Symmetry gaps for geometric structures

Dennis The

Mathematical Sciences Institute Australian National University

(Joint work with Boris Kruglikov)

May 30, 2014

Korea Institute for Advanced Study

For a given type of geometric structure, what is the gap between maximal and submaximal (infinitesimal) symmetry dimensions? For a given type of geometric structure, what is the gap between maximal and submaximal (infinitesimal) symmetry dimensions?

 "Geometric structure" → Cartan geometry (Non-examples: symplectic, contact, ...)

• Symmetry X satisfies $\mathcal{L}_{X}g = 0$. (Linear PDE in X.)

<□>□

- Symmetry X satisfies $\mathcal{L}_{X}g = 0$. (Linear PDE in X.)
- sym. dim. $\leq \binom{n+1}{2}$. Max. on "flat" model $\mathbb{R}^n \cong \mathbb{E}(n)/O(n)$.

레이 소문이 소문이 문

- Symmetry X satisfies $\mathcal{L}_{Xg} = 0$. (Linear PDE in X.)
- sym. dim. $\leq \binom{n+1}{2}$. Max. on "flat" model $\mathbb{R}^n \cong \mathbb{E}(n)/O(n)$.
- Fubini (1903): $\binom{n+1}{2}$ -1 is not possible.

同下 人名日本 名目下 注

- Symmetry X satisfies $\mathcal{L}_{Xg} = 0$. (Linear PDE in X.)
- sym. dim. $\leq \binom{n+1}{2}$. Max. on "flat" model $\mathbb{R}^n \cong \mathbb{E}(n)/O(n)$.
- Fubini (1903): $\binom{n+1}{2}$ -1 is not possible.

n	max	submax	Citation
2	3	1	Darboux / Koenigs (\sim 1890)
3	6	4	Wang (1947)
4	10	8	Egorov (1955)
\geq 5	$\binom{n+1}{2}$	$\binom{n}{2} + 1$	Wang (1947), Egorov (1949)

同 と く き と く き と (注)

... are Cartan geometries modelled on G/P, where G: semisimple Lie group, P: parabolic subgroup.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

 \dots are Cartan geometries modelled on G/P, where

G: semisimple Lie group, *P*: parabolic subgroup.

Example

Conformal, projective, (2,3,5), CR, 2nd order ODE systems, ... Cartan, but not parabolic: Riemannian, affine, Kähler, ...

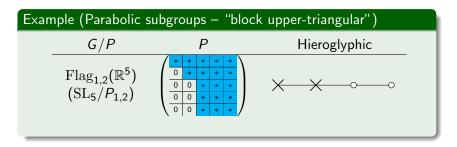
|▲□ ▶ ▲ ■ ▶ ▲ ■ ■ ■ ● ● ●

... are Cartan geometries modelled on G/P, where

G: semisimple Lie group, P: parabolic subgroup.

Example

Conformal, projective, (2,3,5), CR, 2nd order ODE systems, ... Cartan, but not parabolic: Riemannian, affine, Kähler, ...



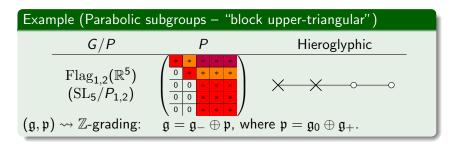
○ 4 문 > 4 문 > 4 문 > 4 문 > 4 문 > 4 명 > 4 명 > 1

... are Cartan geometries modelled on G/P, where

G: semisimple Lie group, P: parabolic subgroup.

Example

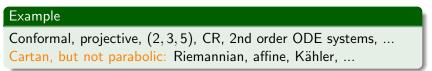
Conformal, projective, (2,3,5), CR, 2nd order ODE systems, ... Cartan, but not parabolic: Riemannian, affine, Kähler, ...

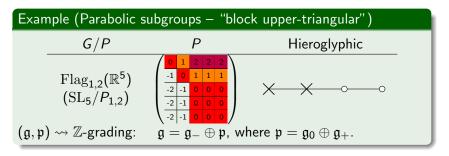


◆□ > ◆□ > ◆三 > ◆三 > 三日 のへの

Parabolic geometries

- ... are Cartan geometries modelled on G/P, where
- *G*: semisimple Lie group, *P*: parabolic subgroup.





- Background
- Results
- Proof outlines

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For parabolic geometries...

- **1** \leq 2012:
 - (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
 - (ii) (2,3,5)-distributions (*Cartan*, 1910)
 - (iii) *n*-dim projective (Egorov, 1951)
 - (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
 - (v) pairs of 2nd order ODE (Casey et al., 2012)

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

For parabolic geometries...

- **1** \leq 2012:
 - (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
 - (ii) (2,3,5)-distributions (Cartan, 1910)
 - (iii) *n*-dim projective (Egorov, 1951)
 - (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
 - (v) pairs of 2nd order ODE (Casey et al., 2012)
- 2013:
 - (i) any complex or split-real G/P geometry + non-Riem./Lor. conformal (Kruglikov & T.)

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ ▲ 臣 ● � � �

For parabolic geometries...

- **1** \leq 2012:
 - (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
 - (ii) (2,3,5)-distributions (*Cartan, 1910*)
 - (iii) *n*-dim projective (Egorov, 1951)
 - (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
 - (v) pairs of 2nd order ODE (Casey et al., 2012)

2013:

- (i) any complex or split-real G/P geometry + non-Riem./Lor. conformal (Kruglikov & T.)
 - No additional assumptions such as transitivity, or curvature type being locally constant, etc.

For parabolic geometries...

- **1** \leq 2012:
 - (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
 - (ii) (2,3,5)-distributions (*Cartan, 1910*)
 - (iii) *n*-dim projective (Egorov, 1951)
 - (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
 - (v) pairs of 2nd order ODE (Casey et al., 2012)

2013:

- (i) any complex or split-real G/P geometry + non-Riem./Lor. conformal (Kruglikov & T.)
 - No additional assumptions such as transitivity, or curvature type being locally constant, etc.
 - algorithm for constructing a submax. sym. model

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For parabolic geometries...

