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The symmetry gap problem

For a given type of geometric structure,
what is the gap between maximal and

submaximal (infinitesimal) symmetry dimensions?

“Geometric structure”  Cartan geometry
(Non-examples: symplectic, contact, ...)
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Example: Riemannian geometry

Example (Riemannian manifolds (Mn, g))

Symmetry X satisfies LXg = 0. (Linear PDE in X .)

sym. dim. ≤
(n+1

2

)
. Max. on “flat” model Rn ∼= E(n)/O(n).

Fubini (1903):
(n+1

2

)
-1 is not possible.

n max submax Citation

2 3 1 Darboux / Koenigs (∼1890)

3 6 4 Wang (1947)

4 10 8 Egorov (1955)

≥ 5
(n+1

2

) (n
2

)
+ 1 Wang (1947), Egorov (1949)
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Parabolic geometries

... are Cartan geometries modelled on G/P, where
G : semisimple Lie group, P: parabolic subgroup.

Example

Conformal, projective, (2, 3, 5), CR, 2nd order ODE systems, ...
Cartan, but not parabolic: Riemannian, affine, Kähler, ...

Example (Parabolic subgroups – “block upper-triangular”)

G/P P Hieroglyphic

Flag1,2(R5)
(SL5/P1,2)

(g, p) Z-grading: g = g− ⊕ p, where p = g0 ⊕ g+.
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A brief history of gaps

For parabolic geometries...
1 ≤ 2012:

(i) 2-d projective & scalar 2nd order ODE (Tresse, 1896)
(ii) (2, 3, 5)-distributions (Cartan, 1910)
(iii) n-dim projective (Egorov, 1951)
(iv) scalar 3rd order ODE (Wafo Soh et al., 2002)
(v) pairs of 2nd order ODE (Casey et al., 2012)

2 2013:
(i) any complex or split-real G/P geometry + non-Riem./Lor.

conformal (Kruglikov & T.)

No additional assumptions such as transitivity, or curvature
type being locally constant, etc.
algorithm for constructing a submax. sym. model

(ii) Riem./Lor. conformal (Doubrov & T.)

Moral: Can work upstairs, use representation theory.
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Example: (2, 3, 5)-distributions

Let (M5,D) with D ⊂ TM rank 2, which is max. non-integrable.

Goursat (1896): Locally, D = Df is spanned by

X1 = ∂x + p∂y + q∂p + f (x , y , p, q, z)∂z , X2 = ∂q.

This is (2, 3, 5) iff fqq 6= 0. Studied by Cartan (1910) in his famous
5-variables paper.

max submax

dim 14 7
model Dq2 Dq3

(G2/P1)

Fundamental invariant: binary quartic, i.e. Γ(
⊙4 D∗).
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Harmonic curvature

Theorem (Čap–Schichl, Tanaka, Morimoto) regular, normal
G/P geometries

(G → M, ω)

↔
{

underlying
structures on M

}

Fundamental invariant: harmonic curvature κH : G → H2
+(g−, g).

(G → M, ω) is locally flat iff κH = 0.

Examples (Harmonic curvature)

conformal geometry: Weyl (n ≥ 4) or Cotton (n = 3);

(2, 3, 5)-distributions: binary quartic.

The (locally) flat model is the unique max. sym. model. ∴ Want:

S := max{dim(inf(G, ω)) | κH 6≡ 0}.
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Enter Kostant...

(g, p) g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+. Have (g−)∗ ∼= g+.

Curvature κ of (G → M, ω) takes values in:∧
2(g/p)∗ ⊗ g

∼=

· · · ∂−→

∧
2(g−)∗ ⊗ g

∂−→ · · ·

∼=

· · · ∂∗←−

∧
2g+ ⊗ g

∂∗←− · · ·

Kostant (1961) Laplacian: � = ∂∂∗ + ∂∗∂

 
∧

2(g−)∗ ⊗ g =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

, ker(�) ∼= H2(g−, g)

cohomology!
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Kostant’s Bott–Borel–Weil theorem

Kostant (1961), Baston–Eastwood (1989): Dynkin diagram
algorithm to calculate H2

+(g−, g) as a g0-module.

Example ((2, 3, 5)-distributions: G2/P1 geometry)

As a g0 = gl2(R) module,

H2
+(g−, g) =

−8 4
=
⊙4

(R2)∗,

i.e. binary quartic, c.f. Cartan (1910).
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Tanaka prolongation

(g, p) g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+.

Given a0 ⊂ g0 , the Tanaka prolongation of a0 in g:

prg(g−, a0) = g− ⊕ a0 ⊕ a+

ai = {X ∈ gi | [X , g−1] ⊂ ai−1} (i ≥ 1).

Given 0 6= φ ∈ H2
+, interested in a0 = ann(φ). Let

aφ := prg(g−, ann(φ)).

Theorem (Kruglikov, T. (2013))

Let (G → M, ω) be any regular, normal G/P geometry. Then
dim(inf(G, ω)) ≤ dim(aκH(u)), ∀u in some open dense subset of G.

K-T. (2014, in prep.): This holds ∀u ∈ G.
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New results (Kruglikov–T., 2013)

Fix (G ,P). Define U := max{dim(aφ) | 0 6= φ ∈ H2
+(g−, g)}.

Theorem (Universal upper bound)

S ≤ U < dim(g).

Theorem (Local realizability)

If G/P is complex or split-real, then S = U almost always.
Exception list when G is simple: A2/P1, A2/P1,2, B2/P1.

Theorem (Computability)

If G/P is complex or split-real, can read U from a Dynkin diagram!

Proposition (Extremal vectors win)

Over C, if V is a g0-irrep, φ0 ∈ V is extremal, then ∀φ ∈ V\{0},

dim(ann(φ)) ≤ dim(ann(φ0)), dim(aφ) ≤ dim(aφ0).
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S ≤ U: proof outline

Čap–Neusser (2009):

Fix any u ∈ G. Then ωu : inf(G, ω) ↪→ g (linearly).
Bracket on f = im(ωu) is [X ,Y ]f := [X ,Y ]g − κu(X ,Y ).
Regularity: f is filtered, so s = gr(f) ⊂ g is a graded subalg.
s0 ⊂ ann(κH(u)).

(∗): [si+1, g−1] ⊂ si (i ≥ −1) ⇒ s⊂ prg(g−, s0) ⊂ aκH(u),

so dim(s) ≤ U when κH(u) 6= 0.
BUT: “Tanaka property” (∗) isn’t always true!

Definition

x ∈ M is a regular point iff ∀i , dim(si ) is loc. constant near x.

Proof outline.

(1) Prop: At regular points, (∗) is true.
(2) Lemma: The set of regular points is open and dense in M.
(3) Any nbd of a non-flat point contains a non-flat regular pt.
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Čap–Neusser (2009):

Fix any u ∈ G. Then ωu : inf(G, ω) ↪→ g (linearly).
Bracket on f = im(ωu) is [X ,Y ]f := [X ,Y ]g − κu(X ,Y ).
Regularity: f is filtered, so s = gr(f) ⊂ g is a graded subalg.
s0 ⊂ ann(κH(u)).

(∗): [si+1, g−1] ⊂ si (i ≥ −1) ⇒ s⊂ prg(g−, s0) ⊂ aκH(u),

so dim(s) ≤ U when κH(u) 6= 0.
BUT: “Tanaka property” (∗) isn’t always true!

Definition

x ∈ M is a regular point iff ∀i , dim(si ) is loc. constant near x.

Proof outline.

(1) Prop: At regular points, (∗) is true.
(2) Lemma: The set of regular points is open and dense in M.

(3) Any nbd of a non-flat point contains a non-flat regular pt.

Dennis The Symmetry gaps for geometric structures 13/20



S ≤ U: proof outline
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Realizability: proof outline

Define f = a := aφ0 as vector spaces, but with deformed bracket

[X ,Y ]f := [X ,Y ]a − φ0(X ,Y ).

(Kostant  explicit l.w. φ0 ∈ V ⊂ H2 ∼= ker(�) ⊂
∧2 g∗− ⊗ g.)

Q: Is this even a Lie algebra? Want φ0 ∈
∧2 g∗− ⊗ a. “Output” of

φ0 is in the w(−λ) root space, w ∈W p(2), λ = h.w. of g.

Proposition

If w(−λ) ∈ ∆− above, then f is a filtered Lie algebra.

Lemma

If g is simple, w ∈W p(2), and w(−λ) ∈ ∆+, then rank(g) = 2.

Non-exceptions: f/f0  non-flat model, dim(f) = U, so S = U.

Have algorithm for constructing an explicit submax. sym. model.
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Extremal vectors win

Work over C. Let V be a g0-irrep, and φ0 ∈ V an extremal vector.

Lemma (Extremal vectors win)

dim(aφ+) ≤ dim(aφ0+ ).

Proof.

If gss0 = 0, then V = C ∴ trivial. So suppose gss0 6= 0.

1 aφk = prk(g−, ann(φ)) = {X ∈ gk : adkg−1
(X ) · φ = 0}.

2 If M(φ) depends linearly on φ, then rank(M(φ)) is a lower
semi-cts function.

3 φ 7→ dim(aφk ) is upper semi-cts; it descends to P(V).

4 ∃! closed G0-orbit in P(V). ∴ [φ0] ∈ closure of every G0-orbit.

5 Given 0 6= φ ∈ V, ∃ seq. {gn} in G0 s.t. gn · [φ]→ [φ0].

By upper semi-continuity, dim(aφk ) = dim(agn·φk ) ≤ dim(aφ0k ).
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Dynkin diagram recipes - 1

1 g = g− ⊕
p︷ ︸︸ ︷

g0 ⊕ g+, and g0 = Z(g0)⊕ (g0)ss with{
dim(Z(g0)) = # crosses;
(g0)ss D.D.→ remove crosses.

Since dim(g−) = dim(g+), get n = dim(g/p) and dim(p).

Example (G2/P1)

, dim(g0) = 4, n = 5.
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Dynkin diagram recipes - 2

Let V ⊂ H2
+ be a g0-irrep and φ0 ∈ V a l.w. vector.

2 dim(ann(φ)) ≤ dim(ann(φ0)), ∀φ ∈ V\{0},
q := {X ∈ (g0)ss | X · φ0 = λφ0} is parabolic, and

dim(ann(φ0)) = (#crosses)− 1 + dim(q)

D.D. Notation: If 6= 0 on uncrossed node, put ∗.

Example (G2/P1)

H2
+ =

−8
∗4 , dim(ann(φ0)) = 2.
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Dynkin diagram recipes - 3

D.D. Notation: If 0 over ×  put �.

3 Remove all ∗ and ×, except � (also remove adj. edges).
Then remove connected components w/o �. Obtain (ḡ, p̄).

Example

0 −5
∗4 0 0 0

 

Proposition (Prolongation criterion)

No �⇔ dim(aφ0+ ) = 0. Otw, dim(aφ0+ ) = dim(ḡ/p̄).

Proposition (Maximal parabolics)

Single cross ⇒ no �, so aφ0+ = 0.
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Proposition (Maximal parabolics)

Single cross ⇒ no �, so aφ0+ = 0.

Dennis The Symmetry gaps for geometric structures 18/20



Dynkin diagram recipes - 3

D.D. Notation: If 0 over ×  put �.

3 Remove all ∗ and ×, except � (also remove adj. edges).
Then remove connected components w/o �. Obtain (ḡ, p̄).
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Examples

Example

G/P H2
+ components n dim(aφ0

0 ) dim(aφ0
+ ) dim(aφ0)

G2/P1

−8
∗
4

5 2 0 7

A4/P1,2

0 −4
∗
3
∗
1

7 6 1 14

−4 1
∗
1
∗
1

7 6 0 13

E8/P8
0

0

0 0 0 ∗1 ∗1 −4
57 90 0 147
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Conclusion

Summary: Gave a soln to the gap problem for complex or split-real
G/P geometries.

Open questions:

Non-split-real cases, e.g. CR geometry?

Classification of all submaximally symmetric models?

Non-parabolic geometries, e.g. Higher order ODE (systems)?
Kähler geometry?

Dim of submax space of solns of almost-Einstein scales,
Killing tensors, etc. (more generally, of BGG operators)?
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Appendix: The Tanaka property

Let u ∈ π−1(x), S̃ := inf(G, ω), S̃ j := {ξ ∈ S̃ | ωu(ξ) ∈ gj},
fj := ωu(S̃ j). WTS: [fi+1, g−1] ⊂ fi + gi+1, ∀i ≥ −1.

1 Let X = ωu(ξ) ∈ fi+1 and Y = ωu(η) ∈ g−1.

0 = (Lξω)(η) = dω(ξ, η) + d(ω(ξ))(η) = ξ(ω(η))− ω([ξ, η]).
X ∈ p⇒ ξu = (ζX )u, where ζX is fund. vertical v.f.
ω(η) is P-equiv, so ωu([ξ, η]) = −[X ,Y ] ∈ gi .

2 Have tower G = Gν → ...→ G0 → M with Gi = G/P i+1
+

πi−→ M.

Then S̃ projects to S(i) ⊂ X(Gi )P/P
i+1
+ .

x regular pt ⇒ S(i) is constant rank (+ involutive). By
Frobenius, ∃ fcns {Fj} on Gi ; level sets foliate by int. submflds

of S(i). Thus, ξ(i) · Fj = 0, ∀ξ ∈ S̃ i+1.

If ξ ∈ S̃ i+1 and η ∈ Γ(TG)P , then ∀ui ∈ π−1i (x), ξ
(i)
ui = 0 and

[ξ(i), η(i)]ui · Fj = 0 ⇒ [ξ, η]u = ξ′u + χu (†)

where ξ′ ∈ S̃ and χu ∈ T i+1
u G.

Conclusion: [X ,Y ] ∈ fi + gi+1 by (†).
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