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Euclidean geometry (à la Klein)
The Euclidean group E(2) consists of all symmetries
(isometries) of (R2, g0). These are compositions of:

translations rotations reflections

R2 ∼= E(2)/O(2)

x 7→ {T : T sends 0 to x}
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Riemannian geometry
(Mn, g): inner product gx = 〈·, ·〉x on each tangent space TxM .

A symmetry is a diffeo. ϕ : M →M which preserves g:

〈dϕ(X), dϕ(Y )〉ϕ(x) = 〈X,Y 〉x, ∀X,Y ∈ TxM.

N.B. Can have Riemannian manifolds with no symmetries at all.
Thus, a symmetry group is not always present.

Example
g = (x+ y2)(dx2 + dy2) has only discrete symmetries.

BUT, a group is always present:

O(n) acts on the orthonormal frames in each TxM .

 bundle of orthonormal frames Fon(M)→M .
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Cartan geometry

Klein
geometry

(G→ G/H,ωMC)
 

Cartan
geometry

(G →M,ω)

↑ ↑

Euclidean
geometry
(Rn, g0)

 
Riemannian

geometry
(Mn, g)
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Parabolic geometries
Q: Which G/H yield interesting geometric structures?

A huge class of interesting structures come from G/P , where
• G: semisimple Lie group
• P : parabolic subgroup

Their curved versions are called parabolic geometries.

Example (Parabolic subgroups – “block upper-triangular”)
In G = SL4, we have for example,

P

( ∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

) ( ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

) ( ∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

)

Diagram

G/P P3 Gr2(R4) F1,2(R4)
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A zoo of geometries

Example
G/P Curved geometry

· · · projective structure

· · · 2nd order ODE system

· · · conformal structure - odd dim

· · · conformal structure - even dim

· · · CR structure
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Some natural questions

Q: When is a geometry flat?
Q: How can we compute curvature?
Q: How can we classify geometric structures?
Q: Relationships between different geometries?

Example

F1,2(R3)

P2

Curved version?

Q: Which 2nd order ODE are geodesic
equations for some connection?
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Example 1: 2nd order ODE
Consider

y′′ = f(x, y, y′) up to (x, y) 7→ (x̃(x, y), ỹ(x, y)).

(induce dỹ
dx̃ = ỹx+ỹyy′

x̃x+x̃yy′ , etc.)

Symmetries of y′′ = 0 :

x̃ =
a21 + a22x+ a23y

a11 + a12x+ a13y
, ỹ =

a31 + a32x+ a33y

a11 + a12x+ a13y
.

with det(aij) 6= 0. Get G = PGL3 (or SL3 instead).

G acts transitively in (x, y, y′)-space. Stabilizer at (0, 0, 0):

B =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 ⊂ SL3.
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dx̃ = ỹx+ỹyy′
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2nd order ODE... DG style

Use (p, q) in place of (y′, y′′). In (x, y, p, q)-space, have a
hypersurface Σ given by q = f(x, y, p).

On Σ,
1 have two lines L1, L2 in TΣ:

L1 = 〈∂x + p∂y + f∂p〉, L2 = 〈∂p〉.

2 [L1, L2] = TΣ.
These properties define a geometric structure:

D = L1 ⊕ L2 ⊂ TΣ
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Hieroglyphics
sl(3,R) = 3× 3 trace-free matrices; bracket [a, b] = ab− ba.

sl(3,R)

(
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

)
  

b

(
∗ ∗ ∗
0 ∗ ∗
0 0 ∗

)
 

L1

L2

⊕
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A flag manifold
Let ` be a line, Π a plane. Then

F1,2(R3) := {(`,Π) : ` ⊂ Π}.

Let ` = e1 and Π = {e1, e2}. Then

Stab(`,Π) =

∗ ∗ ∗0 ∗ ∗
0 0 ∗

 = B.

2nd order ODE geometry is a curved version of:
• y′′ = 0, or
• F1,2(R3), or
• SL(3,R)/B.
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Example 2: (2, 3, 5)-geometry
Example (Two balls rolling - no twisting, no slipping)

• Configuration space M is 5-dimensional.
• No twisting or slipping⇒ constraints on velocity space TM .

Get rank 2 distribution D ⊂ TM of allowable directions.

Let ρ ≥ 1 be the ratio of the radii.
If ρ 6= 1, get (2, 3, 5)-geometry.

• ρ 6= 3: SO(3)× SO(3) symmetry
• ρ = 3: g2 symmetry

(Bryant, Zelenko, Bor–Montgomery,
Baez–Huerta)

• G2 = split real form of 14-dim
exceptional simple Lie group.
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G2

p ⊂ g2

G2 = Aut. grp of the split-octonions O′. On V = Im(O′), ∃
G2-inv. sig. (3, 4) scalar product 〈·, ·〉. The space of null lines is:

Q5 = {[x] ∈ P(V) : 〈x, x〉 = 0}.

(2, 3, 5)-geometry is a curved version of:
• two balls in 3:1 ratio rolling w/o slipping or twisting, or
• Q5 ⊂ P(Im(O′)), or
• G2/P .
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Symmetry gaps

Q: What is the gap between maximal and submaximal
symmetry dimensions?

Structure max submax Citation
2nd order ODE 8 3 Lie / Tresse (∼1890)

(2, 3, 5)-geometry 14 7 Cartan (1910)
n-dim. projective n2 + 2n (n− 1)2 + 4 Egorov (1951)

2013: Classified symmetry gaps for all (complex / split-real)
parabolic geometries (Kruglikov & T.)
 algebraic story, Dynkin diagram algorithm!
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Curvature
Q: When is a geometry (locally) flat?
Q: How can we tell if two geometric structures are different?

For Cartan geometries, have curvature κ. For parabolic
geometries, have harmonic curvature κH .

(G →M,ω) is locally flat iff κH = 0.

Examples (Harmonic curvature)

• conformal geometry: Weyl (n ≥ 4) or Cotton (n = 3);
 Penrose–Petrov classification in 4-dim Lorentzian case

• (2, 3, 5)-distributions: binary quartic;
• 2nd order ODE: two (scalar) relative invariants

These are all instances of Lie algebra cohomology!
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Why “harmonic”?
Full curvature κ of (G →M,ω) takes values in:∧

2(g/p)∗ ⊗ g

∼=

· · · ∂−→
∧

2(g−)∗ ⊗ g
∂−→ · · ·

∼=

· · · ∂∗←−
∧

2g+ ⊗ g
∂∗←− · · ·

Kostant Laplacian: � = ∂∂∗ + ∂∗∂

 C2(g−, g) =

ker(∂∗)︷ ︸︸ ︷
im(∂∗)⊕ ker(�)⊕ im(∂)︸ ︷︷ ︸

ker(∂)

, ker(�) ∼= H2(g−, g)

cohomology!

Kostant’s BBW thm simple recipe to compute H2(g−, g).
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