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Abstract

By studying a negative gradient flow of certain Hessian functionals we establish
the existence of critical points of the functionals and consequently the existence
of ground states to a class of nonhomogenous Hessian equations. To achieve
this we derive uniform, first- and second-order a priori estimates for the elliptic
and parabolic Hessian equations. Our results generalize well-known results for
semilinear elliptic equations and the Monge-Ampère equation.c© 2001 John
Wiley & Sons, Inc.

1 Introduction

In this paper we study the Dirichlet problem of thek-Hessian equation (k =
1,2, . . . ,n)

(1.1)

{
Sk(D2u) = ψ(x,u) in �

u = 0 on∂� ,

where� is a bounded domain inRn andψ(x,u) is a nonnegative function in
�×R. HereSk(D2u) is thek-Hessian operator ofu. Recall that it is defined in the
following way: Letλ = (λ1, λ2, . . . , λn) be the eigenvalues of the Hessian matrix
of u, D2u, and letSk(λ) be thekth elementary symmetric function ofλ. Then
Sk(D2u) = Sk(λ(D2u)). Alternatively, it can be written as the sum of thek × k
principal minors ofD2u.

To work in the realm of elliptic operators, one has to restrict the class of func-
tions and domains. Following [4], a functionu in C2(�) ∩ C0(�) is called ak-
admissible function ifλ(D2u(x)), x ∈ �, belongs to the symmetric cone given by

0k = {λ ∈ R
n : Sj (λ) > 0, j = 1,2, . . . k} .

Note that0k always contains the positive cone0n = {λ ∈ R
n : λ1, . . . , λn > 0}.

Thek-Hessian operator is elliptic at anyk-admissibleu, i.e.,{
Si j

k (D
2u)
} ≡

{
∂

∂ri j
Sk(D

2u)

}
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is positive definite. On the other hand, a hypersurface inR
n is k-convex (re-

spectively, strictlyk-convex) fork ∈ {1,2, . . . ,n − 1} if its principal curvatures
κ = (κ1, κ2, . . . , κn−1) satisfySk(κ) ≥ 0 (respectively,Sk(κ) ≥ δ0 > 0 for some
δ0) everywhere on the hypersurface. It is shown in [4] that whenever (1.1) admits
a classical solution inC2(�), it is necessary that∂�, regarded as a hypersurface in
R

n, be strictly(k − 1)-convex.
From now on we shall always assume� is strictly (k − 1)–convex and look for

k-admissible solutions in (1.1). Notice that ak-admissible solution is subharmonic
and, by the maximum principle, is negative in�. This, in particular, means that
the value ofψ(x, z) for z> 0 is irrelevant in solving (1.1).

The Hessian equations (1.1) constitute an important class of fully nonlinear el-
liptic equations. It is semilinear whenk = 1 and of Monge-Ampère type when
k = n. General fully nonlinear elliptic equations have been studied by many
authors including [2, 4, 9, 10, 13, 18, 19, 27]. A priori global estimates for the
solutions can be found in [4, 9] whereψ is nondegenerate (i.e.,ψ ≥ ψ0 > 0) and
in [13] for the degenerate case (i.e.,ψ ≥ 0). The regularity result was extended
to Hessian quotient equations in [19]. With the a priori estimates at hand, one can
derive existence and uniqueness results by using the method of continuity. A basic
assumption for which the method works is thatψ must be monotone increasing
in z.

In many situations the monotonicity condition is not satisfied andψ(x,0) =
0. In this case (1.1) always admits the trivial solutionu ≡ 0. However, one
is interested in looking for nonzero solutions that do not change sign in�, i.e.,
ground states. Let’s look at the semilinear case

(1.2)

{
−1u = ψ(x,u) in �

u = 0 on∂� .

The search for ground states was motivated by applications in physics and ge-
ometry. Nowadays there is a rich spectrum of results concerning the ground states
for (1.2); see, for instance, [3, 5, 15]. Among them a fundamental and influential
result is the following theorem of Ambrosetti and Rabinowitz [1]:

THEOREM 1.1 Suppose thatψ ∈ C0,1(�× R) satisfies

lim
z→0

ψ(x, z)

z
< λ1 , lim

z→+∞
ψ(x, z)

z
> λ1 , lim

z→+∞
ψ(x, z)

z(n+2)/(n−2)
= 0 ,

uniformly in�, and there exists a constantθ ∈ (0, 1
2) such that∫ z

0
ψ(x, s)ds ≤ θzψ(x, z)

for large z. Then(1.2)has a positive solution.

Hereλ1 is the first Dirichlet eigenvalue for the Laplacian operator. When ap-
plied to the special caseψ = |u|p−1u, it shows that a positive solution exists if
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1< p < n+2
n−2. On the other hand, the well-known Pohozaev’s identity implies that

no positive solution can exist whenp ≥ n+1
n−2 and� is star-shaped.

In this paper we develop a variational theory for (1.1). Our main result is a full
generalization of Ambrosetti-Rabinowitz’s result to other Hessian equations.

THEOREM 1.2 Consider(1.1) whereψ ∈ C1,1(�× R−) and� is of class C3,1.
Suppose thatψ(x, z) > 0 for z< 0 and satisfies

lim
z→0−

ψ(x, z)

|z|k < λ1 ,(1.3)

lim
z→−∞

ψ(x, z)

|z|k > λ1 ,(1.4)

and

(1.5)

limz→−∞ ψ(x,z)
|z|k∗−1 = 0 if k < n

2

limz→−∞ ψ(x,z)
|z|p = 0 if k = n

2

for some large p> 0 uniformly in�, and there exist constantsθ > 0 and large M
such that when z< −M,

(1.6)
∫ 0

z
ψ(x, s)ds ≤ 1 − θ

k + 1
|z|ψ(x, z) .

Then(1.1) has a nontrivial k-admissible solution in C3,α(�) ∩ C0,1(�) for some
α ∈ (0,1).
Herek∗ is the critical exponent for thek-Hessian operator,

k∗


= n(k+1)

n−2k if 2k < n

< ∞ if 2k = n

= ∞ if 2k > n .

(Nevertheless, our recent studies show that one should takek∗ = n(k+1)/(n−2k)
when 2k > n in some other cases.) Moreover,λ1 is the “first eigenvalue” for the
k-Hessian operator. Actually, it was proven in [28] that for eachk there exists a
uniqueλ1 > 0 such that the problem{

Sk(D2u) = λ1|u|k in �

u = 0 on∂�

admits an admissible solution that is unique up to multiplication by a positive num-
ber.

The condition (1.4), which corresponds to the superlinear case in (1.2), will
also be referred to as the superlinear case. Under (1.6), it is equivalent to

lim
z→−∞

ψ(x, z)

|z|k = ∞ .
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We may also consider the sublinear case, that is,

(1.7) lim
z→−∞

ψ(x, z)

|z|k < λ1

uniformly on�. The following theorem, which is easier to prove than Theorem 1.2,
covers the sublinear case.

THEOREM 1.3 Consider(1.1) whereψ ∈ C(�× R−) ∩ C1,1(� × R
−) and� is

of class C3,1. Suppose thatψ(x, z) > 0 for z< 0 and satisfies(1.7)and

(1.8) lim
z→0−

ψ(x, z)

|z|k > λ1

uniformly on�. Then(1.1) has a nontrivial k-admissible solution in C3,α(�) ∩
C(�) for someα ∈ (0,1).

In particular, Theorems 1.3 and 1.2 apply to

ψ(x, z) = |z|p , p ∈ (0, k) and(k, k∗ − 1), respectively.

Special cases of Theorems 1.2 and 1.3 were established in [25, 28] fork = n and
in [6] for generalk in the radial case.

Our proof of these theorems explores the variational structure of the problem
[26]. First of all, we have (see, e.g., [17])

(1.9)
∑

j

∂

∂xj
(Si j (D2u)) = 0 for eachj = 1,2, . . . , n,

(we have dropped the subscriptk in Si j
k (D

2u)). Hence

Sk(D
2u) = 1

k

∑
ui j Si j (D2u) = 1

k

∑ ∂

∂xj
(ui S

i j (D2u)) .

Denote by8k
0 = 8k

0(�) the collection of all admissible functions vanishing on the
boundary∂�. We introduce the functional

Ek(u) = −
∫
�

uSk(D
2u)dx = 1

k

∫
�

Si j (D2u)ui uj dx , u ∈ 8k
0 .

SinceSi j (D2u) is positive definite, we haveEk(u) ≥ 0 for anyu ∈ 8k
0. Setting

‖u‖8k
0
= [Ek(u)]1/(k+1) , u ∈ 8k

0 ,

‖ · ‖8k
0

is a norm in8k
0 [29]. Using (1.9) it is easy to see that the Euler-Lagrange

equation of the functional

J(u) = −1

k + 1

∫
�

uSk(D
2u)dx −

∫
�

9(x,u)dx

where

9(x, z) =
∫ 0

z
ψ(x, s)ds
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is precisely (1.1).
The critical exponentk∗ for the Hessian operator was first determined in [26].

In fact, similar to the semilinear elliptic equation (1.2) we have a corresponding
Pohozaev’s identity which shows that (1.1) does not admit admissible solutions if
� is star-shaped andψ = |u|p, p > k∗ − 1, or more generally,ψ satisfies

n9(x, z)− n − 2k

k + 1
zψ(x, z)+ xi9i (x, z) > 0 in�× R .

It is clear that one needs to establish a Sobolev-type inequality for the Hessian
operator in the study of the existence theory. The Sobolev inequality was proven
in [24] in the convex category. Its full version was subsequently established in
[20, 29]. Following the latter, we state the following:

THEOREM 1.4 (Hessian Sobolev Inequality)Let� be a(k − 1)-convex domain
with C2 boundary and let u∈ 8k

0(�).