- **1** \leq 2012:
 - (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
 - (ii) (2,3,5)-distributions (*Cartan, 1910*)
 - (iii) *n*-dim projective (Egorov, 1951)
 - (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
 - (v) pairs of 2nd order ODE (Casey et al., 2012)

2013:

- (i) any complex or split-real G/P geometry + non-Riem./Lor. conformal (Kruglikov & T.)
 - No additional assumptions such as transitivity, or curvature type being locally constant, etc.
 - algorithm for constructing a submax. sym. model
- (ii) Riem./Lor. conformal (Doubrov & T.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For parabolic geometries...

- **1** \leq 2012:
 - (i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
 - (ii) (2,3,5)-distributions (*Cartan, 1910*)
 - (iii) *n*-dim projective (Egorov, 1951)
 - (iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
 - (v) pairs of 2nd order ODE (Casey et al., 2012)

2013:

- (i) any complex or split-real G/P geometry + non-Riem./Lor. conformal (Kruglikov & T.)
 - No additional assumptions such as transitivity, or curvature type being locally constant, etc.
 - algorithm for constructing a submax. sym. model
- (ii) Riem./Lor. conformal (Doubrov & T.)

Moral: Can work upstairs, use representation theory.

(ロ) (同) (E) (E) (E) (O)

Example: (2, 3, 5)-distributions

Let (M^5, D) with $D \subset TM$ rank 2, which is max. non-integrable. Goursat (1896): Locally, $D = D_f$ is spanned by

$$X_1 = \partial_x + p\partial_y + q\partial_p + f(x, y, p, q, z)\partial_z, \qquad X_2 = \partial_q.$$

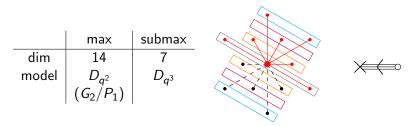
This is (2, 3, 5) iff $f_{qq} \neq 0$. Studied by Cartan (1910) in his famous 5-variables paper.

Example: (2, 3, 5)-distributions

Let (M^5, D) with $D \subset TM$ rank 2, which is max. non-integrable. Goursat (1896): Locally, $D = D_f$ is spanned by

$$X_1 = \partial_x + p\partial_y + q\partial_p + f(x, y, p, q, z)\partial_z, \qquad X_2 = \partial_q.$$

This is (2, 3, 5) iff $f_{qq} \neq 0$. Studied by Cartan (1910) in his famous 5-variables paper.



Fundamental invariant: binary quartic, i.e. $\Gamma(\bigcirc^4 D^*)$.

Theorem (Čap–Schichl, Tanaka, Morimoto)

$$\begin{cases} \textbf{regular, normal} \\ G/P \text{ geometries} \\ (\mathcal{G} \to M, \omega) \end{cases} \leftrightarrow \begin{cases} \textbf{underlying} \\ \textbf{structures on } M \end{cases}$$

▲圖▶ ▲屋▶ ★屋▶

-2

Theorem (Čap–Schichl, Tanaka, Morimoto)

$$\left\{ \begin{array}{l} \textit{regular, normal} \\ \textit{G/P geometries} \\ (\mathcal{G} \to M, \omega) \end{array} \right\} \leftrightarrow \left\{ \begin{array}{l} \textit{underlying} \\ \textit{structures on } M \end{array} \right\}$$

Fundamental invariant: harmonic curvature $\kappa_H : \mathcal{G} \to H^2_+(\mathfrak{g}_-, \mathfrak{g})$.

 $(\mathcal{G} \to M, \omega)$ is locally flat iff $\kappa_H = 0$.

- 4 同 2 - 4 目 2 - 4 目 2 - 5 目

Theorem (Čap–Schichl, Tanaka, Morimoto)

$$\left\{ \begin{matrix} \text{regular, normal} \\ G/P \text{ geometries} \\ (\mathcal{G} \to M, \omega) \end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} \text{underlying} \\ \text{structures on } M \end{matrix} \right\}$$

Fundamental invariant: harmonic curvature $\kappa_H : \mathcal{G} \to H^2_+(\mathfrak{g}_-, \mathfrak{g}).$

 $(\mathcal{G} \to M, \omega)$ is locally flat iff $\kappa_H = 0$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3);
- (2,3,5)-distributions: binary quartic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Čap–Schichl, Tanaka, Morimoto)

$$\left\{ \begin{matrix} \text{regular, normal} \\ G/P \text{ geometries} \\ (\mathcal{G} \to M, \omega) \end{matrix} \right\} \leftrightarrow \left\{ \begin{matrix} \text{underlying} \\ \text{structures on } M \end{matrix} \right\}$$

Fundamental invariant: harmonic curvature $\kappa_H : \mathcal{G} \to H^2_+(\mathfrak{g}_-, \mathfrak{g}).$

 $(\mathcal{G} \to M, \omega)$ is locally flat iff $\kappa_H = 0$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3);
- (2,3,5)-distributions: binary quartic.

