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The symmetry gap problem

For a given type of geometric structure,
what is the gap between maximal and
submaximal (infinitesimal) symmetry dimensions?
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For a given type of geometric structure,
what is the gap between maximal and
submaximal (infinitesimal) symmetry dimensions?

@ “Geometric structure” ~~ geometry
(Non-examples: symplectic, contact, ...)
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Example: Riemannian geometry

Example (Riemannian manifolds (M", g))
@ Symmetry X satisfies . (Linear PDE in X.)
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Example: Riemannian geometry

Example (Riemannian manifolds (M", g))
@ Symmetry X satisfies . (Linear PDE in X.)
e sym. dim. < (”erl). Max. on “flat” model R” = E(n)/O(n).
e Fubini (1903): (";1)—1 is not possible.

n ‘ max ‘ submax ‘ Citation
2 3 1 Darboux / Koenigs (~1890)
3 6 4 Wang (1947)
4 10 8 Egorov (1955)
>5 (n—;l) (g) + 1 | Wang (1947), Egorov (1949)

Dennis The Symmetry gaps for geometric structures 3/20



Parabolic geometries

. are Cartan geometries modelled on G/P, where
G: semisimple Lie group, P: parabolic subgroup.
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Parabolic geometries

. are Cartan geometries modelled on G/P, where
G: semisimple Lie group, P: parabolic subgroup.

Example

Conformal, projective, (2,3,5), CR, 2nd order ODE systems, ...
Riemannian, affine, Kahler, ...

Example (Parabolic subgroups — “block upper-triangular™)

G/P Hieroglyphic

Flag; 5(R®)
(SLs/P12)

(9,p) ~ Z-grading: g =g & p, where p = go B g
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Parabolic geometries

are Cartan geometries modelled on G/P, where
G: semisimple Lie group,

P: parabolic subgroup.

Conformal, projective, (2,3,5), CR, 2nd order ODE systems,

Riemannian, affine, Kahler,

G/P

Example (Parabolic subgroups — “block upper-triangular™)

Hieroglyphic
Flag, ,(R?)

(SLs/P12)

(g,p) ~ Z-grading:

g- ®p, where p =go D g+.

Dennis The Symmetry gaps for geometric structures

4/20



e Background
@ Results

@ Proof outlines
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A brief history of gaps

For parabolic geometries...
QO <2012
i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
(i) (2,3,5)-distributions (Cartan, 1910)
(iii) n-dim projective (Egorov, 1951)
(iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
)

(v) pairs of 2nd order ODE (Casey et al., 2012)

Dennis The Symmetry gaps for geometric structures 6/20



A brief history of gaps

For parabolic geometries...
QO <2012

i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)

(i) (2,3,5)-distributions (Cartan, 1910)

(iii) n-dim projective (Egorov, 1951)

(iv) scalar 3rd order ODE (Wafo Soh et al., 2002)

(v)

Q@ 2013:

(i) any complex or split-real G/P geometry + non-Riem./Lor.

conformal (Kruglikov & T.)
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A brief history of gaps

For parabolic geometries...
QO <2012

i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)

(i) (2,3,5)-distributions (Cartan, 1910)

(iii) n-dim projective (Egorov, 1951)

(iv) scalar 3rd order ODE (Wafo Soh et al., 2002)

(v)

Q@ 2013:

(i) any complex or split-real G/P geometry + non-Riem./Lor.

conformal (Kruglikov & T.)

pairs of 2nd order ODE (Casey et al., 2012)

@ algorithm for constructing a submax. sym. model

(ii) Riem./Lor. conformal (Doubrov & T.)

Moral: Can work upstairs, use representation theory.
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Example: (2,3, 5)-distributions

Let (M°, D) with D C TM rank 2, which is max. non-integrable.
Goursat (1896): Locally, D = Ds is spanned by

Xl:8X+pay+q8p+f(X7y7p7q7z)aZ7 X2:8Q'

This is (2,3,5) iff fgq # 0. Studied by Cartan (1910) in his famous
5-variables paper.
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Example: (2,3, 5)-distributions

Let (M°, D) with D C TM rank 2, which is max. non-integrable.
Goursat (1896): Locally, D = Ds is spanned by

Xl:8X+pay+q8p+f(X7y7p7q7z)aZ7 X2:8Q'

This is (2,3,5) iff fgq # 0. Studied by Cartan (1910) in his famous
5-variables paper.

