Symmetry and geometric structures

Dennis The

Mathematical Sciences Institute Australian National University

AMSI Summer School talk Jan. 23, 2014

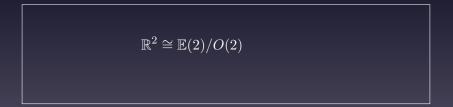
Euclidean geometry (à la Klein)

The Euclidean group $\mathbb{E}(2)$ consists of all symmetries (isometries) of (\mathbb{R}^2, g_0) . These are compositions of:

translations rotations reflections

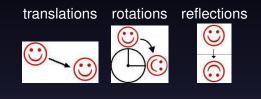
Euclidean geometry (à la Klein)

The Euclidean group $\mathbb{E}(2)$ consists of all symmetries (isometries) of (\mathbb{R}^2, g_0) . These are compositions of:



Euclidean geometry (à la Klein)

The Euclidean group $\mathbb{E}(2)$ consists of all symmetries (isometries) of (\mathbb{R}^2, g_0) . These are compositions of:



$$\mathbb{R}^2 \cong \mathbb{E}(2)/O(2)$$
$$x \mapsto \{T : T \text{ sends } 0 \text{ to } x\}$$

 (M^n,g) : inner product $g_x = \langle \cdot, \cdot \rangle_x$ on each tangent space $T_x M$.

 (M^n,g) : inner product $g_x = \langle \cdot, \cdot \rangle_x$ on each tangent space $T_x M$.

A symmetry is a diffeo. $\varphi: M \to M$ which preserves g:

 $\langle d\varphi(X), d\varphi(Y) \rangle_{\varphi(x)} = \langle X, Y \rangle_x, \quad \forall X, Y \in T_x M.$

N.B. Can have Riemannian manifolds with no symmetries at all. Thus, a symmetry group is not always present.

Example

 $g = (x + y^2)(dx^2 + dy^2)$ has only discrete symmetries.

 (M^n,g) : inner product $g_x = \langle \cdot, \cdot \rangle_x$ on each tangent space $T_x M$.

A symmetry is a diffeo. $\varphi: M \to M$ which preserves g:

 $\langle d\varphi(X), d\varphi(Y) \rangle_{\varphi(x)} = \langle X, Y \rangle_x, \quad \forall X, Y \in T_x M.$

N.B. Can have Riemannian manifolds with no symmetries at all. Thus, a symmetry group is not always present.

Example

 $g = (x + y^2)(dx^2 + dy^2)$ has only discrete symmetries.

BUT, a group *is* always present:

O(n) acts on the orthonormal frames in each $T_x M$.

 (M^n,g) : inner product $g_x = \langle \cdot, \cdot \rangle_x$ on each tangent space $T_x M$.

A symmetry is a diffeo. $\varphi: M \to M$ which preserves g:

 $\langle d\varphi(X), d\varphi(Y) \rangle_{\varphi(x)} = \langle X, Y \rangle_x, \quad \forall X, Y \in T_x M.$

N.B. Can have Riemannian manifolds with no symmetries at all. Thus, a symmetry group is not always present.

Example

 $g = (x + y^2)(dx^2 + dy^2)$ has only discrete symmetries.

BUT, a group *is* always present:

O(n) acts on the orthonormal frames in each $T_x M$.

 \rightsquigarrow bundle of orthonormal frames $\mathcal{F}_{on}(M) \rightarrow M$.

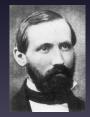
Cartan geometry

Klein geometry $(G \rightarrow G/H, \omega_{MC})$

Cartan geometry $(\mathcal{G} \rightarrow M, \omega)$

Euclidean geometry (\mathbb{R}^n, g_0)

 \rightarrow



Riemannian geometry (M^n, g)

Q: Which G/H yield interesting geometric structures?

Q: Which G/H yield interesting geometric structures?

A huge class of interesting structures come from G/P, where

- G: semisimple Lie group
- *P*: parabolic subgroup

Their curved versions are called parabolic geometries.

Q: Which G/H yield interesting geometric structures?

A huge class of interesting structures come from G/P, where

- G: semisimple Lie group
- P: parabolic subgroup

Their curved versions are called parabolic geometries.

Example (Parabolic subgroups – "block upper-triangular") In $G = SL_4$, we have for example,

Q: Which G/H yield interesting geometric structures?

A huge class of interesting structures come from G/P, where

- G: semisimple Lie group
- *P*: parabolic subgroup

Their curved versions are called parabolic geometries.

Example (Parabolic subgroups – "block upper-triangular") In $G = SL_4$, we have for example,

Q: Which G/H yield interesting geometric structures?