The (locally) flat model is the *unique* max. sym. model. .: Want:

 $\mathfrak{S} := \max\{\dim(\mathfrak{inf}(\mathcal{G},\omega)) \mid \kappa_H \not\equiv 0\}.$

$$(\mathfrak{g},\mathfrak{p})\rightsquigarrow\mathfrak{g}=\mathfrak{g}_{-}\oplus\overbrace{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}^{\mathfrak{p}}.$$
 Have $(\mathfrak{g}_{-})^{*}\cong\mathfrak{g}_{+}.$

p $(\mathfrak{g},\mathfrak{p}) \rightsquigarrow \mathfrak{g} = \mathfrak{g}_{-} \oplus \widetilde{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}.$ Have $(\mathfrak{g}_{-})^{*} \cong \mathfrak{g}_{+}.$ Curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in: $\bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$ 112 $\bigwedge^2(\mathfrak{g}_-)^*\otimes\mathfrak{g}$ 112 $\bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g}$

同 と く き と く き と (注)

= nac

 $(\mathfrak{g},\mathfrak{p}) \rightsquigarrow \mathfrak{g} = \mathfrak{g}_{-} \oplus \widetilde{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}.$ Have $(\mathfrak{g}_{-})^{*} \cong \mathfrak{g}_{+}.$ Curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in: $\bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$ 112 $\cdots \xrightarrow{\partial} \quad \bigwedge^2(\mathfrak{g}_-)^* \otimes \mathfrak{g} \quad \xrightarrow{\partial} \quad \cdots$ 112 $\cdots \xleftarrow{\partial^*} \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g} \xleftarrow{\partial^*} \cdots$ Kostant (1961) Laplacian: $\Box = \partial \partial^* + \partial^* \partial$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

 $(\mathfrak{g},\mathfrak{p}) \rightsquigarrow \mathfrak{g} = \mathfrak{g}_{-} \oplus \widetilde{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}.$ Have $(\mathfrak{g}_{-})^{*} \cong \mathfrak{g}_{+}.$ Curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in: $\bigwedge^2(\mathfrak{g}/\mathfrak{p})^*\otimes\mathfrak{g}$ 115 112 $\cdots \xleftarrow{\partial^*} \bigwedge^2 \mathfrak{g}_+ \otimes \mathfrak{g} \xleftarrow{\partial^*} \cdots$ Kostant (1961) Laplacian: $\Box = \partial \partial^* + \partial^* \partial$ $ker(\partial^*)$ $\rightsquigarrow \bigwedge^2(\mathfrak{g}_-)^* \otimes \mathfrak{g} = \overbrace{\operatorname{im}(\partial^*) \oplus \operatorname{ker}(\Box)} \oplus \operatorname{im}(\partial), \qquad \operatorname{ker}(\Box) \cong H^2(\mathfrak{g}_-, \mathfrak{g})$ cohomology! $ker(\partial)$ Dennis The Symmetry gaps for geometric structures 9/20

Kostant (1961), Baston-Eastwood (1989): Dynkin diagram algorithm to calculate $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ as a \mathfrak{g}_0 -module.

同 と く き と く き と (注)

Kostant (1961), Baston-Eastwood (1989): Dynkin diagram algorithm to calculate $H^2_+(\mathfrak{g}_-,\mathfrak{g})$ as a \mathfrak{g}_0 -module.

Example ((2,3,5)-distributions: G_2/P_1 geometry)

As a $\mathfrak{g}_0=\mathfrak{gl}_2(\mathbb{R})$ module,

$$H^2_+(\mathfrak{g}_-,\mathfrak{g})=\overset{-8}{
integral}\overset{4}{=}=\bigodot^4(\mathbb{R}^2)^*,$$

i.e. binary quartic, c.f. Cartan (1910).

< 同 > < 注 > < 注 > 注

$$(\mathfrak{g},\mathfrak{p})\rightsquigarrow\mathfrak{g}=\mathfrak{g}_{-}\oplus\overbrace{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}^{\mathfrak{p}}.$$

回 と く ヨ と く ヨ と

三日 のへで

$$(\mathfrak{g},\mathfrak{p})\leadsto\mathfrak{g}=\mathfrak{g}_{-}\oplus \overbrace{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}^{\mathfrak{p}}.$$

Given $a_0 \subset \mathfrak{g}_0$, the Tanaka prolongation of \mathfrak{a}_0 in \mathfrak{g} :

$$\mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{a}_{0}) = \mathfrak{g}_{-} \oplus \mathfrak{a}_{0} \oplus \mathfrak{a}_{+}$$

 $\mathfrak{a}_{i} = \{X \in \mathfrak{g}_{i} \mid [X,\mathfrak{g}_{-1}] \subset \mathfrak{a}_{i-1}\} \quad (i \geq 1).$

□ > < E > < E > E = の < 0

$$(\mathfrak{g},\mathfrak{p})\rightsquigarrow\mathfrak{g}=\mathfrak{g}_{-}\oplus\overbrace{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}^{r}.$$

Given $[\mathfrak{a}_0 \subset \mathfrak{g}_0]$, the Tanaka prolongation of \mathfrak{a}_0 in \mathfrak{g} :

b

$$\begin{aligned} \mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{a}_{0}) &= \mathfrak{g}_{-} \oplus \mathfrak{a}_{0} \oplus \mathfrak{a}_{+} \\ \mathfrak{a}_{i} &= \{X \in \mathfrak{g}_{i} \mid [X,\mathfrak{g}_{-1}] \subset \mathfrak{a}_{i-1}\} \quad (i \geq 1). \end{aligned}$$

Given $0 \neq \phi \in H^2_+$, interested in $\mathfrak{a}_0 = \mathfrak{ann}(\phi)$. Let

 $\mathfrak{a}^{\phi} := \mathrm{pr}_{\mathfrak{g}}(\mathfrak{g}_{-}, \mathfrak{ann}(\phi)).$

< □> < ■> < ■> < ■> < ■| = のQ@

$$(\mathfrak{g},\mathfrak{p})\rightsquigarrow\mathfrak{g}=\mathfrak{g}_{-}\oplus\widetilde{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}.$$

Given $a_0 \subset g_0$, the Tanaka prolongation of a_0 in g:

b

$$\mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{a}_{0}) = \mathfrak{g}_{-} \oplus \mathfrak{a}_{0} \oplus \mathfrak{a}_{+}$$

 $\mathfrak{a}_{i} = \{X \in \mathfrak{g}_{i} \mid [X,\mathfrak{g}_{-1}] \subset \mathfrak{a}_{i-1}\} \quad (i \geq 1).$

Given $0 \neq \phi \in H^2_+$, interested in $\mathfrak{a}_0 = \mathfrak{ann}(\phi)$. Let

 $\mathfrak{a}^{\phi} := \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-}, \mathfrak{ann}(\phi)).$

Theorem (Kruglikov, T. (2013))

Let $(\mathcal{G} \to M, \omega)$ be any regular, normal G/P geometry. Then $\dim(\inf(\mathcal{G}, \omega)) \leq \dim(\mathfrak{a}^{\kappa_H(u)}), \forall u \text{ in some open dense subset of } \mathcal{G}.$

▲@→ ▲글→ ▲글→ 글|

$$(\mathfrak{g},\mathfrak{p})\rightsquigarrow\mathfrak{g}=\mathfrak{g}_{-}\oplus\widetilde{\mathfrak{g}_{0}\oplus\mathfrak{g}_{+}}.$$

Given $a_0 \subset g_0$, the Tanaka prolongation of a_0 in g:

b

$$\mathsf{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{a}_{0}) = \mathfrak{g}_{-} \oplus \mathfrak{a}_{0} \oplus \mathfrak{a}_{+}$$

 $\mathfrak{a}_{i} = \{X \in \mathfrak{g}_{i} \mid [X,\mathfrak{g}_{-1}] \subset \mathfrak{a}_{i-1}\} \quad (i \geq 1).$

Given $0 \neq \phi \in H^2_+$, interested in $\mathfrak{a}_0 = \mathfrak{ann}(\phi)$. Let

 $\mathfrak{a}^{\phi} := \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-}, \mathfrak{ann}(\phi)).$

Theorem (Kruglikov, T. (2013))

Let $(\mathcal{G} \to M, \omega)$ be any regular, normal G/P geometry. Then $\dim(\mathfrak{inf}(\mathcal{G}, \omega)) \leq \dim(\mathfrak{a}^{\kappa_H(u)}), \forall u \text{ in some open dense subset of } \mathcal{G}.$

K-T. (2014, in prep.): This holds $\forall u \in \mathcal{G}$.

Fix (G, P). Define $\mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\}.$

◆□> < □> < □> < □| < ○</p>

Fix (G, P). Define $\mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\}.$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Fix (G, P). Define $\mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\}.$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Theorem (Local realizability)

If G/P is complex or split-real, then $\mathfrak{S} = \mathfrak{U}$ almost always. Exception list when G is simple: A_2/P_1 , $A_2/P_{1,2}$, B_2/P_1 .

・ロ> < @> < E> < E> < E
 ・ < 0

Fix (G, P). Define $\mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\}.$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Theorem (Local realizability)

If G/P is complex or split-real, then $\mathfrak{S} = \mathfrak{U}$ almost always. Exception list when G is simple: A_2/P_1 , $A_2/P_{1,2}$, B_2/P_1 .

Theorem (Computability)

If G/P is complex or split-real, can read \mathfrak{U} from a Dynkin diagram!

Fix (G, P). Define $\mathfrak{U} := \max\{\dim(\mathfrak{a}^{\phi}) \mid 0 \neq \phi \in H^2_+(\mathfrak{g}_-, \mathfrak{g})\}.$

Theorem (Universal upper bound)

 $\mathfrak{S} \leq \mathfrak{U} < \dim(\mathfrak{g}).$

Theorem (Local realizability)

If G/P is complex or split-real, then $\mathfrak{S} = \mathfrak{U}$ almost always. Exception list when G is simple: A_2/P_1 , $A_2/P_{1,2}$, B_2/P_1 .

Theorem (Computability)

If G/P is complex or split-real, can read \mathfrak{U} from a Dynkin diagram!

Proposition (Extremal vectors win)

Over \mathbb{C} , *if* \mathbb{V} *is a* \mathfrak{g}_0 *-irrep,* $\phi_0 \in \mathbb{V}$ *is extremal, then* $\forall \phi \in \mathbb{V} \setminus \{0\}$ *,*

 $\dim(\mathfrak{ann}(\phi)) \leq \dim(\mathfrak{ann}(\phi_0)), \qquad \dim(\mathfrak{a}^{\phi}) \leq \dim(\mathfrak{a}^{\phi_0}).$

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

(*): $[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i$ $(i \geq -1) \Rightarrow \mathfrak{s} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}$, so $\dim(\mathfrak{s}) \leq \mathfrak{U}$ when $\kappa_H(u) \neq 0$.

<□> < => < => < => < =| < 0,000

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$\begin{array}{l} (*) \colon \boxed{[\mathfrak{s}_{i+1}, \mathfrak{g}_{-1}] \subset \mathfrak{s}_i} (i \geq -1) \quad \Rightarrow \quad \mathfrak{s} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-}, \mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}, \\ \text{so } \dim(\mathfrak{s}) \leq \mathfrak{U} \text{ when } \kappa_H(u) \neq 0. \\ \text{BUT: "Tanaka property" (*) isn't always true!} \end{array}$

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$$\begin{array}{l} (*): \ \boxed{[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i} \ (i \geq -1) \quad \Rightarrow \quad \mathfrak{s} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_-,\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}, \\ \text{so } \dim(\mathfrak{s}) \leq \mathfrak{U} \text{ when } \kappa_H(u) \neq 0. \\ & \text{BUT: "Tanaka property" (*) isn't always true!} \end{array}$$

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ●目目 ののの

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$$\begin{array}{l} (*): \ \boxed{[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i} \ (i \geq -1) \quad \Rightarrow \quad \mathfrak{s} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}, \\ \text{so } \dim(\mathfrak{s}) \leq \mathfrak{U} \text{ when } \kappa_H(u) \neq 0. \\ & \text{BUT: "Tanaka property" (*) isn't always true!} \end{array}$$

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

Proof outline.

(1) Prop: At regular points, (*) is true.

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$$\begin{array}{l} (*): \ \boxed{[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i} \ (i \geq -1) \quad \Rightarrow \quad \mathfrak{s} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}, \\ \text{so } \dim(\mathfrak{s}) \leq \mathfrak{U} \text{ when } \kappa_H(u) \neq 0. \\ & \text{BUT: "Tanaka property" (*) isn't always true!} \end{array}$$

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

Proof outline.

(1) Prop: At regular points, (*) is true.
(2) Lemma: The set of regular points is open and dense in *M*.

Čap–Neusser (2009):

- Fix any $u \in \mathcal{G}$. Then $\omega_u : \mathfrak{inf}(\mathcal{G}, \omega) \hookrightarrow \mathfrak{g}$ (linearly).
- Bracket on $\mathfrak{f} = \operatorname{im}(\omega_u)$ is $[X, Y]_{\mathfrak{f}} := [X, Y]_{\mathfrak{g}} \kappa_u(X, Y)$.
- Regularity: \mathfrak{f} is filtered, so $\mathfrak{s} = gr(\mathfrak{f}) \subset \mathfrak{g}$ is a graded subalg.
- $\mathfrak{s}_0 \subset \mathfrak{ann}(\kappa_H(u)).$

$$\begin{array}{l} (*): \ \boxed{[\mathfrak{s}_{i+1},\mathfrak{g}_{-1}] \subset \mathfrak{s}_i} \ (i \geq -1) \quad \Rightarrow \quad \mathfrak{s} \subset \operatorname{pr}_{\mathfrak{g}}(\mathfrak{g}_{-},\mathfrak{s}_0) \subset \mathfrak{a}^{\kappa_H(u)}, \\ \text{so } \dim(\mathfrak{s}) \leq \mathfrak{U} \text{ when } \kappa_H(u) \neq 0. \\ & \text{BUT: "Tanaka property" (*) isn't always true!} \end{array}$$

Definition

 $x \in M$ is a regular point iff $\forall i$, dim (\mathfrak{s}_i) is loc. constant near x.

Proof outline.

(1) Prop: At regular points, (*) is true.
 (2) Lemma: The set of regular points is open and dense in *M*.
 (3) Any nbd of a non-flat point contains a non-flat regular pt.

Define $\mathfrak{f} = \mathfrak{a} := \mathfrak{a}^{\phi_0}$ as *vector spaces*, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

(Kostant \rightsquigarrow *explicit* I.w. $\phi_0 \in \mathbb{V} \subset H^2 \cong \ker(\Box) \subset \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g}$.)

ヨト イヨト ヨヨ わらつ

Define $\mathfrak{f} = \mathfrak{a} := \mathfrak{a}^{\phi_0}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

(Kostant \rightsquigarrow *explicit* l.w. $\phi_0 \in \mathbb{V} \subset H^2 \cong \ker(\Box) \subset \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g}$.)

Q: Is this even a Lie algebra? Want $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$. "Output" of ϕ_0 is in the $w(-\lambda)$ root space, $w \in W^{\mathfrak{p}}(2)$, $\lambda = h.w.$ of \mathfrak{g} .

∃ ► ★ ∃ ► ■ = • • • • • •

Define $\mathfrak{f} = \mathfrak{a} := \mathfrak{a}^{\phi_0}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

(Kostant \rightsquigarrow *explicit* I.w. $\phi_0 \in \mathbb{V} \subset H^2 \cong \ker(\Box) \subset \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g}$.)

Q: Is this even a Lie algebra? Want $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$. "Output" of ϕ_0 is in the $w(-\lambda)$ root space, $w \in W^{\mathfrak{p}}(2)$, $\lambda = h.w.$ of \mathfrak{g} .

Proposition

If $w(-\lambda) \in \Delta^-$ above, then f is a filtered Lie algebra.

● > < = > < = > < = > < = > < ■

Define $\mathfrak{f} = \mathfrak{a} := \mathfrak{a}^{\phi_0}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

(Kostant \rightsquigarrow *explicit* I.w. $\phi_0 \in \mathbb{V} \subset H^2 \cong \ker(\Box) \subset \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g}$.)

Q: Is this even a Lie algebra? Want $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$. "Output" of ϕ_0 is in the $w(-\lambda)$ root space, $w \in W^{\mathfrak{p}}(2)$, $\lambda = h.w.$ of \mathfrak{g} .

Proposition

If $w(-\lambda) \in \Delta^-$ above, then f is a filtered Lie algebra.

Lemma

If
$$\mathfrak{g}$$
 is simple, $w \in W^{\mathfrak{p}}(2)$, and $w(-\lambda) \in \Delta^+$, then $\operatorname{rank}(\mathfrak{g}) = 2$.

▲帰▶ ▲臣▶ ▲臣▶ 臣旨 めぬゆ

Define $\mathfrak{f} = \mathfrak{a} := \mathfrak{a}^{\phi_0}$ as vector spaces, but with deformed bracket

$$[X,Y]_{\mathfrak{f}} := [X,Y]_{\mathfrak{a}} - \phi_0(X,Y).$$

(Kostant \rightsquigarrow *explicit* I.w. $\phi_0 \in \mathbb{V} \subset H^2 \cong \ker(\Box) \subset \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{g}$.)

Q: Is this even a Lie algebra? Want $\phi_0 \in \bigwedge^2 \mathfrak{g}_-^* \otimes \mathfrak{a}$. "Output" of ϕ_0 is in the $w(-\lambda)$ root space, $w \in W^{\mathfrak{p}}(2)$, $\lambda = h.w.$ of \mathfrak{g} .

Proposition

If $w(-\lambda) \in \Delta^-$ above, then \mathfrak{f} is a filtered Lie algebra.

Lemma

If
$$\mathfrak{g}$$
 is simple, $w \in W^{\mathfrak{p}}(2)$, and $w(-\lambda) \in \Delta^+$, then $\operatorname{rank}(\mathfrak{g}) = 2$.

Non-exceptions: $f/f^0 \rightsquigarrow$ non-flat model, $\dim(f) = \mathfrak{U}$, so $\mathfrak{S} = \mathfrak{U}$.

Have algorithm for constructing an explicit submax. sym. model.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

레이 소문이 소문이 문

= 2000

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$: trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

2 If $M(\phi)$ depends linearly on ϕ , then $rank(M(\phi))$ is a lower semi-cts function.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

- 2 If $M(\phi)$ depends linearly on ϕ , then $rank(M(\phi))$ is a lower semi-cts function.
- $\phi \mapsto \dim(\mathfrak{a}_k^{\phi})$ is upper semi-cts; it descends to $\mathbb{P}(\mathbb{V})$.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

- 2 If $M(\phi)$ depends linearly on ϕ , then $rank(M(\phi))$ is a lower semi-cts function.
- $\phi \mapsto \dim(\mathfrak{a}_k^{\phi})$ is upper semi-cts; it descends to $\mathbb{P}(\mathbb{V})$.
- **③** ∃! closed G_0 -orbit in $\mathbb{P}(\mathbb{V})$. ∴ $[\phi_0] \in$ closure of *every* G_0 -orbit.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

- If M(φ) depends linearly on φ, then rank(M(φ)) is a lower semi-cts function.
- **3** $\phi \mapsto \dim(\mathfrak{a}_k^{\phi})$ is upper semi-cts; it descends to $\mathbb{P}(\mathbb{V})$.
- **③** ∃! closed G_0 -orbit in $\mathbb{P}(\mathbb{V})$. ∴ $[\phi_0] \in$ closure of *every* G_0 -orbit.
- **5** Given $0 \neq \phi \in \mathbb{V}$, \exists seq. $\{g_n\}$ in G_0 s.t. $g_n \cdot [\phi] \rightarrow [\phi_0]$.

Work over \mathbb{C} . Let \mathbb{V} be a \mathfrak{g}_0 -irrep, and $\phi_0 \in \mathbb{V}$ an extremal vector.

Lemma (Extremal vectors win)

 $\dim(\mathfrak{a}_+^{\phi}) \leq \dim(\mathfrak{a}_+^{\phi_0}).$

Proof.

If $\mathfrak{g}_0^{ss} = 0$, then $\mathbb{V} = \mathbb{C}$. trivial. So suppose $\mathfrak{g}_0^{ss} \neq 0$.

$$a_k^{\phi} = pr_k(\mathfrak{g}_-,\mathfrak{ann}(\phi)) = \{ X \in \mathfrak{g}_k : \mathrm{ad}_{\mathfrak{g}_{-1}}^k(X) \cdot \phi = 0 \}.$$

- If M(φ) depends linearly on φ, then rank(M(φ)) is a lower semi-cts function.
- **3** $\phi \mapsto \dim(\mathfrak{a}_k^{\phi})$ is upper semi-cts; it descends to $\mathbb{P}(\mathbb{V})$.
- **③** ∃! closed G_0 -orbit in $\mathbb{P}(\mathbb{V})$. ∴ $[\phi_0] \in$ closure of *every* G_0 -orbit.
- **5** Given $0 \neq \phi \in \mathbb{V}$, \exists seq. $\{g_n\}$ in G_0 s.t. $g_n \cdot [\phi] \rightarrow [\phi_0]$.

By upper semi-continuity, $\dim(\mathfrak{a}_k^{\phi}) = \dim(\mathfrak{a}_k^{g_n \cdot \phi}) \leq \dim(\mathfrak{a}_k^{\phi_0}).$

•
$$\mathfrak{g} = \mathfrak{g}_{-} \oplus \widetilde{\mathfrak{g}_{0} \oplus \mathfrak{g}_{+}}, \text{ and } \mathfrak{g}_{0} = \mathcal{Z}(\mathfrak{g}_{0}) \oplus (\mathfrak{g}_{0})_{ss} \text{ with}$$

$$\begin{cases} \dim(\mathcal{Z}(\mathfrak{g}_{0})) = \# \text{ crosses}; \\ (\mathfrak{g}_{0})_{ss} \text{ D.D.} \to \text{remove crosses.} \end{cases}$$
Since dim(\mathfrak{g}_{-}) = dim(\mathfrak{g}_{-}), set \mathfrak{g}_{-} = dim(\mathfrak{g}_{-}) and dim(\mathfrak{g}_{-})

Since $\dim(\mathfrak{g}_{-}) = \dim(\mathfrak{g}_{+})$, get $n = \dim(\mathfrak{g}/\mathfrak{p})$ and $\dim(\mathfrak{p})$.

Example (G_2/P_1)

$$\not \longleftarrow \quad , \qquad \dim(\mathfrak{g}_0) = 4, \qquad n = 5.$$

Let $\mathbb{V} \subset H^2_+$ be a \mathfrak{g}_0 -irrep and $\phi_0 \in \mathbb{V}$ a l.w. vector.

$$\begin{array}{l} \textcircled{0} \dim(\mathfrak{ann}(\phi)) \leq \dim(\mathfrak{ann}(\phi_0)), \ \forall \phi \in \mathbb{V} \setminus \{0\}, \\ \mathfrak{q} := \{X \in (\mathfrak{g}_0)_{ss} \mid X \cdot \phi_0 = \lambda \phi_0\} \ \text{is parabolic, and} \end{array}$$

 $\dim(\mathfrak{ann}(\phi_0)) = (\# \mathsf{crosses}) - 1 + \dim(\mathfrak{q})$

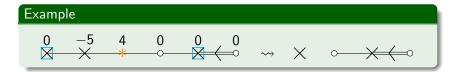
D.D. Notation: If $\neq 0$ on uncrossed node, put *.

Example (G_2/P_1) $H_+^2 = \overset{-8}{\checkmark} \overset{4}{\checkmark}$, $\dim(\mathfrak{ann}(\phi_0)) = 2.$

- ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ●目目 ののの

D.D. Notation: If 0 over $\times \rightsquigarrow$ put \Box .