(i) For 1 ≤ k < n
2 ,

‖u‖L p(�) ≤ C‖u‖8k
0
, ∀p ∈ [1, k∗] ,

where C depends only on n, k, p, and|�|.
(ii) For k = n

2 ,
‖u‖L∗

9(�)
≤ C‖u‖8k

0
,

where C depends only on n anddiam�, 9(t) = et (n+2)/n − 1, and L∗
9(�)

is the Orlicz space associated with9.
(iii) For n

2 < k ≤ n,
‖u‖L∞(�) ≤ C‖u‖8k

0
,

where C depends on n, k, and�.

We note that in (i), the best constantC is attained when� = R
n by the function

u(x) = (1 + |x|2)(2k−n)/2k

at the critical casep = k∗. Incidentally, we point out that further integral estimates
can be found in [22, 23]. For instance, it is shown that foru ∈ 8k

0,

(1.10) ‖u‖W1,p(�′) ≤ C‖u‖L1(�)

for any p < nk/(n − k) and�′ b �, whereC depends only onn, k, p, and
dist(�′, ∂�). In particular, any admissible function is locally Hölder-continuous
whenk > n/2. In [22] we also proved a Poincaré-type inequality for admissible
functions. A special case is

(1.11)
∫
�

|Du|2 ≤ C

∣∣∣∣∣
∫
�

uSk(D
2u)

∣∣∣∣∣
2/(k+1)

, u ∈ 8k
0(�) .

With the Sobolev inequality at hand, we can, in principle, use the powerful
variational methods developed for the semilinear problem (1.2) to study (1.1). A
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main technical difficulty is that, however, unlike the linear elliptic operator where
W2,p regularity theory is available, the regularity theory for the Hessian operators is
not so easy. We need to establish appropriate uniform estimates, gradient estimates,
and in particular the interior second-order derivative estimate. For the uniform
estimates we shall show that the solution is bounded when the functionψ in (1.1)
lies in L p(�) for somep > max(1,n/2k). The interior second-order derivative
estimate is even more interesting. We state it as an independent result.

THEOREM 1.5 Supposeψ ∈ C1,1(�× R), ψ ≥ ψ0 > 0, for some constantψ0 in
�. Then for any admissible solution of(1.1), we have

(1.12) u4(x)|D2u(x)| ≤ C ,

where C depends on n, k,ψ0, ‖ψ‖C1,1, and‖u‖C1 but is independent of�.

The power 4 in (1.12) can be improved to any constant larger than 1; see the
remark after Theorem 4.1. Theorem 1.5 extends a well-known result of Pogorelov
on the Monge-Ampère equations [7, 16]. In this case, due to the special structure
of the Monge-Ampère equation, the power 4 in (1.12) can be replaced by 1.

Now, one may attempt to use the mountain pass lemma to prove Theorem 1.2.
However, since the relevant functionalJ is defined in a cone rather than a Hilbert
space, we cannot apply the result directly. Instead we shall use its underlying idea.
We shall introduce the parabolic Hessian equation

µ(Sk(D
2u))− ut = µ(ψ(x,u)) , (x, t) ∈ �× (0,∞) ,

to serve as the negative gradient flow forJ. Here, in order to preserve admissibility,
µ is a certain concave function. Given a pathγ : [0,1] → 8k

0 satisfying certain
conditions, we shall show that there exists somes ∈ [0,1] such that, foru(0, t) =
γ (s), the flow has a global solution converging to a solution of (1.1). For this
purpose we need to establish the corresponding a priori estimates for the parabolic
equations.

This paper is arranged as follows: In Section 2 we derive a uniform estimate
for solutions of (1.1). In Section 3 we derive an interior gradient estimate. A by-
product of this estimate is a Liouville theorem for entire solutions of (1.1) when
ψ ≡ 0. Interior second-order estimates will be discussed in Section 4. The main
result, Theorem 4.1, contains Theorem 1.5 as its special case. We begin the study
of the parabolic Hessian equation in Section 5 and apply it to prove Theorem 1.3
in Section 6. Finally, in Section 7 we prove Theorem 1.2.

A draft of this paper was completed in 1996. After that we learned that some
estimates in this paper, including the uniform estimate in Section 2 and the interior
gradient estimate in Section 3, were also proven by Trudinger [20, 21]. However,
the proofs are different and the estimates are not completely the same. Since they
are of independent interest, we decided to keep them. For further development,
one may consult [23]. Finally, we would like to thank the referee for a careful
reading of an earlier version of the paper. His/her comments have been very useful
in improving the presentation.
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2 Uniform Estimates

In this section we derive a uniform estimate for the solution of (1.1).

THEOREM 2.1 Consider(1.1) for 1 ≤ k < n/2 whereψ is independent of z,
ψ ∈ L p(�) for some p> n/2k, and� is of class C2. Then there exists a positive
constant C> 0 depending only n, k, p, and the volume|�| such that for any
admissible solution u,

(2.1) ‖u‖L∞(�) ≤ C‖ψ‖1/k
L p(�) .

PROOF: There is no loss of generality in assuming that|�| = 1 and‖ψ‖L p ≤
1. Then it suffices to prove that for any solutionu of

Sk(D
2u) = K kψ(x) in � ,(2.2)

‖u‖L∞(�) ≤ 1(2.3)

holds providedK is sufficiently small.
From equation (2.2) and by the Hessian Sobolev inequality, we have

‖u‖k+1
8k

0
=
∣∣∣∣∣
∫
�

K kψ(x)u(x)dx

∣∣∣∣ ≤ K k‖ψ‖L p‖u‖Lq ≤ C Kk‖u‖8k
0

wherep andq are conjugate. By the Sobolev inequality again, we obtain

‖u‖L1 ≤ C‖u‖8k
0
≤ C K

whereC depends only onn, k, andp. Hence

(2.4)
∣∣{u(x) ≤ −1

2

}∣∣ ≤ C K .

By Sard’s theorem, for a.e.t , 0 > t > inf� u(x), the level set{u(x) < t} has
a (k − 1)–convex, smooth boundary. For simplicity we may assume that for each
positive j , the boundary of{u(x) < −∑ j

i=1 2−i } is smooth.
Taking (u,�,ψ, K ) as (u0,�0, ψ0, K0), we are going to define a sequence

(uj ,�j , ψj , Kj ), j ≥ 0, inductively as follows: LetRj be defined by

ωn Rn
j = ∣∣{uj (x) < −1

2

}∣∣ .
By (2.4) we have

(2.5) Rj ≤ C K1/n
j .

Define

�j +1 = R−1
j

{
uj (x) < −1

2

}
and uj +1(x) = 2

(
uj (Rj x)+ 1

2

)
.

So|�j +1| = 1 anduj +1 satisfies{
Sk(D2uj +1) = K k

j +1ψj +1(x) in �j +1

uj +1 = 0 on∂�j +1 ,
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where nowψj +1 andKj +1 are given by

ψj +1(x) = Rn/p
j ψ(Rj x) and Kj +1 = 2R2−n/kp

j K j , respectively.

It is easy to see
‖ψj +1‖L p(�j +1) ≤ ‖ψj ‖L p(�j ) ≤ 1 .

By (2.5) we have

(2.6) Kj +1 ≤ Kj

providedKj is sufficiently small. Hence, similar to (2.4) we have∣∣{uj +1(x) < −1
2

}∣∣ ≤ C Kj +1 for all j .

Now ∣∣{uj +1(x) < −1
2

}∣∣ = R−n
j

∣∣{uj (x) < −1
2 − 1

4

}∣∣
= · · · =

∣∣∣∣{u0(x) < −
j∑

i=1

2−i

}∣∣∣∣ j∏
i=1

R−n
i .

We obtain, in view of (2.5) and (2.6),

(2.7)

∣∣∣∣{u0(x) < −
j∑

i=1

2−i

}∣∣∣∣ ≤ C Kj +1

j∏
i=1

Rn
i ≤ (C K0)

j +1 .

Hence (2.3) follows providedC K0 < 1. This completes the proof of Theorem 2.1.
�

We point out that an estimate similar to (2.1) was established by Trudinger [20].
His proof is different from ours. Here the iteration argument may be useful in other
situations.

We note that whenk = n/2 andψ ∈ L p(�), p > 1, a modification of the above
argument also yields (2.1) with the constantC depending on diam(�). Indeed, for
any q > 1, δ > 0, by the Hessian Sobolev inequality and the Hölder inequality,
there existsC > 0 depending only onn, q, δ, and|�| such that

‖u‖L∞(�) ≤ C[diam(�)]δ‖u‖8k
0
.

The estimate (2.1) follows from the above iteration providedδ is chosen sufficiently
small; see also (3.13) and (3.14) in [20].

3 Gradient Estimates

In this section we derive an interior gradient estimate for (admissible) solutions
of the following Hessian equation:

(3.1) Sk(D
2u) = ψ(x,u,∇u) in �

whereψ is a nonnegative Lipschitz-continuous function. The interior gradient
estimate was also proven in [21]. Here we give a different proof, following [30].
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First we introduce some inequalities for the polynomialsSk(λ). More inequal-
ities onSk(λ) can be found in [8, 14]. Let’s denoteS0(λ) = 1 andSk(λ) = 0 for
k < 0 andk > n,

Sk;i1i2···i j (λ) = Sk(λ)
∣∣
λi1=λi2=···=λi j =0 ,

andSk;i1i2···i j (λ) = 0 if i r = i s for some 1≤ r < s ≤ j .