A huge class of interesting structures come from G/P, where

- G: semisimple Lie group
- *P*: parabolic subgroup

Their curved versions are called parabolic geometries.

Example (Parabolic subgroups – "block upper-triangular") In $G = SL_4$, we have for example,



A zoo of geometries

Example

Curved geometry projective structure 2nd order ODE system conformal structure - odd dim

conformal structure - even dim

CR structure

Some natural questions

- Q: When is a geometry flat?
- Q: How can we compute curvature?
- Q: How can we classify geometric structures?
- Q: Relationships between different geometries?

Some natural questions

- Q: When is a geometry flat?
- Q: How can we compute curvature?
- Q: How can we classify geometric structures?
- Q: Relationships between different geometries?

Example

Some natural questions

- Q: When is a geometry flat?
- Q: How can we compute curvature?
- Q: How can we classify geometric structures?
- Q: Relationships between different geometries?

Example

Curved version?

Q: Which 2nd order ODE are geodesic equations for some connection?

Consider

y'' = f(x, y, y') up to $(x, y) \mapsto (\tilde{x}(x, y), \tilde{y}(x, y)).$ (induce $\frac{d\tilde{y}}{d\tilde{x}} = \frac{\tilde{y}_x + \tilde{y}_y y'}{\tilde{x}_x + \tilde{x}_y y'}$, etc.)

Consider

$$y'' = f(x, y, y') \quad \text{up to} \quad (x, y) \mapsto (\tilde{x}(x, y), \tilde{y}(x, y)).$$

nduce $\frac{d\tilde{y}}{d\tilde{x}} = \frac{\tilde{y}_x + \tilde{y}_y y'}{\tilde{x}_x + \tilde{x}_y y'}$, etc.) Symmetries of $y'' = 0$:
 $\tilde{x} = \frac{a_{21} + a_{22}x + a_{23}y}{a_{11} + a_{12}x + a_{13}y}, \quad \tilde{y} = \frac{a_{31} + a_{32}x + a_{33}y}{a_{11} + a_{12}x + a_{13}y}.$

with $det(a_{ij}) \neq 0$. Get $G = PGL_3$ (or SL_3 instead).

Consider

y'' = f(x, y, y') up to $(x, y) \mapsto (\tilde{x}(x, y), \tilde{y}(x, y)).$ (induce $\frac{d\tilde{y}}{d\tilde{x}} = \frac{\tilde{y}_x + \tilde{y}_y y'}{\tilde{x}_x + \tilde{x}_y y'}$, etc.) Symmetries of y'' = 0:

$$\tilde{x} = \frac{a_{21} + a_{22}x + a_{23}y}{a_{11} + a_{12}x + a_{13}y}, \quad \tilde{y} = \frac{a_{31} + a_{32}x + a_{33}y}{a_{11} + a_{12}x + a_{13}y}$$

with $det(a_{ij}) \neq 0$. Get $G = PGL_3$ (or SL_3 instead).

G acts transitively in (x, y, y')-space.

Consider

 $y'' = f(x,y,y') \quad \text{up to} \quad (x,y) \mapsto (\tilde{x}(x,y),\tilde{y}(x,y)).$

(induce $\frac{d\tilde{y}}{d\tilde{x}} = \frac{\tilde{y}_x + \tilde{y}_y y'}{\tilde{x}_x + \tilde{x}_y y'}$, etc.) Symmetries of y'' = 0:

$$\tilde{x} = \frac{a_{21} + a_{22}x + a_{23}y}{a_{11} + a_{12}x + a_{13}y}, \quad \tilde{y} = \frac{a_{31} + a_{32}x + a_{33}y}{a_{11} + a_{12}x + a_{13}y}$$

with $det(a_{ij}) \neq 0$. Get $G = PGL_3$ (or SL_3 instead).

G acts transitively in (x, y, y')-space. Stabilizer at (0, 0, 0):

$$B = \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & 0 & * \end{pmatrix} \subset SL_3.$$

2nd order ODE... DG style

Use (p,q) in place of (y',y''). In (x, y, p, q)-space, have a hypersurface Σ given by q = f(x, y, p).

