots$$

The map ∂ is G_0-equivariant and so $H^*(g - , g)$ is naturally a G_0-module. Kostant showed that ∂ and ∂^* are adjoint operators for some inner product on $\Lambda^i g^* \otimes g \cong G_0 \Lambda^i p + \otimes g$. Hence, one has an algebraic Hodge structure $\Lambda^i g^* \otimes g = \ker(\partial^*) \oplus \ker(\Box) \oplus \im(\partial^*)$, where $\Box := \partial \partial^* + \partial^* \partial$.

Katharina Neusser (ANU)

Almost H-projective structures

Kioloa, March 2013
5. The harmonic curvature

- Recall that the harmonic curvature is a P-equivariant function
 \[\kappa_h : G \to H_2(p_+, g). \]
5. The harmonic curvature

- Recall that the harmonic curvature is a P-equivariant function $\kappa_h : G \to H_2(p_+, g)$.
- Since $H_2(p_+, g)$ is completely reducible, the harmonic curvature can be viewed as G_0-equivariant function $\kappa_h : G_0 \to H_2(p_+, g)$.
5. The harmonic curvature

- Recall that the harmonic curvature is a P-equivariant function $\kappa_h : \mathcal{G} \to H_2(p_+, g)$.
- Since $H_2(p_+, g)$ is completely reducible, the harmonic curvature can be viewed as G_0-equivariant function $\kappa_h : \mathcal{G}_0 \to H_2(p_+, g)$.
- Consider the complex for computing the cohomology $H^*(g_-, g)$:

\[
0 \to g \xrightarrow{\partial} g^* \otimes g \xrightarrow{\partial} \Lambda^2 g^* \otimes g \to \ldots
\]
5. The harmonic curvature

- Recall that the harmonic curvature is a P-equivariant function $\kappa_h : \mathcal{G} \to H_2(p_+, g)$.
- Since $H_2(p_+, g)$ is completely reducible, the harmonic curvature can be viewed as G_0-equivariant function $\kappa_h : \mathcal{G}_0 \to H_2(p_+, g)$.
- Consider the complex for computing the cohomology $H^*(g_-, g)$:

$$0 \to g \xrightarrow{\partial} g^* \otimes g \xrightarrow{\partial} \Lambda^2 g^* \otimes g \to \ldots$$

- The map ∂ is G_0-equivariant and so $H^*(g_-, g)$ is naturally a G_0-module.
5. The harmonic curvature

- Recall that the harmonic curvature is a P-equivariant function $\kappa_h : G \to H_2(p_+, g)$.
- Since $H_2(p_+, g)$ is completely reducible, the harmonic curvature can be viewed as G_0-equivariant function $\kappa_h : G_0 \to H_2(p_+, g)$.
- Consider the complex for computing the cohomology $H^*(g_-, g)$:

$$0 \to g \xrightarrow{\partial} g^* \otimes g \xrightarrow{\partial} \Lambda^2 g^* \otimes g \to \ldots$$

- The map ∂ is G_0-equivariant and so $H^*(g_-, g)$ is naturally a G_0-module.
- Kostant showed that ∂ and ∂^* are adjoint operators for some inner product on $\Lambda^i g^* \otimes g \cong_{G_0} \Lambda^i p_+ \otimes g$.
5. The harmonic curvature

- Recall that the harmonic curvature is a P-equivariant function $\kappa_h : G \to H_2(p_+, g)$.
- Since $H_2(p_+, g)$ is completely reducible, the harmonic curvature can be viewed as G_0-equivariant function $\kappa_h : G_0 \to H_2(p_+, g)$.
- Consider the complex for computing the cohomology $H^*(g_-, g)$:

$$0 \to g \xrightarrow{\partial} g^* \otimes g \xrightarrow{\partial} \Lambda^2 g^* \otimes g \to \ldots$$

The map ∂ is G_0-equivariant and so $H^*(g_-, g)$ is naturally a G_0-module.
- Kostant showed that ∂ and ∂^* are adjoint operators for some inner product on $\Lambda^i g^* \otimes g \cong_{G_0} \Lambda^i p_+ \otimes g$.
- Hence, one has a algebraic Hodge structure

$$\Lambda^i g^* \otimes g = \underbrace{\ker(\partial^*)}_{} \oplus \underbrace{\text{im}(\partial^*)}_{} \oplus \underbrace{\ker(\Box) \oplus \text{im}(\partial)}_{}$$

where $\Box := \partial \partial^* + \partial^* \partial$.

Katharina Neusser (ANU)
Almost H-projective structures
Kioloa, March 2013 15 / 20
In particular, as G_0-module $H^i(g_-, g) \cong H_i(p_+, g)$ is isomorphic to G_0-submodule $\ker(\Box)$ in $\Lambda^i g^* \otimes g$.

Harmonic curvature of almost H-projective manifold
• In particular, as G_0-module $H^i(g_-, g) \cong H_i(p_+, g)$ is isomorphic to G_0-submodule $\ker(\square)$ in $\Lambda^i g^* \otimes g$.

Harmonic curvature of almost H-projective manifold

• $H^2_{\mathbb{R}}(g_{-1}, g) = ?$
In particular, as G_0-module $H^i(g_-, g) \cong H_i(p_+, g)$ is isomorphic to G_0-submodule $\ker(\Box)$ in $\Lambda^i g^* \otimes g$.

Harmonic curvature of almost H-projective manifold

- $H^2_R(\mathfrak{g}_{-1}, \mathfrak{g}) = ?$
- We have $H^2_C(\mathfrak{g}_{-1}^\mathbb{C}, \mathfrak{g}^\mathbb{C}) \cong H^2_R(\mathfrak{g}_{-1}, \mathfrak{g}) \otimes_R \mathbb{C}$
In particular, as G_0-module $H^i(g_-, g) \cong H_i(p_+, g)$ is isomorphic to G_0-submodule $\ker(\square)$ in $\Lambda^i g^* \otimes g$.

Harmonic curvature of almost H-projective manifold

- $H^2_{\mathbb{R}}(g_{-1}, g) = ?$
- We have $H^2_{\mathbb{C}}(g^{\mathbb{C}}_{-1}, g^{\mathbb{C}}) \cong H^2_{\mathbb{R}}(g_{-1}, g) \otimes_{\mathbb{R}} \mathbb{C}$
- The Lie algebra $g = \mathfrak{sl}(n + 1, \mathbb{C})$ can be viewed as real form of the complex Lie algebra

\[g \oplus g = \mathfrak{sl}(n + 1, \mathbb{C}) \oplus \mathfrak{sl}(n + 1, \mathbb{C}). \]
In particular, as G_0-module $H^i(g_-, g) \cong H_i(p_+, g)$ is isomorphic to G_0-submodule $\ker(\Box)$ in $\Lambda^i g^* \otimes g$.

Harmonic curvature of almost H-projective manifold

- $H^2_{\mathbb{R}}(g_{-1}, g) =$?
- We have $H^2_{\mathbb{C}}(g_{-1}^{\mathbb{C}}, g^{\mathbb{C}}) \cong H^2_{\mathbb{R}}(g_{-1}, g) \otimes_{\mathbb{R}} \mathbb{C}$
- The Lie algebra $g = \mathfrak{sl}(n + 1, \mathbb{C})$ can be viewed as real form of the complex Lie algebra

\[g \oplus g = \mathfrak{sl}(n + 1, \mathbb{C}) \oplus \mathfrak{sl}(n + 1, \mathbb{C}). \]

- Hence, $H^2_{\mathbb{C}}(g_{-1}^{\mathbb{C}}, g^{\mathbb{C}}) \cong H^2_{\mathbb{C}}(g_{-1} \oplus g_{-1}, g \oplus g)$ as $g_0^\mathbb{C} \cong g_0 \oplus g_0$-module.
\[H^2 (\text{for } n = 5) \]

\[H^2_C(\mathfrak{g}_{-1} \oplus \mathfrak{g}_{-1}, \mathfrak{g} \oplus \mathfrak{g}) = \]

\[
\begin{array}{cccc}
-4 & 1 & 1 & 0 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 & 0
\end{array}
\oplus
\begin{array}{cccc}
-4 & 1 & 1 & 0 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 & 0
\end{array}
\]

\[
\begin{array}{cccc}
-3 & 2 & 0 & 0 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 & 0
\end{array}
\oplus
\begin{array}{cccc}
-2 & 1 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0 & 0
\end{array}
\]

\[
\begin{array}{cccc}
1 & 0 & 0 & 0 & 1 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
-3 & 0 & 1 & 0 & 0
\end{array}
\oplus
\begin{array}{cccc}
-3 & 0 & 1 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
1 & 0 & 0 & 0 & 0
\end{array}
\]

Hence, \(\kappa_h \) has values in three irreducible \(G_0 \)-modules. Correspondingly, we shall write \(\kappa_h = \mathcal{W}^{2,0} + \mathcal{W}^{1,1} + \mathcal{T} \).
The theory of parabolic geometries implies then the following:

1. \((M, J, \nabla)\) is an almost \(H\)-projective manifold if and only if \(T = 0\).

2. \((M, J, \nabla)\) is locally isomorphic to \(\mathbb{CP}^n\) with its canonical \(H\)-projective structure if and only if \(\kappa_h = 0\).

3. If \(T = 0\), then \(W(1, 1) = 0\) if and only if \((M, J, \nabla)\) is complex projective structure.

4. If \(T = 0\) and \(\nabla\) is \(K\)-\(\ddot{a}\)hlerisable, then \(W(2, 0) = 0\).

(Katharina Neusser (ANU) Almost H-projective structures Kioloa, March 2013 18 / 20)
The theory of parabolic geometries implies then the following:

Interpretation of harmonic curvature; cf. David Calderbank’s unpublished notes on Hamiltonian 2-vectors

Suppose that \((M, J, \nabla)\) is an almost \(H\)-projective manifold with \(n > 1\).

\[\begin{align*}
1. & \quad (M, J, [\nabla]) \text{ is an } H\text{-projective manifold } \iff T = 0 \\
2. & \quad (M, J, [\nabla]) \text{ is locally isomorphic to } \mathbb{C}P^n \text{ with its canonical } H\text{-projective structure } \iff \kappa_h = 0. \\
3. & \quad \text{If } T = 0, \text{ then } W_{(1, 1)} = 0 \iff (M, J, [\nabla]) \text{ is complex projective structure.} \\
4. & \quad \text{If } T = 0 \text{ and } [\nabla] \text{ is Kählerisable, then } W_{(2, 0)} = 0.
\end{align*}\]
The theory of parabolic geometries implies then the following:

Interpretation of harmonic curvature; cf. David Calderbank’s unpublished notes on Hamiltonian 2-vectors

Suppose that \((M, J, [\nabla])\) is an almost \(H\)-projective manifold with \(n > 1\).

1. \((M, J, [\nabla])\) is an \(H\)-projective manifold \(\iff\) \(T = 0\)

2. \((M, J, [\nabla])\) is locally isomorphic to \(\mathbb{C}P^n\) with its canonical \(H\)-projective structure \(\iff\) \(\kappa_h = 0\).

3. If \(T = 0\), then \(W(1, 1) = 0\) \(\iff\) \((M, J, [\nabla])\) is complex projective structure.

4. If \(T = 0\) and \([\nabla]\) is \(\mathbb{K}\)ählerisable, then \(W(2, 0) = 0\).
The theory of parabolic geometries implies then the following:

Interpretation of harmonic curvature; cf. David Calderbank’s unpublished notes on Hamiltonian 2-vectors

1. \((M, J, [\nabla])\) is an almost \(H\)-projective manifold with \(n > 1\).

2. \((M, J, [\nabla])\) is locally isomorphic to \(\mathbb{CP}^n\) with its canonical \(H\)-projective structure \(\iff\) \(\kappa_h = 0\).

(torsion-free case: Tashiro 1957)
The theory of parabolic geometries implies then the following:

Interpretation of harmonic curvature; cf. David Calderbank’s unpublished notes on Hamiltonian 2-vectors

Suppose that $(M, J, [\nabla])$ is an almost H-projective manifold with $n > 1$.

1. $(M, J, [\nabla])$ is an H-projective manifold \iff $T=0$

2. $(M, J, [\nabla])$ is locally isomorphic to $\mathbb{C}P^n$ with its canonical H-projective structure \iff $\kappa_h=0$. (torsion-free case: Tashiro 1957)

3. If $T = 0$, then

$$W^{(1,1)} = 0 \iff (M, J, [\nabla]) \text{ is complex projective structure}.$$

In this case $W^{(2,0)}$ is Weyl curvature of complex projective manifold.
The theory of parabolic geometries implies then the following:

Interpretation of harmonic curvature; cf. David Calderbank’s unpublished notes on Hamiltonian 2-vectors

Suppose that \((M, J, [\nabla])\) is an almost \(H\)-projective manifold with \(n > 1\).

1. \((M, J, [\nabla])\) is an \(H\)-projective manifold \(\iff \ T = 0\)

2. \((M, J, [\nabla])\) is locally isomorphic to \(\mathbb{CP}^n\) with its canonical \(H\)-projective structure \(\iff \kappa_h = 0\).
 (torsion-free case: Tashiro 1957)

3. If \(T = 0\), then

 \[
 W^{(1,1)} = 0 \iff (M, J, [\nabla]) \text{ is complex projective structure}.
 \]

 In this case \(W^{(2,0)}\) is Weyl curvature of complex projective manifold.

4. If \(T = 0\) and \([\nabla]\) is \(K\ddot{a}hlerisable\), then \(W^{(2,0)} = 0\).
The Hodge decomposition

\[\Lambda^i T^* M \otimes \gr(AM) = G_0 \times G_0 \Lambda^i g_{-1}^* \otimes g = \text{im}(\partial) \oplus \ker(\square) \oplus \text{im}(\partial^*) \]

implies that for any \(\nabla \in [\nabla] \):

\[\exists! \quad P^\nabla \in \Omega^1(M, T^* M) \quad \text{s.t.} \quad \partial^*(R^\nabla - \partial P^\nabla) = 0. \]
The Hodge decomposition

\[\Lambda^i T^* M \otimes \text{gr}(\mathcal{A}M) = \mathcal{G}_0 \times \mathcal{G}_0 \Lambda^i \mathfrak{g}^{-1} \otimes \mathfrak{g} = \text{im}(\partial) \oplus \ker(\Box) \oplus \text{im}(\partial^*) \]

implies that for any \(\nabla \in [\nabla] \):

\[\exists! \quad P^\nabla \in \Omega^1(M, T^* M) \quad \text{s.t.} \quad \partial^*(R^\nabla - \partial P^\nabla) = 0. \]

\(W^\nabla = R^\nabla - \partial P^\nabla \) is called the Weyl curvature and \(P^\nabla \) the Rho tensor of \(\nabla \).
• The Hodge decomposition

\[\Lambda^i T^* M \otimes \text{gr}(\mathcal{A}M) = G_0 \times G_0 \Lambda^i g^* \otimes g = \text{im}(\partial) \oplus \ker(\Box) \oplus \text{im}(\partial^*) \]

implies that for any \(\nabla \in [\nabla] \):

\[\exists! \quad P^\nabla \in \Omega^1(M, T^* M) \quad \text{s.t.} \quad \partial^* (R^\nabla - \partial P^\nabla) = 0. \]

• \(W^\nabla = R^\nabla - \partial P^\nabla \) is called the Weyl curvature and \(P^\nabla \) the Rho tensor of \(\nabla \).

• \((\partial P^\nabla)_{abc}^d = \delta_{[a}{}^c P_{b]}^d - J_{[a}{}^c P_{b]}^e J^d_e - P_{[ab]}^c \delta^d_c - J_{[a}{}^e P_{b]}^c J^d_e \)
The Hodge decomposition

\[\Lambda^i T^* M \otimes \text{gr}(\mathcal{A}M) = \mathcal{G}_0 \times \mathcal{G}_0 \Lambda^i g^* \otimes g = \text{im}(\partial) \oplus \text{ker}(\Box) \oplus \text{im}(\partial^*) \]

implies that for any \(\nabla \in [\nabla] \):

\[\exists! \quad P^\nabla \in \Omega^1(M, T^* M) \quad \text{s.t.} \quad \partial^* (R^\nabla - \partial P^\nabla) = 0. \]

- \(W^\nabla = R^\nabla - \partial P^\nabla \) is called the Weyl curvature and \(P^\nabla \) the Rho tensor of \(\nabla \).

- \((\partial P^\nabla)_{ab}^c_d = \delta_{[a}^c P^\nabla_{b]d} - J_{[a}^c P^\nabla_{b]e} J_d^e - P^\nabla_{[ab]} \delta^c_d - J_{[a}^e P^\nabla_{b]e} J^c_d \)

- \(R^\nabla_{ab}^c_d = \)

\[= W_{ab}^c_d + \delta_{[a}^c P^\nabla_{b]d} - J_{[a}^c P^\nabla_{b]e} J_d^e - P^\nabla_{[ab]} \delta^c_d - J_{[a}^e P^\nabla_{b]e} J^c_d \]
• The Hodge decomposition

\[\Lambda^i T^* M \otimes \text{gr}(\mathcal{AM}) = \mathcal{G}_0 \times \mathcal{G}_0 \Lambda^i g_{-1} \otimes g = \text{im}(\partial) \oplus \ker(\Box) \oplus \text{im}(\partial^*) \]

implies that for any \(\nabla \in [\nabla] \):

\[\exists! \ P^{\nabla} \in \Omega^1(M, T^* M) \quad \text{s.t.} \quad \partial^*(R^{\nabla} - \partial P^{\nabla}) = 0. \]

• \(W^{\nabla} = R^{\nabla} - \partial P^{\nabla} \) is called the Weyl curvature and \(P^{\nabla} \) the Rho tensor of \(\nabla \).

\[(\partial P^{\nabla})_{ab}{}^c{}^d = \delta_{[a}{}^c P_{b]}{}^d - J_{[a}{}^c P_{b]}{}^e J^d{}^e - P^{\nabla}{}_{[ab]} \delta^c{}^d - J_{[a}{}^e P_{b]}{}^e J^c{}^d \]

• \(R^{\nabla}{}_{ab}{}^c{}^d = (\partial P^{\nabla})_{ab}{}^a{}^d = \frac{2n+1}{2} P^{\nabla}{}_{bd} - \frac{1}{2} P^{\nabla}{}_{db} + J_{(b}{}^e J_{d)}{}^f P^{\nabla}{}_{fe} \)
\[R_{(bd)}^{\nabla} = nP_{(bd)}^{\nabla} + J_{(b^e J_d)^f} P_{fe}^{\nabla} \]
\[R_{(bd)} = nP_{(bd)} + J(b^e J_d)^f P_{fe} \]
\[R_{[bd]} = (n + 1)P_{[bd]} \]
\item $R_{(bd)}^{\nabla} = nP_{(bd)}^{\nabla} + J(b^e J_d)^f P_{fe}^{\nabla}$
\item $R_{[bd]}^{\nabla} = (n + 1)P_{[bd]}^{\nabla}$
\item $P_{bd}^{\nabla} = \frac{1}{n+1} R_{bd}^{\nabla} + \frac{1}{(n+1)(n-1)} (R_{(bd)}^{\nabla} - J(b^e J_d)^f R_{fe}^{\nabla})$
\[R_{(bd)}^{\nabla} = n P_{(bd)}^{\nabla} + J(b^e J_d)^f P_{fe}^{\nabla} \]
\[R_{[bd]}^{\nabla} = (n + 1) P_{[bd]}^{\nabla} \]
\[P_{bd}^{\nabla} = \frac{1}{n+1} R_{bd}^{\nabla} + \frac{1}{(n+1)(n-1)} \left(R_{(bd)}^{\nabla} - J(b^e J_d)^f R_{fe}^{\nabla} \right) \]

How does \(P \) and \(W \) change when one changes \(H \)-projectively?
\[
R_{(bd)}^\nabla = nP_{(bd)}^\nabla + J(b^e J_d)^f P_{fe}^\nabla \\
R_{[bd]}^\nabla = (n + 1)P_{[bd]}^\nabla \\
P_{bd}^\hat{\nabla} = \frac{1}{n+1} R_{bd}^\nabla + \frac{1}{(n+1)(n-1)} (R_{(bd)}^\nabla - J(b^e J_d)^f R_{fe}^\nabla)
\]

How does P and W change when one changes ∇ H-projectively?

\[
P_{ab}^\hat{\nabla} = P_{ab}^\nabla - 2\nabla_a \gamma_b + 2(\gamma_a \gamma_b - J_a^e J_b^f \gamma_e \gamma_f)
\]
\[R_{(bd)}^\nabla = nP_{(bd)}^\nabla + J(b^e J_d)^f P_{fe} \]
\[R_{[bd]}^\nabla = (n + 1)P_{[bd]} \]
\[P_{bd}^\nabla = \frac{1}{n+1} R_{bd}^\nabla + \frac{1}{(n+1)(n-1)} (R_{(bd)}^\nabla - J(b^e J_d)^f R_{fe}^\nabla) \]

How does \(P \) and \(W \) change when one changes \(\nabla \) H-projectively?

- \(\hat{P}_{ab} = P_{ab}^\nabla - 2\nabla_a \gamma_b + 2(\gamma_a \gamma_b - J_a^e J_b^f \gamma_e \gamma_f) \)

- \(W^\nabla \) is a two form with values in the complex vector bundle \(\mathfrak{gl}(TM, J) \) and hence we can decompose it into types as follows:

\[W^\nabla = W^{2,0} + W^{1,1} + W^{0,2} \]
\[R_{(bd)} = nP_{(bd)} + J(b^e J_d)^f P_{fe} \]

\[R_{[bd]} = (n + 1)P_{[bd]} \]

\[P_{bd} = \frac{1}{n+1} R_{bd} + \frac{1}{(n+1)(n-1)} (R_{(bd)} - J(b^e J_d)^f R_{fe}) \]

How does \(P \) and \(W \) change when one changes \(\nabla \) \(H \)-projectively?

\[P^\hat{\nabla}_{ab} = P_{ab} - 2\nabla_a \gamma_b + 2(\gamma_a \gamma_b - J_a{}^e J_b{}^f \gamma_e \gamma_f) \]

\(W^\nabla \) is a two form with values in the complex vector bundle \(\mathfrak{gl}(TM, J) \) and hence we can decompose it into types as follows:

\[W^\nabla = W^{2,0} + W^{1,1} + W^{0,2}. \]

\[W^\hat{\nabla}_{ab}^c{}^d = \]

\[= W_{ab}^\nabla{}^c{}^d + T_{ab}{}^e \gamma_e \delta^c{}^d + T_{ab}{}^c \gamma_d - J_e{}^f T_{ab}{}^e \gamma_f J^c{}^d - J_e{}^c T_{ab}{}^e J_d{}^f \gamma_f. \]

is of type \((0,2)\).
\[
R_{(bd)}^\nabla = nP_{(bd)}^\nabla + J(b^e J_d)^f P_{fe}^\nabla \\
R_{[bd]}^\nabla = (n + 1)P_{[bd]}^\nabla \\
P_{bd}^\nabla = \frac{1}{n+1} R_{bd}^\nabla + \frac{1}{(n+1)(n-1)}(R_{(bd)}^\nabla - J(b^e J_d)^f R_{fe}^\nabla)
\]

How does \(P \) and \(W \) change when one changes \(\nabla \) \(H \)-projectively?

- \(\hat{P}_{ab} = P_{ab}^\nabla - 2\nabla_a \gamma_b + 2(\gamma_a \gamma_b - J(a^e J_b)^f \gamma_e \gamma_f) \)

- \(\hat{W}_{\nabla}^{\hat{\nabla}} = W_{\nabla}^{\nabla} \)
- \(W_{\nabla}^{\hat{\nabla}} = W_{ab}^{\hat{\nabla}} - 2\nabla_a \gamma_b + 2(\gamma_a \gamma_b - J(a^e J_b)^f \gamma_e \gamma_f) \)
- \(W_{ab}^{\hat{\nabla}} = W_{ab}^{\nabla} + T_{ab}^e \gamma_e \delta^c_d + T_{ab}^c \gamma_d - J_e^f T_{ab}^e \gamma_f J_d^c - J_e^c T_{ab}^e J_d^f \gamma_f \)
- \(W_{ab}^{\hat{\nabla}} \) is of type \((0,2)\).

- The components \(W^{2,0} \) and \(W^{1,1} \) are independent of the choice of the connection in \(\nabla \). These are the two harmonic curvature components.