Let λ = (λ1, λ2, . . . , λn) ∈ 0k with λ1 ≥ λ2 ≥ · · · ≥ λn; then

Sk−1;n(λ) ≥ Sk−1;n−1 ≥ · · · ≥ Sk−1;1(λ) ≥ 0 .

It is proven in [14] that

Sk−1;k(λ) ≥ θλ1Sk−2;1k(λ) for someθ = θ(n, k) > 0 ,

from which it follows that

(3.2) Sk−1;i (λ) ≥ θλ1λ2 · · · λk−1 for i ≥ k

for some differentθ . Using

(3.3) Sk−1(λ) = 1

n − k + 1

∑
Sk−1;i (λ) ,

we have
Sk−1(λ) ≥ θλ1λ2 · · · λk−1 .

The following lemma will not be used until the next section. Nevertheless, it is
appropriate to place it here.

LEMMA 3.1 Supposeλ ∈ 0k andλ1 ≥ λ2 ≥ · · · ≥ λn. Then there existsθ =
θ(n, k) > 0 such that

(3.4) λ1Sk−1;1(λ) ≥ θSk(λ) .

Moreover, for anyδ ∈ (0,1) there exists K> 0 such that if

Sk(λ) ≤ Kλk
1 or |λi | ≤ Kλ1 for i = k + 1,2, . . . , n ,

we have

(3.5) λ1Sk−1;1(λ) ≥ (1 − δ)Sk(λ) .

PROOF: We have

(3.6) Sk(λ) = Sk−1;1(λ)λ1 + Sk;1(λ) .

By
Sk;1(λ) ≤ Cn,kSk/(k−1)

k−1;1 (λ) ≤ Cλ1Sk−1;1(λ) ,
(3.4) follows.

To prove (3.5) we first consider the caseSk(λ) ≤ Kλk
1. We may assumeSk(λ) =

1. If (3.5) is not true, then

Sk−1;1(λ) < (1 − δ)λ−1
1 ≤ K 1/k ;

hence
Sk;1(λ) ≤ CSk/(k−1)

k−1;1 (λ) ≤ C K1/(k−1) .
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In view of (3.6), (3.5) follows.
Next, we consider the case|λi | ≤ Kλ1 for i = k + 1,2, . . . , n. Observing

that if λk � λ1, we haveSk(λ) � λk
1, and so (3.5) holds. Hence we may assume

|λi | � λk for i = k+1,2, . . . ,n. In this case bothSk(λ) andλ1Sk−1;1(λ) are equal
to λ1λ2 · · · λk(1 + o(1)) with o(1) → 0 asK → 0. Again (3.5) holds. �

Now, we turn to the interior gradient estimate. Letu ∈ C3(�) be a solution of
(3.1) and� = Br (0). Let

G(x, ξ) = uξ (x)ϕ(u)ρ(x)

whereρ(x) = (1− |x|2/r 2)+, ϕ(u) = 1/(M − u)1/2, andM = 4 sup|u|. Suppose
G attains its maximum atx = x0 andξ = e1. Then, atx0,

0 = Gi = u1iϕρ + u1uiϕ
′ρ + u1ϕρi ,

i.e.,

(3.7) u1i = − u1

ϕρ
(uiϕ

′ρ + ϕρi )

and the matrix

{Gi j } = {
u1i j ϕρ + u1ui j ϕ

′ρ + u1ui ujϕ
′′ρ + u1ϕρi j

+ (u1i uj + u1 j ui )ϕ
′ρ + ϕ(u1iρj + u1 jρi )+ u1ϕ

′(uiρj + ujρi )
}

is nonpositive. Differentiating equation (3.1) gives

Si j ui j 1 = ∇1ψ .

Note thatSi j ui j = kψ . We obtain, by (3.7),

0 ≥ Si j Gi j

= ϕρ∇1ψ + ku1ψϕ
′ρ + u1ϕ

′′ρSi j ui uj + u1ϕSi j ρi j 6

+ u1ϕ
′Si j (uiρj + ujρi )+ 2Si j u1i (ujϕ

′ρ + ϕρj )

= ϕρ∇1ψ + ku1ψϕ
′ρ + u1ρ

(
ϕ′′ − 2ϕ′2

ϕ

)
Si j ui uj + u1ϕSi j ρi j

− u1ϕ
′Si j (uiρj + ujρi )− 2u1ϕ

ρ
Si j ρiρj .

(3.8)

We have

ϕ′′ − 2ϕ′2

ϕ
≥ 1

16
M−5/2.

Multiplying (3.8) by M5/2 and noticing thtϕ′ > 0, we have

(3.9) 0≥ ϕρM5/2∇1ψ + 1

16
ρS11u3

1 − S

(
C M2u1

r 2
+ C Mu2

1

r
+ C M2u1

ρr 2

)
,

whereS = ∑
Sii andC is independent ofr andM .
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Suppose now thatG(x0) is so large that

ρu1 ≥ 8
M

r
at x0 .

It follows from (3.7) that

u11 ≤ − ϕ′

2ϕ
u2

1 < 0 atx0 .

We claim

(3.10) S11 ≥ θS for someθ = θ(n, k) .

In fact, we have

Sk−1(D
2u) = S11 + u11Sk−2;1(µ)−

n∑
i=2

u2
1i Sk−3;1i (µ) ≤ S11 .

Since Sk−1(D2u) is invariant under rotation of coordinates, (3.9) follows from
(3.3). Multiplying (3.9) byρ2, we have

(3.11) ρu1 ≤ C1 + C2
M

r
,

provided

(3.12) |∇1ψ | = o(u3
1)S asu1 → ∞ .

To estimateS we rotate the axes, which doesn’t change the value ofS, so that
under the new coordinatesy = (y1, y2, . . . , yn), D2u is diagonal, and

uy1y1 ≥ uy2y2 ≥ · · · ≥ uynyn .

Then at the point whereG reaches its maximum,

uynyn ≤ ux1x1 ≤ − ϕ′

2ϕ
u2

1 .

From equation (3.1) we have

ψ = uynyn Sk−1;n(λ)+ Sk;n(λ) , λ = λ(D2u) .

Since

Sk−1;n(λ) ≥ C[Sk;n(λ)](k−1)/k , 0 ≤ uynyn Sk−1;n(λ)+ C[Sk−1;n(λ)]k/(k−1) .

So

Sk−1;n(λ) ≥ C|uynyn|k−1 ≥ C

(
ϕ′

ϕ

)k−1

u2k−2
x1

and S ≥ Cu2k−2
1

Mk−1
at x0 ,

whereC > 0 is independent ofM andr . Therefore (3.12) is satisfied if there exists
a nonnegative functionh(t) with h(t)/t → 0 ast → ∞ such that

(3.13) |ψx| + |ψz| · |p| + |ψp| · |p|2 ≤ h(|p|2k+1) as|p| → ∞ .

We have proven the following result:
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THEOREM 3.2 Let u be a k-admissible C3-solution of (3.1) whereψ ≥ 0 is
Lipschitz-continuous and� = Br (0). Under(3.13)we have

|∇u(0)| ≤ C ,

where C depends only on n, k, r , h, andsup|u|.
Here we have automatically extended the notion ofk-admissibility toC2-func-

tions withλ(D2u) ∈ 0k, the closure of0k. Observe that our argument does not
requireψ to be strictly positive. Moreover, an examination of the above proof
shows that one can takeC1 = 0 in (3.11) whenψ ≡ 0. As a result, we have
the following Liouville property for entire solutions of the homogeneous Hessian
equations:

THEOREM 3.3 Let u ∈ C3(Rn) be a k-admissible solution of

Sk(D
2u) = 0 in R

n , which satisfies lim|x|→∞
u(x)

|x| = 0 .

Then u is a constant.

Gradient estimates on the boundary can be obtained by a construction of bar-
riers [4, 9] whenu|∂� ∈ C1,1, ψ ∈ L∞(�), and∂� is strictly (k − 1)–convex,
as is always assumed. To get a global gradient estimate, we can use the auxiliary
functionG as above, where nowρ is replaced by the constant 1. WhenG attains
its maximum at some point in�, at this point we have, from (3.8),

ϕ∇1ψ + ku1ψϕ
′ + u1

(
ϕ′′ − 2ϕ′2

ϕ

)
Si j ui uj ≤ 0 .

Hence we have the following global gradient estimate:

THEOREM 3.4 Consider(3.1) whereψ ≥ 0 is Lipschitz-continuous and satisfies
(3.13). Let u be a k-admissible solution of(3.1)with u|∂� ∈ C1,1. Then

|∇u| ≤ C ,

where C depends on n, k, h,sup� |u|, ‖u‖C1,1(∂�), and∂�.

For our problem (1.1), (3.13) is satisfied whenψ(x, z) is Lipschitz-continuous
at z = 0. Whenψ is not Lipschitz-continuous atz = 0, as may happen in the
sublinear case, we note that for anyu ∈ 8k

0 satisfying

sup
�

|u| ≤ C1 and ‖u‖L1(�) ≤ C2 ,

by the subharmonicity ofu, for anyδ > 0, there existsθ > 0 depending only onδ,
C1, C2, and� such that

(3.14) u ≤ −θ in �δ = {x ∈ � : dist(x, ∂�) > δ} .
Therefore, our interior estimate, Theorem 3.2, is still applicable.
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4 Second-Order Estimates

In this section we establish an interior a priori estimate for the second-order
derivatives of solutions to the problem

(4.1)

{
Sk(D2u) = ψ(x,u) in �

u = u0(x) on ∂� ,

whereψ satisfies

(4.2) ψ(x, z) ≥ ψ0 > 0

for some constantψ0 and� is a strictly(k − 1)–convex domain. Let

F(D2u) = µ(Sk(D
2u)) ,

whereµ is a positive, monotone increasing function such thatF(r ) is concave in
r . In this section we will take

µ(t) = t1/k .

It is proven in [4] that this choice ofµ fulfills our requirement. We may rewrite the
equation in (4.2) as

F(D2u) = f (x,u) ,

where f (x, z) = µ(ψ(x, z)). Differentiating this equation with respect toxγ gives

Fi j ui j γ = fγ , Fi j ui j γ γ + (Fi j )rsui j γursγ = fγ γ ,

where

Fi j = ∂F

∂ri j
(D2u) = µ′Si j (D2u) .

When(D2u) is diagonal at a given point, we have

(Fi j )rs =


µ′Sk−2;ir (λ)+ µ′′Sk−1;i Sk−1;r if i = j, r = s

−µ′Sk−2;i j (λ) if i 6= j, r = j, ands = i

0 otherwise

at this point. Hence∑
i

Fii uii γ γ = fγ γ +
n∑

i, j =1

µ′Sk−2;i j u2
i j γ

−
n∑

i, j =1

[µ′′Sk−1;i Sk−1; j + µ′Sk−2;i j ]uii γuj j γ

≥ fγ γ .

(4.3)

As contrast to linear elliptic equations, it is well-known that in general there is
no interiorC1,1-regularity for solutions of (4.1) even whenψ is analytic [16, 27].
Nevertheless, under the additional assumption thatu is strictly k-convex, i.e., if
there exists an admissible functionw such thatu < w in � andw = u on ∂�,
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we will derive an interiorC1,1-estimate foru. Our derivation is similar to those in
[7, 16] where the Monge-Ampère equation is considered.

Consider the auxiliary function

G(x) = ρβ(x)ϕ

(
1

2
|Du|2

)
uξξ ,

whereβ = 4,ϕ(t) = (1 − t
M )

−1/8, M = 2 supx∈� |Du|2, and

ρ = w − u .

Suppose thatG attains its maximum atx0 and in the directionξ = (1,0, . . . , 0).
Assume thatD2u is already diagonal atx0 with u11 ≥ u22 ≥ · · · ≥ unn. Then atx0,

0 = (logG)i = β
ρi

ρ
+ ϕi

ϕ
+ u11i

u11
, j = 1,2, . . . ,n ,(4.4)

0 ≥
∑

i

Fii (logG)i i(4.5)

=
∑

i

βFii

[
ρi i

ρ
− ρ2

i

ρ2

]
+
∑

i

Fii

[
ϕi i

ϕ
− ϕ2

i

ϕ2

]
+
∑

i

Fii

[
u11i i

u11
− u2

11i

u2
11

]
.

We consider two cases separately.

Case1. ukk ≥ Ku11, whereK is a small positive constant to be determined.
By (4.4) we have

(4.6)
u11i

u11
= −

(
ϕi

ϕ
+ β

ρi

ρ

)
.

Putting (4.6) into (4.5) yields

(4.7) 0≥ βFii

[
ρi i

ρ
− (1 + 2β)

ρ2
i

ρ2

]
+ Fii

[
ϕi i

ϕ
− 3

ϕ2
i

ϕ2

]
+ Fii

u11i i

u11
.

Here and below, summations ini in these inequalities are understood. First, by
equation (4.3),

Fii u11i i ≥ f11 ≥ −C(1 + u11) .

Next, we have

Fii

[
ϕi i

ϕ
− 3

ϕ2
i

ϕ2

]
=
(
ϕ′′

ϕ
− 3

ϕ′2

ϕ2

)
Fii u

2
i u2

i i + ϕ′

ϕ
uj Fii uii j + ϕ′

ϕ
Fii u

2
i i

≥ ϕ′

ϕ
Fii u

2
i i + ϕ′

ϕ
ui fi ,

(4.8)

which, after using (3.2),

Fii u
2
i i > Fkku

2
kk ≥ θF u2

11 ,
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whereF = ∑n
i=1 Fii andθ = θ(n, k, K ). Therefore, we have

Fii

[
ϕi i

ϕ
− 3

ϕ2
i

ϕ2

]
≥ θF u2

11 − C .

Finally, by our special choice ofρ,

(4.9) Fii ρi i ≥ −Fii uii = −µ′Sii uii = −kµ′ψ .

Putting these inequalities together, we obtain

(4.10) 0≥ θF u2
11 − CF

ρ2
i

ρ2
− kβµ′ψ

ρ
− C .

Note that whenukk ≥ Ku11, we have

F ≥ Fnn ≥ θµ′u11u22 · · · uk−1,k−1 ≥ θ1u
k−1
11 .

Multiplying (4.10) byρ2βϕ2, we deduceG(x0) ≤ C.

Case2. ukk ≤ Ku11 (and souj j ≤ Ku11 for j = k, k + 1, . . . ,n) . In this case
we have, by (4.4),

(4.11)
ρi

ρ
= − 1

β

(
ϕi

ϕ
+ u11i

u11

)
, i = 2,3, . . . ,n .

Putting (4.6) fori = 1 and (4.11) fori = 2,3, . . . ,n into (4.5), we obtain

0 ≥
{ n∑

i=1

[
βFii

ρi i

ρ
+ Fii

(
ϕi i

ϕ
− 3

ϕ2
i

ϕ2

)]
− β(1 + 2β)F11

ρ2
1

ρ2

}

+
{ n∑

i=1

Fii
u11i i

u11
−
(

1 + 2

β

) n∑
i=2

Fii
u2

11i

u2
11

}
=: I1 + I2 .

(4.12)

By (4.8) and (4.9) we have

I1 ≥ θFii u
2
i i − C

F11

ρ2
− kβµ′ψ

ρ
− C ≥ 1

2
θF11u

2
11 − kβµ′ψ

ρ
− C

providedρ2u2
11 is sufficiently large. By (3.4)

I1 ≥ θ1µ
′ψu11 − kβµ′ψ

ρ
− C .

Next we claim

(4.13) I2 ≥ f11

u11
.

Granted the validity of (4.13), (4.12) reduces to

0 ≥ θ1µ
′ψu11 + f11

u11
− kβµ′ψ

ρ
− C .

Multiplying the above inequality byρβϕ we obtainG(x0) ≤ C.
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To prove (4.13) we first note that by the concavity ofF ,

−
n∑

i, j =1

[µ′′Sk−1,i Sk−1, j + µ′Sk−2,i j ]uii 1uj j 1 = −
∑ ∂2

∂λi ∂λj
µ(Sk(λ))uii 1uj j 1 ≥ 0 .

Hence by (4.3),

u11I2 ≥ f11 +
n∑

i, j =1

µ′Sk−2;i j u2
i j 1 −

(
1 + 2

β

) n∑
i=2

Fii
u2

11i

u11

≥ f11 +
n∑

i=2

µ′
(

2Sk−2;1i −
(

1 + 2

β

)
Sk−1;i
u11

)
u2

11i .

Sinceβ = 4, we only need to show

Sk−2;1i − 3

4

Sk−1;i
u11

≥ 0 .

But this follows from (3.5) whenK is sufficiently small. Hence (4.13) holds. We
have thus proven the following result:

THEOREM 4.1 Consider(4.1) whereψ ∈ C1,1(� × R) satisfies(4.2). Let u ∈
C3,1(�) ∩ C0,1(�) be a k-admissible solution of(4.1). Suppose that there is an
admissible functionw such thatw > u in� andw = u0 on ∂�. Then

(4.14) (w − u)4(x)|D2u(x)| ≤ C ,

where C depends only on n, k,sup� |Du(x)|, andψ .

Now Theorem 1.5 follows from this theorem since we can takew ≡ 0 when
u0 ≡ 0.

We point out two facts. First, the power 4 in (4.14) can be improved to any
constant larger than 1. Indeed, for anyβ > 1, let 0< δ < β − 1. Following the
above derivation, we have, instead of (4.12),

0 ≥
{ n∑

i=1

[
βFii

ρi i

ρ
+ Fii

(
ϕi i

ϕ
− Cδ

ϕ2
i

ϕ2

)]
− β(1 + 2β)F11

ρ2
1

ρ2

}

+
{ n∑

i=1

Fii
u11i i

u11
−
(

1 + 1 + δ

β

) n∑
i=2

Fii
u2

11i

u2
11

}
.

So the above argument is still valid, so long as we chooseϕ = ϕ(t) such that
ϕ′′ϕ − Cδϕ

′2 > 0 for t < ‖u‖L∞ . For the Monge-Ampère equation(k = n), due
to its special structure the power in (4.14) can be made to 1. Second, Theorem 4.1,
whose validity relies on (4.2), cannot be applied to prove Theorems 1.2 and 1.3
directly. Instead, we apply it to the subdomain�δ in (3.14). An examination of the
proof of Theorem 4.1 shows that the following result holds:
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THEOREM 4.2 Consider(1.1) whereψ ∈ C1,1(�× R−). Suppose there exists a
nonincreasing function h satisfying h(0) = 0 and h(z) > 0 for z < 0 such that
ψ(x, z) > h(z) for all z < 0. Then for anyδ > 0, there is a constant C> 0
depending on n, k,δ, h, M = sup� |u|, ‖ψ‖C1,1(�×(−M,−δ/2)), andsup{|Du(x)| :
u(x) < −δ/2} such that

(4.15) sup{|D2u(x)| : u(x) ≤ −δ} ≤ C .

Estimate (4.15) shows that equation (1.1) is uniformly elliptic in any compact
subdomain of�. If one further assumes that∂� is C3,1 and strictly(k−1)–convex,
then the following global second-order derivative estimate holds [29]:

sup
x∈�

|D2u(x)| ≤ C ,

whereC depends onn, k, ψ , ‖u‖C1(�), and the boundary∂�.
Whenψ satisfies (4.2), first- and second-order derivative estimates have been

obtained in [4, 9]. Hence (1.1) is uniformly elliptic and further regularity follows
from Krylov’s regularity theory [12]. We state the result as follows:

THEOREM 4.3 Consider(1.1) whereψ ∈ C1,1(�× R−) and� is of class C3,1

and strictly(k − 1)–convex. Suppose that(4.2)holds. Then its solution satisfies

‖u‖C3,α(�) ≤ C

for someα ∈ (0,1), where C depends only on n, k,�, sup� |u|, andψ up to
second order.

Whenψ is further assumed to be monotone increasing inz, one may use the
method of continuity to show that (1.1) admits a unique solution.

5 Parabolic Hessian Equations

Let � be a strictly(k − 1)–convex domain inRn with a C3,1-boundary. Let
Q = � × (0,∞) and QT = � × (0, T]. We denote by∂∗QT the parabolic
boundary ofQT . In this section we consider the parabolic equation

(5.1)


F(D2u)− ut = f (x, t,u) in QT

u = 0 on∂�× [0, T]
u = u0 on {t = 0}

whereu0 ∈ 8k
0(�), f ∈ C2(QT × R), andF(D2u) = µ(Sk(D2u)). The function

µ is chosen to satisfyµ′ > 0,µ′′ < 0,

lim
t→∞µ(t) = +∞ ,(5.2)

lim
t→0

µ(t) = −∞ ,(5.3)
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and such thatF is concave with respect to its arguments. Moreover, we require

(5.4) µ(t) =
{

t1/p t ≥ 1

log t t small
for somep > k .

For the parabolic equation (5.1), a functionu in C2,1
x,t (QT ) is said to bek-admissible

if u(·, t) is k-admissible for eacht ∈ [0, T].
In this section we will just prove some results that are needed for the proof

of Theorems 1.2 and 1.3. We refer the reader to [11, 22, 29] for discussions on
various parabolic Hessian equations. First we establish a gradient estimate for
solutions of (5.1).

THEOREM 5.1 Consider(5.1) where F(r ) = µ(Sk(r )), µ is specified as above,
u0 ∈ 8k

0(�), and f ∈ C0,1(QT × R). Suppose further that the compatibility
condition F(D2u0) = f (x, t,u0) on ∂� ∩ {t = 0} holds, and

| f (x, t, z)| ≤ C0(1 + |z|) ∀(x, t, z) ∈ QT × R .

Then for any k-admissible solutions u in C4,2(Q), we have, for0< t < T ,

u(x, t) ≥ −eC1t sup
�

|u0(x)| ,(5.5)

|∇xu(x, t)| ≤ C2

(
1 + 1

r
M (p+k)/2k

t

)
,(5.6)

|ut(x, t)| ≤ C3(1 + Mt) ,(5.7)

where Mt = supQt
|u|, r = min{1,dist(x, ∂�)}. Here C1 depends only on n, k, p,

and C0; and C2 and C3 depend additionally on u0 and the gradient of f .

PROOF: (5.5) is obvious as the right-hand side is a lower barrier. To prove (5.6)
and (5.7) we assume for simplicity thatMt ≥ 1. First we prove (5.7). Let

G = ut

M − u
,

whereM = 2Mt . If G attains its minimum at the parabolic boundary∂∗Qt , we
haveut ≥ −C for someC > 0 depending on the initial valueu0. Hence we may
assumeG attains its minimum at some point inQt . At this point we have

(5.8) utt + (M − u)−1u2
t ≤ 0 , ujt + (M − u)−1utuj = 0 , j = 1,2, . . . ,n ,

and the matrix

(5.9)
{
ui j t + (M − u)−1(uit uj + ujt ui + utui j )+ 2(M − u)−2ui uj ut

}
= {

ui j t + (M − u)−1utui j
} ≥ 0 .

Differentiating equation (5.1) gives

(5.10) Fi j ui j t − utt = ft + fuut , Fi j uri j − urt = fr + fuur .
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We may assumeut ≤ 0 at this point. From (5.8), (5.9), and (5.10), we have

(M − u)−1u2
t ≤ −Fi j ui j t + ft + fuut ≤ (M − u)−1ut Fi j ui j + ft + fuut

≤ ft + fuut .

Henceut ≥ −C M.
Similarly, let

G = ut

M + u
.

If G attains its maximum on∂∗Qt , we haveut ≤ C. So, assume it attains its
minimum at some point inQt . At this point we have

utt − (M + u)−1u2
t ≥ 0 , ujt − (M + u)−1utuj = 0 , for j = 1,2, . . . , n ,

and {
ui j t − (M + u)−1utui j

} ≤ 0 .

Hence we have

(M + u)−1u2
t ≤ Fi j ui j t − ft − fuut

≤ (M + u)−1ut Fi j ui j − ft − fuut

= (M + u)−1kutµ
′Sk(D

2u)− ft − fuut .

(5.11)

In caseSk(D2u) ≤ 1, by (5.1) we have

ut = F(D2u)− f ≤ 1 − f .

In caseSk(D2u) ≥ 1,

µ′Sk(D
2u) = 1

p
µ(Sk(D

2u)) = 1

p
(ut + f ) .

It follows from (5.11) that

p − k

p

u2
t

M + u
≤ k f ut

p(M + u)
− ft − fuut .

Hence in both casesut ≤ C M holds.
Next we prove (5.6). For simplicity let’s taket = T . Our proof is somewhat

parallel to the proof in the elliptic case in Section 3. Let us assumeBr (0) is a ball
inside� and consider

G(x, t, ξ) = ρ(x)ϕ(u)uξ ,

whereρ(x) = (1−|x|2/r 2), ϕ(u) = (M −u)−α, andα ∈ (0,1) is a small constant
to be chosen later. Suppose that

sup
{
G(x, t, ξ) : (x, t) ∈ Br (0)× [0, T], |ξ | = 1

}
is attained at(x0, t0) andξ0 = (1,0, . . . , 0). Then at(x0, t0) we have

(5.12) 0= (logG)i = ρi

ρ
+ ϕi

ϕ
+ u1i

u1
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and

0 ≥ Fi j (logG)i j − (logG)t

= Fi j

(
ρi j

ρ
− ρiρj

ρ2

)
+ Fi j

(
ϕi j

ϕ
− ϕiϕj

ϕ2

)
− ϕt

π

+ Fi j

(
u1i j

u1
− u1i u1 j

u2
1

)
− u1t

u1
.

By (5.12) we obtain

0 ≥ Fi j

(
ρi j

ρ
− 3

ρiρj

ρ2

)
+ Fi j

(
ϕi j

ϕ
− 3

ϕiϕj

ϕ2

)
− ϕt

phi
+ 1

u1
(Fi j u1i j − u1t)

≥ − C

ρ2
F +

(
ϕ′′

ϕ
− C

ϕ′2

ϕ2

)
F11u

2
1 + ϕ′

ϕ
(Fi j ui j − ut)+ f1

u1
.

Choosingα ∈ (0,1) so small that

ϕ′′

ϕ
− C

ϕ′2

ϕ
≥ θ

M2
> 0 ,

and noticing thatFi j ui j ≥ 0 andϕ′ ≥ 0, we have

0 ≥ θ

M2
F11u

2
1 − C

ρ2
F − ϕ′

ϕ
ut + f1

u1
.

Therefore, we have either

(5.13) F11u
2
1 ≤ C M2

ρ2
F

or

(5.14) F11u
2
1 ≤ C M2

(
ϕ′

ϕ
ut − f1

u1

)
≤ C M2 .

By (5.12) we have

u11 = −u1

(
ρ1

ρ
+ ϕ′

ϕ
u1

)
.

We may assume

u11 ≤ − C

M
u2

1 ,

for otherwiseu1ρ ≤ 2|ρ1ϕ/ϕ
′| would hold and (5.6) would follow. By a rotation

of coordinates we may supposeui j = 0 at (x0, t0) for i 6= j and i, j ≥ 2, and
u22 ≤ u33 ≤ · · · ≤ unn. Let’s write λi = uii . Thenλ = (λ1, λ2, . . . , λn) ∈ 0k

since for j ≤ k,

(5.15) Sj (λ) = Sj (D
2u)+ Sj −2;1i (λ)u

2
1i ≥ Sj (D

2u) ≥ 0 .

It follows that

Sk−1(D
2u) = S11

k (D
2u)+ u11S11

k−1(D
2u)− u2

1i Sk−3;1i (λ) ≤ S11
k (D

2u)
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and

S11(D2u) ≥ Sk−1(D
2u) = 1

n − k + 1

∑
Sii

k (D
2u) .

So F11 ≥ Cn,kF holds. Putting this into (5.13), we see that (5.6) is valid.
Next, observe that by (5.15)

0 ≤ Sk(λ) = λ1Sk−1;1(λ)+ Sk;1(λ) ≤ λ1Sk−1;1(λ)+ CSk/(k−1)
k−1;1 (λ) .

As a result,
Sk−1;1(λ) ≥ C|λ1|k−1 ;

that is,

(5.16) S11(D2u) ≥ Cu2k−2
1

Mk−1
.

From (5.7) and equation (5.1), we have

Sk(D
2u) ≤ C Mp at (x0, t0) and so µ′(Sk(D

2u)) ≥ C

M p−1
at (x0, t0)

by our choice ofµ. Consequently, by (5.16),

F11 ≥ Cu2k−2
1

M p+k−2
.

Putting this inequality into (5.14) yields the desired estimate

u1 ≤ C M(p+k)/2k at (x0, t0) .

SinceG attains its maximum at(x0, t0),

|uξ (x, t)| ≤ ρϕ(x0, t0)

ρϕ(x, t)
u1(x0, t0) ≤ C

r
M (p+k)/2k.

So (5.6) holds. The proof of Theorem 5.1 is complete. �

Theorem 5.1 gives an interior estimate for the spatial derivatives of the solu-
tions. A global gradient estimate can be obtained by modifying our proof. In view
of (5.7), we can write (5.1) as an elliptic equation with bounded right-hand side.
By constructing barriers, one can show that

|∇xu(x, t)| ≤ C
(
1 + M p/k

t

)
, x ∈ ∂� .

Now, the global gradient estimate at interior points follows by the above argument,
where we now takeρ = 1 in the definition ofG.

We state a global existence and regularity result for (5.1) for later use.

THEOREM 5.2 In addition to the hypotheses in Theorem5.1, let’s assume further
that u0 ∈ C3,1(�) and f ∈ C1,1(QT × R). Then for any T> 0, there is a unique
k-admissible solution u∈ C3+α,1+α/2

x,t (QT ), α ∈ (0,1), of (5.1) that satisfies the a
priori estimate

‖u‖C3+α,1+α/2
x,t (QT )

≤ C ,
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where C depends on n, k,α, T , ‖u‖L∞(QT ), u0, and f . The constant C can be
chosen independently of T if f and its derivatives up to second order are uniformly
bounded.

Theorem 5.2, whose proof is omitted, can be proven in the same way as
theorem A.1 in [25, 29], where the special caseµ(t) = log t is considered. Similar
results can also be found in [11, 22]. Note that we do not require the right-hand
side to be nonnegative, due to the conditionµ(t) → −∞ ast → 0.

6 The Sublinear Case

In this section we prove Theorem 6.3, which contains Theorem 1.3. As we
stated in the introduction, for any strictly(k − 1)–convex domain�, there exists a
uniqueλ1 > 0 such that the problem{

Sk(D2u) = λ1|u|k in �

u = 0 on∂�

has a nonzero admissible solutionϕ, called the eigenfunction of thek-Hessian
operator, which is unique up to the multiplication of a positive number. In fact, the
(first) eigenvalueλ1 has the following variational characterization:

λ1 = inf
{
Ek(u) : ‖u‖Lk+1(�) = 1,u ∈ 8k

0

}
.

Recall that

J(u) = −1

k + 1

∫
�

uSk(D
2u)dx −

∫
�

9(x,u)dx ,

where9(x, z) = ∫ 0
z ψ(x, s)ds. Let u(x, t) be a solution of

(6.1)


F(D2u)− ut = f (x,u) in �× (0,∞)

u = 0 on∂�× [0,∞)

u = u0 on {t = 0} ,
whereF(r ) = µ(Sk(r )), f (x, z) = µ(ψ(x, z)), andµ has been specified in Sec-
tion 5. We have

d

dt
J(u(·, t)) = −

∫
�

ut
(
Sk(D

2u)− ψ(x,u)
)
dx

= −
∫
�

(
Sk(D

2u)− ψ(x,u)
)(
µ(Sk(D

2u))− µ(ψ(x,u))
)
dx

≤ 0

(6.2)

Hence (6.1) is a negative gradient flow of the functionalJ.
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In this section we consider the sublinear case (1.7), that is,

lim
z→−∞

ψ(x, z)

|z|k < λ1 uniformly for x ∈ � .
Under this assumption, we have

(6.3) 9(x, z) ≤ C1 + (1 − θ)λ1

k + 1
|z|k+1 for someθ > 0 .

By the variational characterization of the eigenvalue, we have

J(u) ≥ −θ
k + 1

∫
�

uSk(D
2u)− C2 .

HenceJ is bounded from below andJ(u) → ∞ as‖u‖8k
0

→ ∞ in the sublinear
case.

LEMMA 6.1 Consider(1.1)where(1.7)holds. There exists C> 0 depending only
on n, k, C1, θ (in (6.3)), and� such that for any admissible solution of(1.1),

sup
x∈�

|u(x)| ≤ C .

PROOF: By (1.7) we have

ψ(x, z) ≤ (K − (λ1 − θ)z)k , z ≤ 0 ,

for some constantK = K (θ,C1) > 0. If the lemma is not true, there is a sequence
{ψm} satisfying the inequality above such that the equation (1.1) forψ = ψm has a
solutionum ∈ 8k

0 with

Mm = sup
�

|um| → ∞ asm → ∞ .

Let vm = um/Mm. We havevm → v by (1.10), and by the weak convergence
of the Hessian measures [23],v is a subsolution of

(6.4) Sk(D
2u) = |(λ1 − θ)u|k .

By constructing appropriate barriers, one infers from the comparison principle [21,
23] thatv is Lipschitz-continuous on∂�. Let a > 1 be sufficiently large such that
w = aϕ < v in �, whereϕ is the eigenfunction of the Hessian operator. Thenv

andw are, respectively, a supersolution and a subsolution of (6.4). It follows that
there is a solutionϕ1 ∈ 8k

0(�) of (6.4) satisfyingv ≥ ϕ1 ≥ w. However, this
is in conflict with the uniqueness of the first eigenvalue [29]. So the lemma must
hold. �

First we prove an existence result assumingψ is strictly positive.

THEOREM 6.2 Let� be of class C3,1, ψ ∈ C1,1(�× R−), ψ ≥ ψ0 > 0, and
(1.7) holds. Then(1.1) has a k-solution u∈ C3,α(�) that is a minimizer of the
functional J in8k

0.
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PROOF: We choose a sequence of positive functions{ψm(x, z)} in C1,1(�×R)

such thatψm ≤ ψ ,ψm(x, z) = ψ(x, z)when|z| ≤ m, andψm(x, z) is independent
of z when|z| > 2m. Let

Jm(u) = −1

k + 1

∫
�

uSk(D
2u)dx −

∫
�

9m(x,u)dx

where9m(x, z) = ∫ 0
z ψm(x, s)ds. Let R> 0 be so large that

(6.5) inf
{

Jm(u) : u ∈ 8k
0, ‖u‖8k

0
≥ R

}
> 1 + inf

{
Jm(u) : u ∈ 8k

0

}
.

For K > 0 small, we chooseu0 ∈ 8k
0 such thatJm(u0) < K + inf8k

0
Jm(u). By

Theorem 5.2 there is a solutionu = um,K of the problem
F(D2u)− ut = fm(x,u) in �× (0,∞)

u = 0 on∂�× [0,∞)

u = u0 on {t = 0}
where fm(x,u) = µ(ψm(x,u)).

We point out that all hypotheses in Theorem 5.2 can be verified easily except
the compatibility condition. This condition can be satisfied by a slight modification
of the initial function [29]. Indeed, for any initial function,u0 ∈ 8k

0(�) ∩ C3,1(�)

such thatSk(D2u0) > 0 on�. Let g ∈ C1,1(�) such thatg = Sk(D2u0) in �δ
(for someδ > 0 sufficiently small) andg = fm(x,0) = f (x,0) on ∂�, and let
ũ0 ∈ 8k

0(�) be the solution ofSk(D2u) = g. Thenũ0 satisfies the compatibility
condition on∂�× {t = 0}, and we also haveJm(̃u0) < K + inf8k

0
Jm(u). Hence,

we may replaceu0 by ũ0, if necessary, and then apply Theorem 5.2.
By (6.2) and (6.5),‖u(·, t)‖8k

0
< R for all t > 0. Since for each fixedm, ψm is

uniformly bounded, by Theorem 5.2 we have

‖u‖C2,1
x,t (�×R)

≤ C .

It implies that
d

dt
Jm(u(·, t)) → 0 ast → ∞ .

Hence we can select a sequence{tj } → ∞ such that{u(x, tj )} converges to a
solutionw = wm,K ∈ 8k

0(�) of Sk(D2u) = ψm.
By Lemma 6.1,{wm,K } is uniformly bounded for all sufficiently smallK > 0.

Hence form sufficiently large,wm,K is indeed a solution of (1.1), sinceψm = ψ

when |z| < m. Theorem 6.2 follows by sendingK → 0 by using the a priori
estimate in Theorem 4.3. �

The strict positivity condition in Theorem 6.2 can be relaxed to (1.8), namely,

lim
z→0−

ψ(x, z)

|z|k > λ1
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uniformly for x ∈ �. It implies

inf
u∈8k

0

J(u) < 0

sinceJ(δϕ) < 0 whenδ > 0 is small andϕ is the eigenfunction of the Hessian
operator. We have the following precise statement of Theorem 1.3:

THEOREM 6.3 Consider(1.1) whereψ ∈ C(�× R−) ∩ C1,1(� × R
−) and� is

of class C3,1. Supposeψ(x, z) > 0 when z< 0 and it satisfies(1.7) and (1.8)
uniformly in�. Then(1.1)has a k-admissible solution u∈ C3,α(�) ∩ C0(�) for
someα ∈ (0,1) that is negative in�. Moreover, it is a minimizer of the functional
J over8k

0.

PROOF: Theorem 6.3 follows from Theorem 6.2 by approximation. Indeed, let
{ψn} be a sequence of positive functions inC1,1(�× R−) that converges toψ in
C(�× R−). By our assumption onψ we may assume eachψn > h for someh
satisfyingh(0) = 0 andh(z) > 0 for negativez. By Theorem 6.2, for eachn
there is a minimizerun in 8k

0 of the corresponding functionalJn. Without loss of
generality we may assume

Jn(un) < −c0 < 0

for somec0 independent ofn. By Lemma 6.1,{un} is uniformly bounded. By
(3.14), Theorem 3.2, and Theorem 4.2,{un} is also uniformly bounded inC2

loc(�).
Hence{un} subconverges to a solutionu of (1.1), andu is a minimizer of the func-
tional J in 8k

0. Note that by (6.5),{‖un‖8k
0(�)

} is uniformly bounded, and the
Poincaré-type inequality (1.11) ensures that in factu is continuous in� and van-
ishes on∂�. Alternatively, one can construct a Lipschitz-continuous subsolution
u ∈ 8k

0(�) of (1.1) such that for all largen, there holdsun ≥ u, which forces
u = 0 on∂�. �

We remark that the strict positivity conditionψ(x, z) > 0 in Theorem 6.3 can
be replaced byψ(x, z) ≥ 0 . Indeed, by Lemma 6.1, the sequence of solutions,
{un}, is uniformly bounded. By (1.10) we may assume, by passing to a subse-
quence,un → u. Thenu is a weak solution of (1.1) [21, 23].

7 The Superlinear Case

In this section we finally prove Theorem 1.2. We will use the idea in the proof
of the mountain pass lemma, making use of the gradient flow generated by the
parabolic Hessian equation (6.1) to prove Theorem 1.2. Because the right-hand
sideψ of (1.1) equals zero on the boundary, we need to approximateψ by positive
functions so that Theorem 5.2 is applicable.

The proof of the theorem is quite long. We divide it into six steps.
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Step 1

In the first step we show thatcδ, obtained by the min-max principle (7.5), is
positive for sufficiently smallδ > 0.

First, let’s assume thatψ satisfies a growth condition stronger than (1.5),

(7.1) lim
z→−∞

ψ(x, z)

|z|p
= 0 uniformly for x ∈ � ,

wherep < k∗ − 1 and is sufficiently close tok∗ − 1 whenn > 2k and p > k is a
large positive number whenn ≤ 2k.

For smallδ > 0, let ηδ ∈ C2(�) be a nonnegative function satisfying 0≤
ηδ(x) ≤ 1, ηδ(x) = 0 when dist(x, ∂�) ≤ δ, andηδ(x) = 1 when dist(x, ∂�) ≥
2δ. We defineη0(x) ≡ 1 if δ = 0. Let

(7.2) ψδ(x, t) = ηδ(x)ψ(x, t)+ δ2 .

Let’s first consider the following modification of (1.1):

(7.3)

{
Sk(D2u) = ψδ(x,u) in �

u = 0 on∂� .

Let

Jδ(u) = −1

k + 1

∫
�

uSk(D
2u)dx −

∫
�

9δ(x,u)dx

where9δ(x,u) = ∫ 0
u ψδ(x, t)dt. Let u1 ≡ 0. By (1.4) there existsu2 ∈ 8k

0(�)

such thatJδ(u2) < −1 for all smallδ > 0. Let ũ1 and ũ2 be smooth admissible
functions sufficiently close tou1 andu2, respectively, such thatSk(D2ũi ) > 0 on
� (i = 1,2), Jδ (̃u1) is sufficiently small, andJδ (̃u2) < −1. Denote by0 the set of
“admissible paths” connectingu1 andu2, namely,

(7.4) 0 = {
γ ∈ C([0,1],8k

0 ∩ C3,1(�)) :
γ (0) = ũ1, γ (1) = ũ2, Sk(D

2γ (s)) > 0 on�
}
.

Let

(7.5) cδ = inf
γ∈0 sup

s∈[0,1]
Jδ(γ (s)) .

It is easy to see that
c0 ≥ limδ→0cδ .

Sinceψδ(x, t) ≤ ψ(x, t)+ δ2, we have

c0 = lim
δ→0

cδ .

We claimc0 > 0. Indeed, by (1.3) there exists a sufficiently smallθ > 0 such that

9(x,u) ≤ λ1(1 − θ)

k + 1
|u|k+1 + C|u|p+1 .
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Hence

J(u) ≥ 1

k + 1
‖u‖k+1

8k
0

−
∫
�

9(x,u)dx

≥ 1

k + 1
‖u‖k+1

8k
0

−
∫
�

[
λ1(1 − θ)

k + 1
|u|k+1 + C|u|p+1

]
dx .

By (6.2) and the Hessian Sobolev inequality,

J(u) ≥ θ

k + 1
‖u‖k+1

8k
0

− C‖u‖p+1
8k

0
.

Hence for some smallσ > 0, we have

J(u) ≥ θ

2(k + 1)
σ k+1 > 0 ∀u ∈ 8k

0 , ‖u‖8k
0
= σ .

In particular, letσ = θ (if θ > 0 is small); we obtain

c0 ≥ θk+2

2(k + 1)
.

We also havecδ ≥ 1
2c0 > 0 for all smallδ > 0.

Remark.We can choosẽu1 such thatJδ (̃u1) < θk+2/8(k + 1) for all smallδ > 0.

Step 2

In this step we show thatcδ is a critical value ofJδ; i.e., there is a solutionuδ of
(7.3) with Jδ(uδ) = cδ under the boundedness assumption (7.8) below.

Let γ ∈ 0 satisfy
sup

s∈[0,1]
Jδ(γ (s)) ≤ c0 + K

where 0< K < c0/4. Let’s consider the problem

(7.6)

{
F(D2u)− ut = µ[ψδ(x,u)] in Q = �× [0,∞) ,

u(x,0) = γ (s), u(·, t) ∈ 8k
0 ,

where F(D2u) = µ[Sk(D2u)] andµ is specified in Section 5, where now the
exponentp in (5.4) is the one in (7.1). We further assume thatµ satisfies

(7.7) (t − s)(µ(t)− µ(s)) ≥ (t − s)(t1/p − s1/p) for t, s> 0 .

Observe that by (7.1)

µ[ψδ(·, z)] ≤ C(1 + z) for largez.

By Theorem 5.2, there exists a global solutionus(x, t), s ∈ [0,1], for (7.6). We
may assume directly that functions on the pathγ satisfy the compatibility condition
in Theorem 5.2, for otherwise we could make a modification of the functions, as
we did in the proof of Theorem 6.2.
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For any givenτ > 0, γ τ (s) := us(·, τ ) is a path in8k
0(�) but not in0. Note

that

γ1 = {
us(·, t) : s = 0,0 ≤ t ≤ τ

}
, γ2 = {

us(·, t) : s = 1,0 ≤ t ≤ τ
}
,

are two paths in8k
0(�). Similar to (6.2) we have

d

dt
Jδ(u

s(·, t)) ≤ 0 .

That is,us(·, t) is a negative gradient flow for the functionalJδ. Connectγ1, γ τ ,
andγ2 together to form a path in0 and denote it bỹγ τ .

Let It = {s ∈ [0,1] : Jδ(us(·, t)) ≥ cδ − K }. Clearly It is a closed subset
of [0,1], and It ⊂ It ′ for any t ≥ t ′. Let I∞ = ⋂

t≥0 It . I∞ cannot be empty,
otherwise there would exist someτ > 0 such thatIτ = ∅, i.e., Jδ(us(·, τ )) ≤
cδ − K for all s ∈ [0,1]. It would follow that sup{Jδ(u) : u ∈ γ̃ τ } ≤ cδ − K , a
contradiction to the definition ofcδ.

For any fixeds0 ∈ I∞, let us assume for a moment that

(7.8) |us0(x, t)| ≤ M0 ∀t ≥ 0 .

Then by Theorem 5.2, we conclude that

d

dt
Jδ(u

s0(·, t)) → 0 ast → ∞ ,

sinceJδ(us0(·, t)) ≥ cδ − K . Moreover, we can select a sequence{tj }, tj → ∞,
such that{us0(·, tj )} converges to a solutionuδ of (7.3) satisfying

(7.9) cδ − K ≤ Jδ(uδ) ≤ cδ + K .

In particular,uδ 6≡ 0. By the maximum principle,uδ is a negative solution of (7.3).

Step 3

Let

K 0 =
{

t : d

dt
Jδ(u

s0(·, t)) < −K

}
.

Since
cδ − K ≤ Jδ(u

s0(·, t)) ≤ cδ + K for all t ≥ 0 ,

we have mes(K 0) < 2. In this step we prove that for anyt 6∈ K 0, the following
bounds hold: ∫

�

(−us0)Sk(D
2us0)dx ≤ C ,(7.10)

∫
�

|us0ψδ(x,u
s0)|dx ≤ C .(7.11)

In the following we drop the superscripts0 in us0 for simplicity.
For anyt 6∈ K 0, by (6.2) we have
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�

(
Sk(D

2u)− ψδ(x,u)
)(
µ(Sk(D

2u))− µ(ψδ(x,u))
)
dx

= − d

dt
Jδ(u(·, t)) ≤ K .

It follows, by (7.7), that

∫
�

(
Sk(D

2u)− ψδ(x,u)
)(

S1/p
k (D2u)− ψ

1/p
δ (x,u)

)
dx ≤ K .

Let α = S1/p
k (D2u) andβ = ψ

1/p
δ (x,u). Then

∫
�

|α − β|p+1 dx ≤ C
∫
�

(α p − β p)(α − β)dx ≤ C K .

We have∣∣∣∣∣
∫
�

u(α p − β p)dx

∣∣∣∣∣
≤ C

∫
�

|u| · |α − β| · |α p−1 + β p−1|dx

≤ C

[ ∫
�

|α − β|p+1 dx

] 1
p+1
[ ∫
�

|u|p+1 dx

] 1
p(p+1)

[ ∫
�

|u|(α p + β p)dx

] p−1
p

≤ C K1/(p+1)‖u‖1/p
L p+1

( ∫
�

|u|α p dx

) p−1
p

+
( ∫
�

|u|β p dx

) p−1
p
 .