2nd order ODE... DG style

Use (p,q) in place of (y',y''). In (x, y, p, q)-space, have a hypersurface Σ given by q = f(x, y, p). On Σ ,

1 have two lines L_1, L_2 in $T\Sigma$:

$$L_1 = \langle \partial_x + p \partial_y + f \partial_p \rangle, \qquad L_2 = \langle \partial_p \rangle.$$

2nd order ODE... DG style

Use (p,q) in place of (y',y''). In (x, y, p, q)-space, have a hypersurface Σ given by q = f(x, y, p). On Σ ,

1 have two lines L_1, L_2 in $T\Sigma$:

$$L_1 = \langle \partial_x + p \partial_y + f \partial_p \rangle, \qquad L_2 = \langle \partial_p \rangle.$$

2 $[L_1, L_2] = T\Sigma.$

Use (p,q) in place of (y',y''). In (x, y, p, q)-space, have a hypersurface Σ given by q = f(x, y, p). On Σ ,

1 have two lines L_1, L_2 in $T\Sigma$:

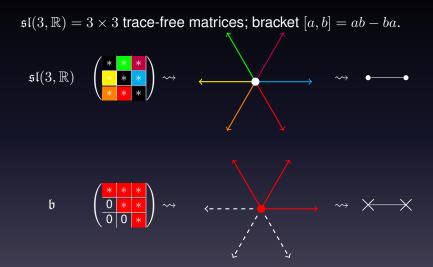
$$L_1 = \langle \partial_x + p \partial_y + f \partial_p \rangle, \qquad L_2 = \langle \partial_p \rangle.$$

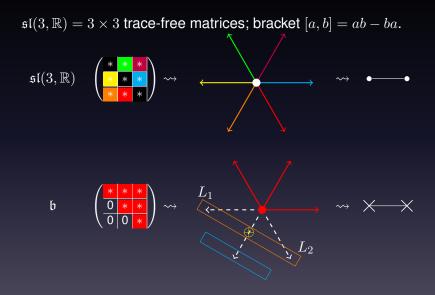
2 $[L_1, L_2] = T\Sigma.$

These properties define a geometric structure:

$$D = L_1 \oplus L_2 \subset T\Sigma$$

 $\mathfrak{sl}(3,\mathbb{R}) = 3 \times 3$ trace-free matrices; bracket [a,b] = ab - ba.





A flag manifold

Let ℓ be a line, Π a plane. Then

 $F_{1,2}(\mathbb{R}^3) := \{(\ell, \Pi) : \ell \subset \Pi\}.$

Let $\ell = e_1$ and $\Pi = \{e_1, e_2\}$. Then

$$Stab_{(\ell,\Pi)} = egin{pmatrix} * & * & * \ 0 & * & * \ 0 & 0 & * \end{pmatrix} = B.$$

A flag manifold

Let ℓ be a line, Π a plane. Then

 $F_{1,2}(\mathbb{R}^3) := \{(\ell, \Pi) : \ell \subset \Pi\}.$

Let $\ell = e_1$ and $\Pi = \{e_1, e_2\}$. Then

$$Stab_{(\ell,\Pi)} = egin{pmatrix} * & * & * \ 0 & * & * \ 0 & 0 & * \end{pmatrix} = B.$$

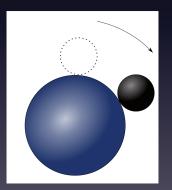
2nd order ODE geometry is a curved version of:

- y'' = 0, or
- $F_{1,2}(\mathbb{R}^3)$, or
- $SL(3,\mathbb{R})/B$.

Example 2: (2, 3, 5)-geometry

Example (Two balls rolling - no twisting, no slipping)

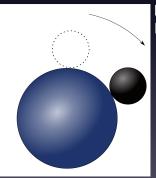
- Configuration space M is 5-dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset TM$ of allowable directions.



Example 2: (2, 3, 5)-geometry

Example (Two balls rolling - no twisting, no slipping)

- Configuration space M is 5-dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset TM$ of allowable directions.

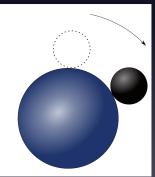


Let $\rho \ge 1$ be the ratio of the radii. If $\rho \ne 1$, get (2, 3, 5)-geometry. $\rho \ne 3$: SO(3) × SO(3) symmetry

Example 2: (2, 3, 5)-geometry

Example (Two balls rolling - no twisting, no slipping)

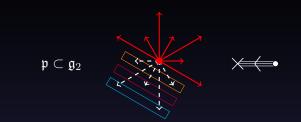
- Configuration space M is 5-dimensional.
- No twisting or slipping \Rightarrow constraints on velocity space TM. Get rank 2 distribution $D \subset TM$ of allowable directions.

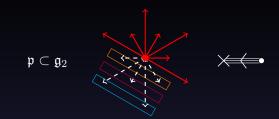


Let $\rho \ge 1$ be the ratio of the radii. If $\rho \ne 1$, get (2, 3, 5)-geometry.