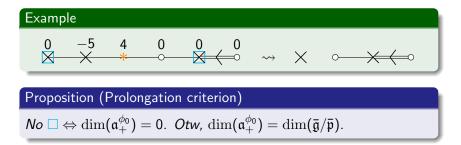
Semove all * and ×, except □ (also remove adj. edges). Then remove connected components w/o □. Obtain (ḡ, p̄).



▲母> ▲目> ▲目> 目目 のQQ

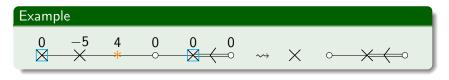
D.D. Notation: If 0 over $\times \rightsquigarrow$ put \Box .

Semove all * and ×, except □ (also remove adj. edges). Then remove connected components w/o □. Obtain (ḡ, p̄).



D.D. Notation: If 0 over $\times \rightsquigarrow$ put \Box .

Semove all * and ×, except □ (also remove adj. edges). Then remove connected components w/o □. Obtain (ḡ, p̄).



Proposition (Prolongation criterion)

$$No \square \Leftrightarrow \dim(\mathfrak{a}_+^{\phi_0}) = 0. \ Otw, \ \dim(\mathfrak{a}_+^{\phi_0}) = \dim(\overline{\mathfrak{g}}/\overline{\mathfrak{p}}).$$

Proposition (Maximal parabolics)

Single cross \Rightarrow no \Box , so $\mathfrak{a}_+^{\phi_0} = 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Example					
G/P	H^2_+ components	n	$\dim(\mathfrak{a}_0^{\phi_0})$	$\dim(\mathfrak{a}_+^{\phi_0})$	$\dim(\mathfrak{a}^{\phi_0})$
G_2/P_1	$\overset{-8}{\bigstar}^{4}$	5	2	0	7

Example					
G/P	H^2_+ components	n	$\dim(\mathfrak{a}_0^{\phi_0})$	$\dim(\mathfrak{a}_+^{\phi_0})$	$\dim(\mathfrak{a}^{\phi_0})$
G_2/P_1	_8 4 ★	5	2	0	7
$A_4/P_{1,2}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	6	1	14
	$\xrightarrow{-4} 1 1 1 1 \times $	7	6	0	13

Example					
G/P	H^2_+ components	n	$\dim(\mathfrak{a}_0^{\phi_0})$	$\dim(\mathfrak{a}_+^{\phi_0})$	$\dim(\mathfrak{a}^{\phi_0})$
G_2/P_1	$\overset{-8}{\bigstar}$	5	2	0	7
$A_4/P_{1,2}$	$ \overset{0 -4 3 1}{\times * *} $	7	6	1	14
	$\xrightarrow{-4}$ 1 1 1 1 \times \times \times \ast \ast	7	6	0	13
E_8/P_8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	57	90	0	147

Open questions:

• Non-split-real cases, e.g. CR geometry?

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

Open questions:

- Non-split-real cases, e.g. CR geometry?
- Classification of all submaximally symmetric models?

● > < 目 > < 目 > < 目 > < 目 > < 目

Open questions:

- Non-split-real cases, e.g. CR geometry?
- Classification of all submaximally symmetric models?
- Non-parabolic geometries, e.g. Higher order ODE (systems)? Kähler geometry?

● ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● の Q @

Open questions:

- Non-split-real cases, e.g. CR geometry?
- Classification of all submaximally symmetric models?
- Non-parabolic geometries, e.g. Higher order ODE (systems)? Kähler geometry?
- Dim of submax space of solns of almost-Einstein scales, Killing tensors, etc. (more generally, of BGG operators)?

▲帰▶ ▲臣▶ ▲臣▶ 臣旨 めぬゆ

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf\{\mathcal{G}, \omega\}$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf(\mathcal{G}, \omega)$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.

• Let $X = \omega_u(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_u(\eta) \in \mathfrak{g}^{-1}$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目目 のへで

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf(\mathcal{G}, \omega)$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{j+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.
1 Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}$.
• $0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi, \eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi, \eta])$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf(\mathcal{G}, \omega)$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.
1 Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}$.

•
$$0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi,\eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi,\eta]).$$

•
$$X \in \mathfrak{p} \Rightarrow \xi_u = (\zeta_X)_u$$
, where ζ_X is fund. vertical v.f

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf\{\mathcal{G}, \omega\}$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.
1 Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}$.
• $0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi, \eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi, \eta])$.
• $X \in \mathfrak{p} \Rightarrow \xi_{u} = (\zeta_{X})_{u}$, where ζ_{X} is fund. vertical v.f.
• $\omega(\eta)$ is *P*-equiv, so $\omega_{u}([\xi, \eta]) = -[X, Y] \in \mathfrak{g}^{i}$.

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf\{\mathcal{G}, \omega\}$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.
• Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}$.
• $0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi, \eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi, \eta])$.
• $X \in \mathfrak{p} \Rightarrow \xi_{u} = (\zeta_{X})_{u}$, where ζ_{X} is fund. vertical v.f.
• $\omega(\eta)$ is *P*-equiv, so $\omega_{u}([\xi, \eta]) = -[X, Y] \in \mathfrak{g}^{i}$.
• Have tower $\mathcal{G} = \mathcal{G}_{\nu} \to ... \to \mathcal{G}_{0} \to M$ with $\mathcal{G}_{i} = \mathcal{G}/P_{+}^{i+1} \xrightarrow{\pi_{i}} M$.

Then $\widetilde{\mathcal{S}}$ projects to $\mathcal{S}^{(i)} \subset \mathfrak{X}(\mathcal{G}_i)^{P/P_+^{i+1}}.$

< □ > < □ > < Ξ > < Ξ > < Ξ = < 0 < 0

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf\{\mathcal{G}, \omega\}$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.
• Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}$.
• $0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi, \eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi, \eta])$.
• $X \in \mathfrak{p} \Rightarrow \xi_{u} = (\zeta_{X})_{u}$, where ζ_{X} is fund. vertical v.f.
• $\omega(\eta)$ is *P*-equiv, so $\omega_{u}([\xi, \eta]) = -[X, Y] \in \mathfrak{g}^{i}$.
• Have tower $G = G_{u} \Rightarrow \cdots \Rightarrow G_{0} \Rightarrow M$ with $G_{u} = G/P^{i+1} \xrightarrow{\pi_{i}} M$

Have tower $\mathcal{G} = \mathcal{G}_{\nu} \to ... \to \mathcal{G}_0 \to M$ with $\mathcal{G}_i = \mathcal{G}/P_+^{i+1} \longrightarrow$ Then $\widetilde{\mathcal{S}}$ projects to $\mathcal{S}^{(i)} \subset \mathfrak{X}(\mathcal{G}_i)^{P/P_+^{i+1}}$.

• x regular pt $\Rightarrow S^{(i)}$ is constant rank (+ involutive). By Frobenius, \exists fcns $\{F_j\}$ on \mathcal{G}_i ; level sets foliate by int. submflds of $S^{(i)}$. Thus, $\xi^{(i)} \cdot F_j = 0$, $\forall \xi \in \widetilde{S}^{i+1}$.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf\{(\mathcal{G}, \omega), \widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\},\$
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j}).$ WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}, \quad \forall i \geq -1.$
• Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}.$
• $0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi, \eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi, \eta]).$
• $X \in \mathfrak{p} \Rightarrow \xi_{u} = (\zeta_{X})_{u},$ where ζ_{X} is fund. vertical v.f.
• $\omega(\eta)$ is *P*-equiv, so $\omega_{u}([\xi, \eta]) = -[X, Y] \in \mathfrak{g}^{i}.$

2 Have tower $\mathcal{G} = \mathcal{G}_{\nu} \to ... \to \mathcal{G}_{0} \to M$ with $\mathcal{G}_{i} = \mathcal{G}/P_{+}^{i+1} \xrightarrow{\pi_{i}} M$. Then $\widetilde{\mathcal{S}}$ projects to $\mathcal{S}^{(i)} \subset \mathfrak{X}(\mathcal{G}_{i})^{P/P_{+}^{i+1}}$.

- x regular pt ⇒ S⁽ⁱ⁾ is constant rank (+ involutive). By Frobenius, ∃ fcns {F_j} on G_i; level sets foliate by int. submflds of S⁽ⁱ⁾. Thus, ξ⁽ⁱ⁾ · F_j = 0, ∀ξ ∈ S̃ⁱ⁺¹.
- If $\xi \in \widetilde{\mathcal{S}}^{i+1}$ and $\eta \in \Gamma(T\mathcal{G})^P$, then $\forall u_i \in \pi_i^{-1}(x), \, \xi_{u_i}^{(i)} = 0$ and

$$[\xi^{(i)},\eta^{(i)}]_{u_i}\cdot F_j = 0 \quad \Rightarrow \quad [\xi,\eta]_u = \xi'_u + \chi_u \qquad (\dagger)$$

where $\xi' \in \widetilde{\mathcal{S}}$ and $\chi_u \in T_u^{i+1}\mathcal{G}$.

Let
$$u \in \pi^{-1}(x)$$
, $\widetilde{S} := \inf\{\mathcal{G}, \omega\}$, $\widetilde{S}^{j} := \{\xi \in \widetilde{S} \mid \omega_{u}(\xi) \in \mathfrak{g}^{j}\}$,
 $\mathfrak{f}^{j} := \omega_{u}(\widetilde{S}^{j})$. WTS: $[\mathfrak{f}^{i+1}, \mathfrak{g}^{-1}] \subset \mathfrak{f}^{i} + \mathfrak{g}^{i+1}$, $\forall i \geq -1$.
• Let $X = \omega_{u}(\xi) \in \mathfrak{f}^{i+1}$ and $Y = \omega_{u}(\eta) \in \mathfrak{g}^{-1}$.
• $0 = (\mathcal{L}_{\xi}\omega)(\eta) = d\omega(\xi, \eta) + d(\omega(\xi))(\eta) = \xi(\omega(\eta)) - \omega([\xi, \eta])$.
• $X \in \mathfrak{p} \Rightarrow \xi_{u} = (\zeta_{X})_{u}$, where ζ_{X} is fund. vertical v.f.
• $\omega(\eta)$ is *P*-equiv, so $\omega_{u}([\xi, \eta]) = -[X, Y] \in \mathfrak{g}^{i}$.

2 Have tower $\mathcal{G} = \mathcal{G}_{\nu} \to ... \to \mathcal{G}_{0} \to M$ with $\mathcal{G}_{i} = \mathcal{G}/P_{+}^{i+1} \xrightarrow{\pi_{i}} M$. Then $\widetilde{\mathcal{S}}$ projects to $\mathcal{S}^{(i)} \subset \mathfrak{X}(\mathcal{G}_{i})^{P/P_{+}^{i+1}}$.

- x regular pt $\Rightarrow S^{(i)}$ is constant rank (+ involutive). By Frobenius, \exists fcns $\{F_j\}$ on G_i ; level sets foliate by int. submflds of $S^{(i)}$. Thus, $\xi^{(i)} \cdot F_j = 0$, $\forall \xi \in \widetilde{S}^{i+1}$.
- If $\xi \in \widetilde{\mathcal{S}}^{i+1}$ and $\eta \in \Gamma(T\mathcal{G})^P$, then $\forall u_i \in \pi_i^{-1}(x), \, \xi_{u_i}^{(i)} = 0$ and

$$[\xi^{(i)},\eta^{(i)}]_{u_i}\cdot F_j = 0 \quad \Rightarrow \quad [\xi,\eta]_u = \xi'_u + \chi_u \qquad (\dagger)$$

where $\xi' \in \widetilde{\mathcal{S}}$ and $\chi_u \in T_u^{i+1}\mathcal{G}$.

Conclusion: $[X, Y] \in \mathfrak{f}^i + \mathfrak{g}^{i+1}$ by (†).