By (7.2) and (1.6),

9δ(x,u) = −δ2u +9(x,u)ηδ(x)

≤ δ2|u| + 1 − θ

k + 1
|u|ψ(x,u)ηδ(x)+ C

= δ2

(
1 + 1 − θ

k + 1

)
|u| + 1 − θ

k + 1
|u|ψδ(x,u)+ C .
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Hence

Jδ(u(·, t)) =
∫
�

[ −u

k + 1
Sk(D

2u)−9δ(x,u)

]
dx

≥
∫
�

[ −u

k + 1
Sk(D

2u)− 1 − θ

k + 1
|u|ψδ(x,u)

]
dx

− C

(
1 + δ2

∫
�

|u|dx

)

≥ − 1

k + 1

∣∣∣∣ ∫
�

u(α p − β p)dx

∣∣∣∣+ θ

k + 1

∫
�

|u|ψδ(x,u)

− C

(
1 + δ2

∫
�

|u|dx

)
.

(7.12)

Using the Hessian Sobolev inequality, we have∫
�

|u|ψδ(x,u)dx

≤ C

∣∣∣∣ ∫
�

u(α p − β p)dx

∣∣∣∣+ C

(
1 + δ2

∫
�

|u|dx

)

≤ C K1/(p+1)‖u‖1/p
L p+1

( ∫
�

|u|α p dx

) p−1
p

+
( ∫
�

|u|β p dx

) p−1
p


+ C

(
1 + δ2

∫
�

|u|dx

)

≤ C K1/(p+1)

∫
�

|u|α p dx +
( ∫
�

|u|α p dx

) 1
p
( ∫
�

|u|β p dx

) p−1
p


+ C

(
1 + δ2

∫
�

|u|dx

)
.

Further, by the Hölder inequality, we have∫
�

|u|ψδ(x,u)dx ≤ C K1/(p+1)
∫
�

|u|α pdx + C

(
1 + δ2

∫
�

|u|dx

)
.
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Another application of the Sobolev inequality gives

(7.13)
∫
�

|u|ψδ(x,u)dx ≤ C

[
1 + (

δ2 + K 1/(p+1)
) ∫
�

|u|α p dx

]
.

Combining (7.12) and (7.13) and choosingK , δ > 0 small, we obtain (7.10) and
(7.11) for anyt 6∈ K 0.

Step 4

PROOF OF(7.8): Let Mt = supx∈�δ |u(x, t)| and M̃t = supx∈� |u(x, t)|. If
Mt is not uniformly bounded, we can find a sequence{tj }, tj → ∞, such that
Mtj → ∞ and

(7.14) Mtj ≥ Mt for t < tj .

Sinceψδ = δ2 in � − �δ by (7.14) and the maximum principle, we havẽMt ≤
Mtj + Cδ2 for t ∈ (0, tj ). By (5.5) we have

M̃t ≥ M̃tj e
C1(t−tj ) , t ≤ tj .

HenceMt ≥ C Mtj for t ∈ (tj − 2, tj ).

Let τ ∈ (tj − 2, tj ) but 6∈ K 0 and y ∈ �δ such thatu(y, τ ) = −Mτ . By the
interior gradient estimate (5.6), we have

u(x, τ ) ≤ −1

2
Mτ if x ∈ BK (y) ,

whereK = θMβ
τ , θ > 0 depends only onr = dist(y, ∂�) (r ≥ δ) and the constant

C2 in (5.6), and

β = 1 − p + k

2k
= k − p

2k
.

WhenMτ is large,K < δ andBK (y) ⊂ �.
By (7.10) and the Sobolev inequality, we have

‖u(·, τ )‖Lq(BK (y)) ≤ ‖u(·, τ )‖Lq(�) ≤ C ,

where we can takeq = k∗ if k < n/2 andq arbitrarily large ifk ≥ n/2. On the
other hand, from what we have just shown,

‖u(·, τ )‖q
Lq(BK (y))

≥ C KnMq
τ ≥ C Mq+nβ

τ .

Whenk ≥ n/2, we chooseq large so thatq + nβ > 0 and reach a contradiction.
Whenk < n/2, thenq = k∗ and p < k∗ − 1; again we haveq + nβ > 0 and the
same contradiction. So (7.8) must hold. �
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Step 5

We have obtained a solutionuδ of (7.3) that satisfies (7.9). In this step we prove

(7.15) Mδ = sup{|uδ(x)|, x ∈ �}
is uniformly bounded and{uδ} converges to a solution of (1.1).

Similar to (7.10) and (7.11) (notice thatu is independent oft in their proof), we
have ∣∣∣∣ ∫

�

uδSk(D
2uδ)dx

∣∣∣∣ ≤ C ,(7.16)

∣∣∣∣ ∫
�

uδψδ(x,uδ)dx

∣∣∣∣ ≤ C(7.17)

for someC independent ofδ.
Whenk > n/2, we can combine (7.16) and the Sobolev inequality to obtain the

boundedness ofMδ. Whenk = n/2, by the same reasoning we have‖ψδ‖L p(�) ≤
C for somep > 1. HenceMδ is uniformly bounded. See the discussion in the last
paragraph of Section 2.

Whenk < n/2, we need a rescaling argument. Suppose on the contrary that
Mδ → ∞ (taking a subsequence if necessary). Let the supremumMδ be attained
at xδ, and let

vδ(y) = M−1
δ u(R−1

δ y + xδ) , R−1
δ y + xδ ∈ � ,

whereRδ = M (p−k)/2k
δ . Thenvδ(0) = −1, −1 ≤ vδ(y) ≤ 0 in Dδ, andvδ satisfies

Sk(D
2
yv) = ψ̃δ(y) =: M−p

δ ψδ(R
−1
δ y + xδ) in Dδ ,

whereDδ = {y : R−1
δ y + xδ ∈ �}. By (7.1) we have

(7.18) ψ̃δ(y) → 0 uniformly for y ∈ Dδ asδ → 0 .

A direct computation shows that∫
Dδ

|vδ(y, t)|p+1 dy = M−c1
δ

∫
�

|u(x, t)|p+1 dx

where

c1 = p + 1 − n(p − k)

2k
> 0 .

Hence

(7.19)
∫
Dδ

|vδ(y, t)|p+1 dy ≤ C .

Let
Eδ = {

y ∈ Dδ : vδ(y) ≤ −1
2

}
.
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By (7.19),

mes(Eδ) ≤ C .

Applying Theorem 2.1 tovδ(y)+ 1
2 on the domainEδ, we conclude by (7.18) that

vδ(y) ≥ −3
4 for largeMδ .

But, on the other hand,vδ(0) = −1 by definition. We reach a contradiction. Hence
{Mδ} is uniformly bounded.

By (3.14) and Theorem 4.2, we can now select a subsequence of{uδ} that con-
verges to a solutionu = u(K ) of (1.1) such that

J(u(K )) = lim
δ→0

Jδ(uδ) .

By (7.9) we havec0 − K ≤ J(u(K )) ≤ c0 + K . SendingK → 0 and again
employing Theorem 4.2, we conclude that (choosing a subsequence if necessary)
u(K ) → u ∈ C3,α(�), andu is a solution of (1.1) satisfying

J(u) = c0 .

By Theorem 3.4, we haveu ∈ C0,1(�).

Step 6

Finally, we remove assumption (7.1). We may select a sequence{ψj (x, z)}
satisfying (1.3) through (1.6) such thatψj (x, z) = ψ(x, z) when|z| < j and each
ψj (x, z) satisfies (7.1). By the above argument there exists a solutionuj ∈ 8k

0 of
Sk(D2u) = ψj such thatJj (uj ) = cj , where

Jj (u) = − 1

k + 1

∫
�

uSk(D
2u)−

∫
�

9j (x,u) ,

9j (x, z) = ∫ 0
z ψ(x, s)ds, andcj is a critical value ofJj , defined by a corresponding

min-max scheme such ascδ in (7.6). As in to step 1 it is easy to show thatc′ ≤
cj ≤ c′′ for c′ andc′′ independent ofj . We claim‖uj ‖L∞(�) is uniformly bounded.
Indeed, by

J(uj ) =
∫
�

[ −uj

k + 1
Sk(D

2uj )−9j (x,uj )

]
and

0 =
∫
�

[−uj Sk(D
2uj )+ ujψj (x,uj )] ,

we have, ∣∣∣∣ ∫
�

[
1

k + 1
ujψj (x,uj )+9j (x,uj )

]∣∣∣∣ ≤ C .
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By (1.6),

(7.20)

∣∣∣∣ ∫
�

ujψj (x,uj )

∣∣∣∣ ≤ C

whereC is independent ofj . Consequently, we also have

(7.21)
∫
�

(−uj )Sk(D
2uj ) ≤ C .

With (7.20) and (7.21) we can repeat the argument of step 5 to conclude the uniform
boundedness of{‖uj ‖L∞(�)}. Similarly, by Theorem 4.2 there is a subsequence of
{uj } that converges to a solution of (1.1) such thatJ(u) = c0, i.e., u 6≡ 0. The
regularity ofu follows from Theorems 3.4 and 4.2. This completes the proof of
Theorem 1.2.

As a final remark we point out that condition (1.6) is often referred to as the
subcritical growth condition, which is used for the uniform estimates in steps 4
and 5; see (7.8) and (7.15). Such estimates are not true if the subcritical growth
condition is violated. For the semilinear elliptic equation (1.2), one can work in
the Sobolev spaceW1,2(�). Then condition (1.6) (withk = 1) ensures that the
functionalJ satisfies the Palais-Smale condition [5], and there is no need for such
uniform estimates.
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