‘ max
dim 14 :
model qu
(G2/Py)

Fundamental invariant: binary quartic, i.e. [((* D*).
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Harmonic curvature

Theorem (Cap-Schichl, Tanaka, Morimoto)

G /P geometries

regular, normal
“
(G = M,w)

underlying
structures on M
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Harmonic curvature

Theorem (Cap-Schichl, Tanaka, Morimoto)

G /P geometries

regular, normal
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Fundamental invariant: kH G — H2(g-,9).
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Harmonic curvature

Theorem (Cap-Schichl, Tanaka, Morimoto)

G /P geometries

(G = M,w)

regular, normal
<~
{structures on M

underlying }

Fundamental invariant: kH G — H2(g-,9).

(G — M,w) is locally flat iff Ky = 0.

Examples (Harmonic curvature)

@ conformal geometry: Weyl (n > 4) or Cotton (n = 3);
e (2,3,5)-distributions: binary quartic.
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Harmonic curvature

Theorem (Cap-Schichl, Tanaka, Morimoto)

regular, normal nderlvin
G /P geometries p <> { u Ving }

structures on M
(G — M,w)

Fundamental invariant: kH G — H2(g-,9).

(G — M,w) is locally flat iff Ky = 0.

Examples (Harmonic curvature)

@ conformal geometry: Weyl (n > 4) or Cotton (n = 3);
e (2,3,5)-distributions: binary quartic.

The (locally) flat model is the unique max. sym. model. .-. Want:

S = max{dim(inf(G,w)) | ky Z 0}.
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Enter Kostant...

p
—— .~
(9,p) »g=9-®gDgs. Have(g_) =gy.
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Enter Kostant...

b
—— .~
(9,p) »g=9-®gDgs. Have(g_) =gy.
Curvature k of (G — M, w) takes values in:
N(a/p) ® g
I
N(g-) @g

l1e

No:©g
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Enter Kostant...

p
(0.0)~g=0-®@bgr. Have (5_)" =gy
Curvature k of (G — M, w) takes values in:

N/p) ©g
112
S
1%

*

o* 0
e 40— /\29+ ® g <—
Kostant (1961) Laplacian: ‘D = 00" + 0%0
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Enter Kostant...
f—fh
(9,p) »g=9-®gDgs. Have(g_) =gy.
Curvature k of (G — M, w) takes values in:
NG ET:
112
9 * 0
= Ny eg 5
1%

*

e Nayog &
Kostant (1961) Laplacian: ‘D = 00" + 8*8‘
ker(8*)
~ /\2(9_)* ® g = im(0*) @ ker(O) & im(0), ker(0) = H?(g_, g)
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Kostant's Bott—Borel-Weil theorem

Kostant (1961), Baston—Eastwood (1989): Dynkin diagram
algorithm to calculate H?(g_, g) as a go-module.
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Kostant's Bott—Borel-Weil theorem

Kostant (1961), Baston—Eastwood (1989): Dynkin diagram
algorithm to calculate H?(g_, g) as a go-module.

Example ((2, 3, 5)-distributions: Gp/P; geometry)
As a go = glr(R) module,

H3(g—,9) = % ®R2

i.e. binary quartic, c.f. Cartan (1910).
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Tanaka prolongation

f—fa
(g9,p) > g=9-DgoD g+
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Tanaka prolongation

f—fH
(g9,p) > g=9-DgoD g+

Given [ao C go the of ag in g:

pro(9—,a0) = g— S ag @ ay
a;={Xeg|[X,9-1] Ca;_1} (I>1).
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Tanaka prolongation

f—fa
(g9,p) > g=9-DgoD g+

Given [ao C go the of ag in g:

Prg(G—, ag) =g- Dapday
a;={Xeg|[X,9-1] Ca;_1} (I>1).

Given 0 # ¢ € H?, interested in ap = ann(¢). Let

Theorem (Kruglikov, T. (2013))

Let (G — M,w) be any regular, normal G/P geometry. Then
dim(inf(G,w)) < dim(a*#(¥)), Yu in some open dense subset of G.
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Tanaka prolongation

f—fa
(g9,p) > g=9-DgoD g+

Given [ao C go the of ag in g:

Prg(G—, ag) =g- Dapday
a;={Xeg|[X,9-1] Ca;_1} (I>1).

Given 0 # ¢ € H?, interested in ap = ann(¢). Let

Theorem (Kruglikov, T. (2013))

Let (G — M,w) be any regular, normal G/P geometry. Then
dim(inf(G,w)) < dim(a*#(¥)), Yu in some open dense subset of G.

K-T. (2014, in prep.): This holds Vu € G.
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New results (Kruglikov—T., 2013)

Fix (G, P). Define U4 := max{dim(a®) | 0 # ¢ € H3(g—,9)}.
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New results (Kruglikov—T., 2013)
Fix (G, P). Define U4 := max{dim(a®) | 0 # ¢ € H3(g—,9)}.

Theorem (Universal upper bound)
S < U < dim(g).

Theorem (Local realizability)

If G/P is , then & = $1 almost always.
Exception list when G is simple: Ay/P1, A2/P12, By/Pi.

Theorem (Computability)
IfG/P is , can read 34 from a Dynkin diagram!

Proposition (Extremal vectors win)
Over C, if V is a go-irrep, ¢o € V is extremal, then V¢ € V\{0},

dim(ann(¢)) < dim(ann(¢g)), dim(a®) < dim(a®).
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S < U proof outline

Cap—Neusser (2009):

Fix any u € G. Then w, : inf(G,w) < g (linearly).

Bracket on § = im(w,) is [X, Y]; := [X, Y]g — wu(X, Y).
Regularity: f is filtered, so s = gr(f) C g is a graded subalg.
so C ann(ky(u)).
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S < U proof outline

Cap—Neusser (2009):
Fix any u € G. Then w, : inf(G,w) < g (linearly).

°
@ Bracket on § = im(w,) is [X, Y]j := [X, Y]g — cu(X, Y).

@ Regularity: fis filtered, so s = gr(f) C g is a graded subalg.
e 59 C ann(ky(u)).

(%): ’ ‘(i >-1) = sC prg(g_,go) c arn(v),
so dim(s) < U when rky(u) # 0.
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Fix any u € G. Then w, : inf(G,w) < g (linearly).

°
@ Bracket on § = im(w,) is [X, Y]j := [X, Y]g — cu(X, Y).

@ Regularity: fis filtered, so s = gr(f) C g is a graded subalg.
e 59 C ann(ky(u)).

(+): | [(i>-1) = sCpry(s—,s0) Canl¥),

so dim(s) < 4 when ky(u) # 0.
BUT: “Tanaka property” (x) isn't always true!
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Fix any v € G. Then w, : inf(G,w) < g (linearly).

Bracket on § = im(w,) is [X, Y]; := [X, Y]g — wu(X, Y).
Regularity: f is filtered, so s = gr(f) C g is a graded subalg.
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Cap—Neusser (2009):

Fix any v € G. Then w, : inf(G,w) < g (linearly).

Bracket on § = im(w,) is [X, Y]; := [X, Y]g — wu(X, Y).
Regularity: f is filtered, so s = gr(f) C g is a graded subalg.
so C ann(ky(u)).

(+): | [(i>-1) = sCpry(s—,s0) Canl¥),

so dim(s) < 4 when ky(u) # 0.
BUT: “Tanaka property” (x) isn't always true!

Definition
x € M is a regular point iff Vi, dim(s;) is loc. constant near x.

Proof outline.
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S < U proof outline

Cap—Neusser (2009):

Fix any u € G. Then w, : inf(G,w) < g (linearly).

Bracket on § = im(w,) is [X, Y]; := [X, Y]g — wu(X, Y).
Regularity: f is filtered, so s = gr(f) C g is a graded subalg.
so C ann(ky(u)).

(*): ’ ‘(i >-1) = sCopry(g-,s0)C arn(u)

so dim(s) < 4 when ky(u) # 0.
BUT: “Tanaka property” (x) isn't always true!

Definition
x € M is a regular point iff Vi, dim(s;) is loc. constant near x.

Proof outline.

(1) Prop: At regular points, (%) is true.
(2) Lemma: The set of regular points is open and dense in M.
(3) Any nbd of a non-flat point contains a non-flat regular pt. [
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Realizability: proof outline

Define f = a := a% as vector spaces, but with deformed bracket
[X, Y] = [X, Y]a — ¢0o(X, Y).

(Kostant ~ explicit l.w. ¢ € V. C H2 = ker(0) € A’ g* ® g.)
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Define f = a := a% as vector spaces, but with deformed bracket
[X, Y] = [X, Y]a — ¢0o(X, Y).
(Kostant ~ explicit l.w. ¢g € V C H?> = ker(0) ¢ A®¢* ®g.)

Q: Is this even a Lie algebra? Want ¢ € /\2 g° ® a. "Output” of
¢o is in the w(—X\) root space, w € WP(2), A = h.w. of g.
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(Kostant ~ explicit l.w. ¢ € V. C H2 = ker(0) € A’ g* ® g.)

Q: Is this even a Lie algebra? Want ¢ € /\2 g° ® a. "Output” of
¢o is in the w(—X\) root space, w € WP(2), A = h.w. of g.
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Realizability: proof outline
Define § = a := a% as vector spaces, but with deformed bracket
(X, Y= [X, Y]a = do(X, Y).
(Kostant ~ explicit l.w. ¢ € V. C H2 = ker(0) € A’ g* ® g.)

Q: Is this even a Lie algebra? Want ¢ € /\2 g° ® a. "Output” of
¢o is in the w(—X\) root space, w € WP(2), A = h.w. of g.

Proposition
If w(—\) € A~ above, then § is a filtered Lie algebra.

If g is simple, w € W*(2), and w(—)\) € AT, then rank(g) = 2.
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Realizability: proof outline
Define § = a := a% as vector spaces, but with deformed bracket
(X, Y= [X, Y]a = do(X, Y).
(Kostant ~ explicit l.w. ¢ € V. C H2 = ker(0) € A’ g* ® g.)

Q: Is this even a Lie algebra? Want ¢ € /\2 g° ® a. "Output” of
¢o is in the w(—X\) root space, w € WP(2), A = h.w. of g.

Proposition
If w(—\) € A~ above, then § is a filtered Lie algebra.

If g is simple, w € W*(2), and w(—)\) € AT, then rank(g) = 2.

Non-exceptions: §/f° ~+ non-flat model, dim(f) = 4, so & = 4l.

| |
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Extremal vectors win

Work over C. Let V be a go-irrep, and ¢g € V an extremal vector.

Lemma (Extremal vectors win)

dim(a%) < dim(a?).
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Work over C. Let V be a go-irrep, and ¢g € V an extremal vector.

Lemma (Extremal vectors win)

dim(a%) < dim(a?).

If g =0, then V= C -, trivial. So suppose gg° # 0.
Q af = pri(g—, ann(¢)) = {X € gi : adf_,(X) - ¢ = 0}.
@ If M(¢) depends linearly on ¢, then rank(M(¢)) is a lower
semi-cts function.

Q@ ¢o— dim(af) is upper semi-cts; it descends to P(V).
Q 3! closed Gp-orbit in P(V). .. [¢o] € closure of every Gp-orbit.
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If g =0, then V= C -, trivial. So suppose gg° # 0.
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Work over C. Let V be a go-irrep, and ¢g € V an extremal vector.

Lemma (Extremal vectors win)

dim(a%) < dim(a?).

If g =0, then V= C -, trivial. So suppose gg° # 0.
Q af = pri(g—, ann(¢)) = {X € gi : adf_,(X) - ¢ = 0}.
@ If M(¢) depends linearly on ¢, then rank(M(¢)) is a lower
semi-cts function.

Q@ ¢o— dim(af) is upper semi-cts; it descends to P(V).
Q 3! closed Gp-orbit in P(V). .. [¢o] € closure of every Gp-orbit.
O Given 0 £ ¢ €V, Iseq. {gn} in Gy s.t. g [0d] = [¢o]-

By upper semi-continuity, dim(a{) = dim(a8”?) < dim(af?).  [J

Dennis The Symmetry gaps for geometric structures 15/20



Dynkin diagram recipes - 1

p
e e .
Q@ g=9 ®go® gy, and go = Z(go) ® (g0)ss With

Since dim(g_) = dim(g4 ), get n = dim(g/p) and dim(p).

Example (G2/P1)
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Dynkin diagram recipes - 2

Let V C Her be a go-irrep and ¢g € V a l.w. vector.

@ dim(ann(¢)) < dim(ann(¢o)), Vo € V\{0},
q:={X €(g0)ss | X o = Ao} is parabolic, and

| |

D.D. Notation: If # 0 on uncrossed node, put

Example (G/P1)

H? = Y=t dim(ann(¢g)) = 2.

Dennis The Symmetry gaps for geometric structures 17/20



Dynkin diagram recipes - 3

D.D. Notation: If 0 over x ~» put [.

© Remove all + and x, except [ (also remove adj. edges).
Then remove connected components w/o . Obtain (g, p).
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Dynkin diagram recipes - 3

D.D. Notation: If 0 over x ~» put [.

© Remove all + and x, except [ (also remove adj. edges).
Then remove connected components w/o . Obtain (g, p).

Proposition (Prolongation criterion)

No [l & dim(afo) = 0. Otw, dim(af_o) = dim(g/p).

Proposition (Maximal parabolics)

g $o _
Single cross = no [, so a?® = 0.
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Examples

G/P H2 components n  dim(ag?) dim(a?°) | dim(a%°)
8 4
G/Py == 5 2 0 7
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Examples

G/P H2 components n  dim(ag?) dim(a?°) | dim(a%°)
-8 4
G/P: == 5 2 0 7
0o -4 3 1
Ag/Pry | DK 7 6 1 14
—4 1 1 1
7 6 0 13
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Examples

G/P H2 components n  dim(ag?) dim(a?°) | dim(a%°)
-8 4
G/ Py 5 2 0 7
0 —4 3 1
Ai/Pip | D& 7 6 1 14
—4 1 1 1
7 6 0 13
Es/Ps | —s——5+t 25 |57 90 0 147
0
Dennis The Symmetry gaps for geometric structures
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Conclusion

Summary: Gave a soln to the gap problem for complex or split-real
G /P geometries.

Open questions:
@ Non-split-real cases, e.g. CR geometry?
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Conclusion

Summary: Gave a soln to the gap problem for complex or split-real
G /P geometries.
Open questions:

@ Non-split-real cases, e.g. CR geometry?

o Classification of all submaximally symmetric models?

@ Non-parabolic geometries, e.g. Higher order ODE (systems)?
Kahler geometry?

@ Dim of submax space of solns of almost-Einstein scales,
Killing tensors, etc. (more generally, of BGG operators)?
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Appendix: The Tanaka property

Let v € 77 1(x), S == inf(G,w), & :={ € S | wy(€) € ¢},
= w,(&). WTS:
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o X €p= & = (Cx)u, where (x is fund. vertical v.f.
o w(n) is P-equiv, so w,([¢,7]) = —[X, Y] € ¢
@ Have tower G =G, — ... = Gg — M with G; = g/prrl iy M.
Then S projects to S0 ¢ x(G;)P/P.
o x regular pt = SU) is constant rank (+ involutive). By

Frobenius, 3 fcns {F;} on Gj; level sets foliate by int. submflds
of SO). Thus, <) F; =0, V¢ € ST

o If ¢ €8 and i € [(TG)P, then Vu; € w7 (x), £ = 0 and
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o w(n) is P-equiv, so w,([¢,7]) = —[X, Y] € ¢
@ Have tower G =G, — ... = Gg — M with G; = g/prrl iy M.
Then S projects to S0 ¢ x(G;)P/P.
o x regular pt = SU) is constant rank (+ involutive). By

Frobenius, 3 fcns {F;} on Gj; level sets foliate by int. submflds
of SO). Thus, <) F; =0, V¢ € ST

o If ¢ €8 and i € [(TG)P, then Vu; € w7 (x), £ = 0 and
DN, F=0 = [Enu=&+xa (1)
where ¢ € S and x, € Tit1G.
[X, Y] e f +g™ by (). O
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