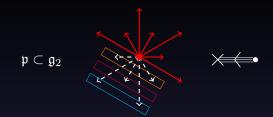
- $\rho \neq 3$: SO(3) × SO(3) symmetry
- ho = 3: g₂ symmetry (Bryant, Zelenko, Bor–Montgomery, Baez–Huerta)
- G_2 = split real form of 14-dim exceptional simple Lie group.

 G_2





 G_2 = Aut. grp of the *split*-octonions \mathbb{O}' . On $\mathbb{V} = \mathfrak{Im}(\mathbb{O}')$, $\exists G_2$ -inv. sig. (3,4) scalar product $\langle \cdot, \cdot \rangle$. The space of *null lines* is: $\mathcal{Q}^5 = \{ [x] \in \mathbb{P}(\mathbb{V}) : \langle x, x \rangle = 0 \}.$



 G_2 = Aut. grp of the *split*-octonions \mathbb{O}' . On $\mathbb{V} = \mathfrak{Im}(\mathbb{O}')$, $\exists G_2$ -inv. sig. (3,4) scalar product $\langle \cdot, \cdot \rangle$. The space of *null lines* is: $\mathcal{Q}^5 = \{ [x] \in \mathbb{P}(\mathbb{V}) : \langle x, x \rangle = 0 \}.$

(2,3,5)-geometry is a curved version of:

- two balls in 3:1 ratio rolling w/o slipping or twisting, or
- $\mathcal{Q}^5 \subset \mathbb{P}(\mathfrak{Im}(\mathbb{O}'))$, or
- G_2/P .

Symmetry gaps

Q: What is the gap between maximal and submaximal symmetry dimensions?

Structure	max	submax	Citation
2nd order ODE	8	3	Lie / Tresse (~1890)
(2,3,5)-geometry	14	7	Cartan (1910)
<i>n</i> -dim. projective	$n^2 + 2n$	$(n-1)^2 + 4$	Egorov (1951)

Symmetry gaps

Q: What is the gap between maximal and submaximal symmetry dimensions?

Structure	max	submax	Citation
2nd order ODE	8	3	Lie / Tresse (~1890)
(2,3,5)-geometry	14	7	Cartan (1910)
<i>n</i> -dim. projective	$n^2 + 2n$	$(n-1)^2 + 4$	Egorov (1951)

2013: Classified symmetry gaps for all (complex / split-real) parabolic geometries (Kruglikov & T.)

→ algebraic story, Dynkin diagram algorithm!

Q: When is a geometry (locally) flat?

Q: How can we tell if two geometric structures are different?

Q: When is a geometry (locally) flat?

Q: How can we tell if two geometric structures are different?

For Cartan geometries, have curvature κ . For parabolic geometries, have harmonic curvature κ_H .

 $(\mathcal{G} \to M, \omega)$ is locally flat iff $\kappa_H = 0$.

Q: When is a geometry (locally) flat?

Q: How can we tell if two geometric structures are different?

For Cartan geometries, have curvature κ . For parabolic geometries, have harmonic curvature κ_H .

 $(\mathcal{G} \to M, \omega)$ is locally flat iff $\kappa_H = 0$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3); \sim Penrose–Petrov classification in 4-dim Lorentzian case
- (2,3,5)-distributions: binary quartic;
- 2nd order ODE: two (scalar) relative invariants

Q: When is a geometry (locally) flat?

Q: How can we tell if two geometric structures are different?

For Cartan geometries, have curvature κ . For parabolic geometries, have harmonic curvature κ_H .

 $(\mathcal{G} \to M, \omega)$ is locally flat iff $\kappa_H = 0$.

Examples (Harmonic curvature)

- conformal geometry: Weyl $(n \ge 4)$ or Cotton (n = 3); \sim Penrose–Petrov classification in 4-dim Lorentzian case
- (2,3,5)-distributions: binary quartic;
- 2nd order ODE: two (scalar) relative invariants

These are all instances of Lie algebra cohomology!

Full curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in:

 $\bigwedge^2 (\mathfrak{g}/\mathfrak{p})^* \otimes \mathfrak{g}$

Full curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in:

$$igwedge^2(\mathfrak{g}/\mathfrak{p})^*\otimes\mathfrak{g}$$

 \mathbb{R}
 $igwedge^2(\mathfrak{g}_-)^*\otimes\mathfrak{g}$
 \mathbb{R}
 $igwedge^2\mathfrak{g}_+\otimes\mathfrak{g}$

Full curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in:

Dennis The Symmetry and geometric structures 16/16

Full curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in:

Full curvature κ of $(\mathcal{G} \to M, \omega)$ takes values in:

