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Abstract

By studying a negative gradient flow of certain Hessian functionals we establish
the existence of critical points of the functionals and consequently the existence
of ground states to a class of nonhomogenous Hessian equations. To achieve
this we derive uniform, first- and second-order a priori estimates for the elliptic
and parabolic Hessian equations. Our results generalize well-known results for
semilinear elliptic equations and the Monge-Ampeére equati@®. 2001 John

Wiley & Sons, Inc.

1 Introduction

In this paper we study the Dirichlet problem of tkéHessian equatiork(=
1,2,...,n)

S«(D?u) = ¥ (x,u) inQ
u=2~0 onag2,

where Q is a bounded domain iR" and ¥ (X, u) is a nonnegative function in
Q x R. HereS(D?u) is thek-Hessian operator af. Recall that it is defined in the
following way: Leti = (A1, Ao, ..., An) be the eigenvalues of the Hessian matrix
of u, D?u, and letS((») be thek elementary symmetric function of. Then
S(D%u) = S(A(D?u)). Alternatively, it can be written as the sum of the< k
principal minors ofD?u.

To work in the realm of elliptic operators, one has to restrict the class of func-
tions and domains. Following [4], a functianin C2(Q) N C°%(Q) is called ak-
admissible function if.(D?u(x)), x € €, belongs to the symmetric cone given by

Me={AeR":§M) >0,j=12...k.

Note thatl'y always contains the positive coiig = {A € R" : A1,...,An > 0}.
Thek-Hessian operator is elliptic at akyadmissibleu, i.e.,

{S!(D?w)} = {afS((Dzu)}
rij

(1.1)
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is positive definite. On the other hand, a hypersurfac®'inis k-convex (re-
spectively, strictlyk-convex) fork € {1, 2,...,n — 1} if its principal curvatures

Kk = (k1, k2, ..., kn_1) satisfy S(x) > 0O (respectivelyS((x) > 39 > 0 for some

8o) everywhere on the hypersurface. It is shown in [4] that whenever (1.1) admits
a classical solution i€2(R), it is necessary thak2, regarded as a hypersurface in
R", be strictly(k — 1)-convex.

From now on we shall always assumds strictly (k — 1)—convex and look for
k-admissible solutions in (1.1). Notice thak@admissible solution is subharmonic
and, by the maximum principle, is negative@n This, in particular, means that
the value ofy (X, z) for z > O is irrelevant in solving (1.1).

The Hessian equations (1.1) constitute an important class of fully nonlinear el-
liptic equations. It is semilinear whdn = 1 and of Monge-Ampére type when
k = n. General fully nonlinear elliptic equations have been studied by many
authors including [2, 4, 9, 10, 13, 18, 19, 27]. A priori global estimates for the
solutions can be found in [4, 9] whete is nondegenerate (i.e/;, > ¥, > 0) and
in [13] for the degenerate case (i.¢.,> 0). The regularity result was extended
to Hessian quotient equations in [19]. With the a priori estimates at hand, one can
derive existence and unigueness results by using the method of continuity. A basic
assumption for which the method works is thatmust be monotone increasing
in z

In many situations the monotonicity condition is not satisfied g, 0) =
0. In this case (1.1) always admits the trivial solution= 0. However, one
is interested in looking for nonzero solutions that do not change sigp, ie.,
ground states. Let’s look at the semilinear case

—AU=vY(X,U) inQ

1.2
(1.2) u=20 onog2.

The search for ground states was motivated by applications in physics and ge-
ometry. Nowadays there is a rich spectrum of results concerning the ground states
for (1.2); see, for instance, [3, 5, 15]. Among them a fundamental and influential
result is the following theorem of Ambrosetti and Rabinowitz [1]:

THEOREM 1.1 Suppose thay € C%1(Q x R) satisfies

- Y(X,2) - Y(X,2) , V(X 2)
lim <A lim > A im ———— =
z—0 z L z—>+00 Z L z—+00 z(N+2)/(N—=2)

0,
uniformly in©2, and there exists a constafte (0, %) such that
z
/ ¥ (X, 8)ds < 0zy (X, 2)
0

for large z. Ther(1.2) has a positive solution.

Here A, is the first Dirichlet eigenvalue for the Laplacian operator. When ap-
plied to the special casg = |u|P~1u, it shows that a positive solution exists if
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l<p< 2%5 On the other hand, the well-known Pohozaev’s identity implies that
no positive solution can exist whegmn> 2%% and<2 is star-shaped.

In this paper we develop a variational theory for (1.1). Our main result is a full
generalization of Ambrosetti-Rabinowitz’s result to other Hessian equations.

THEOREM 1.2 Consider(1.1) wherey € C1(Q x R-) andQ is of class G
Suppose thal (X, z) > 0for z < 0 and satisfies

. Y(X, 2)
(1.3) ZILrQ_ 2K < A,
Y (X, 2)
(14) o |Z|k > A1,
and

iMoo 253 =0 ifk <

NIS

(1.5)

M, o L8:2 =0 ifk =

NIS

for some large p> 0 uniformly in$2, and there exist constanis> 0 and large M
such that when z — M,

1-90
kK+1

Then(1.1) has a nontrivial k-admissible solution in3G () N C%*() for some
a € (0,1).

0
(1.6) / Y(X,s)ds < |z|y (X, 2).

Herek* is the critical exponent for thie-Hessian operator,

k .
=D if2k <n
K* 1 < o0 if2k=n

=00 if 2k > n.

(Nevertheless, our recent studies show that one shouldtaken(k+ 1) /(n— 2k)
when X > n in some other cases.) Moreove, is the “first eigenvalue” for the
k-Hessian operator. Actually, it was proven in [28] that for eldhere exists a
uniquei, > 0 such that the problem

S«(D?u) = Aqul® inQ

u=20 ono
admits an admissible solution that is unique up to multiplication by a positive num-
ber.

The condition (1.4), which corresponds to the superlinear case in (1.2), will
also be referred to as the superlinear case. Under (1.6), it is equivalent to

, X, Z)
lim v( = 00
Z——00 |Z|k
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We may also consider the sublinear case, that is,
. X, Z
im Y2

Z——00 |Z|k

uniformly on$2. The following theorem, which is easier to prove than Theorem 1.2,

covers the sublinear case.

THEOREM 1.3 Consider(1.1)wherey € C(Q x R-) N CY(Q x R™) andQ is
of class C1. Suppose that (x, z) > 0for z < 0 and satisfieg1.7)and

. Y(X,2)
1.8 I
(1.8) A0 Tz
uniformly onQ. Then(1.1) has a nontrivial k-admissible solution in3CG(Q) N
C(Q) for somex € (0, 1).

(17) <M

>)Ll

In particular, Theorems 1.3 and 1.2 apply to
v(x,2) =1zI°, pe (k) and(k, k* — 1), respectively.

Special cases of Theorems 1.2 and 1.3 were established in [25, 28Har and
in [6] for generakk in the radial case.

Our proof of these theorems explores the variational structure of the problem
[26]. First of all, we have (see, e.g., [17])

9 ..
(1.9) > K(SJ (D?u)) =0 foreachj =1,2,...,n,
i ]

(we have dropped the subscripin S'(j (D?u)). Hence
20— 15y 9 (D20 = 25 9y Si (D2
S(D?u) = kZu.,s (D?u) = kzaxj (u; S!(D?u)).

Denote by®k = () the collection of all admissible functions vanishing on the
boundaryd 2. We introduce the functional

1 -
Ex(u) = _/usk(DZu)dx: EfSJ(D2u)uiu,- dx, ue .
Q Q
SinceS! (D?u) is positive definite, we havEy(u) > 0 for anyu e d)'(‘,. Setting
ullgl = [Ex@ I u e o,

Il - ||q>5 is a horm ind>('§ [29]. Using (1.9) it is easy to see that the Euler-Lagrange
equation of the functional
-1
J(u) = m/u&(Dzu)dx—/W(x, u)dx
Q Q
where

0
\IJ(x,z)=/ ¥(X, s)ds
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is precisely (1.1).

The critical exponenk* for the Hessian operator was first determined in [26].
In fact, similar to the semilinear elliptic equation (1.2) we have a corresponding
Pohozaev’s identity which shows that (1.1) does not admit admissible solutions if
Q is star-shaped angl = |u|P, p > k* — 1, or more generallyy satisfies

k
k+lzw(x,z)+xi\11i(x,z) >0 inQxR.

It is clear that one needs to establish a Sobolev-type inequality for the Hessian
operator in the study of the existence theory. The Sobolev inequality was proven
in [24] in the convex category. Its full version was subsequently established in
[20, 29]. Following the latter, we state the following:

nwv(x,z) —

THEOREM 1.4 (Hessian Sobolev Inequality)et 2 be a(k — 1)-convex domain
with C? boundary and let te ®§(Q).

() Forl<k<?1,

lullLe@) < Cllullgr, VP € [1K*],

where C depends only on n, k, p, aisz}.
(i) Fork=13,
IullLg @ =< Cllullgx .
where C depends only on n adime, w(t) = ™" — 1, and L%, ()
is the Orlicz space associated wih
(i) For3 <k=<n,
lullLe@) < Cliullgx »

where C depends on n, k, afd

We note that in (i), the best constabis attained whe® = R" by the function
U() = (L4 [x[?) &/

at the critical cas@ = k*. Incidentally, we point out that further integral estimates
can be found in [22, 23]. For instance, it is shown thatuer Q>'(§,

(1.10) Iullwzey < CllullLig,

for any p < nk/(n — k) andQ’ € 2, whereC depends only om, k, p, and
dist(®2’, 92). In particular, any admissible function is locally Hélder-continuous
whenk > n/2. In [22] we also proved a Poincaré-type inequality for admissible
functions. A special case is

2/(k+1)

(1.12) f IDu?<C /uSk(DZu) . Ue dKDQ).
Q

Q

With the Sobolev inequality at hand, we can, in principle, use the powerful
variational methods developed for the semilinear problem (1.2) to study (1.1). A
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main technical difficulty is that, however, unlike the linear elliptic operator where
W? P regularity theory is available, the regularity theory for the Hessian operators is
not so easy. We need to establish appropriate uniform estimates, gradient estimates,
and in particular the interior second-order derivative estimate. For the uniform
estimates we shall show that the solution is bounded when the fungtior{1.1)

lies in LP(2) for somep > max(1, n/2k). The interior second-order derivative
estimate is even more interesting. We state it as an independent result.

THEOREM 1.5 Suppose) € CH1(Q x R), ¥ > o > 0, for some constanty in
Q. Then for any admissible solution ¢f.1), we have

(1.12) u*(x)|D?u(x)| < C,
where C depends on n, %y, ||¥||c11, and|ullc: but is independent a®.

The power 4 in (1.12) can be improved to any constant larger than 1; see the
remark after Theorem 4.1. Theorem 1.5 extends a well-known result of Pogorelov
on the Monge-Ampére equations [7, 16]. In this case, due to the special structure
of the Monge-Ampére equation, the power 4 in (1.12) can be replaced by 1.

Now, one may attempt to use the mountain pass lemma to prove Theorem 1.2.
However, since the relevant functionalis defined in a cone rather than a Hilbert
space, we cannot apply the result directly. Instead we shall use its underlying idea.
We shall introduce the parabolic Hessian equation

1(S(D?W) — Uy = p(¥(x, W), (x,1) € 2 x (0,00),

to serve as the negative gradient flow forHere, in order to preserve admissibility,

u is a certain concave function. Given a path [0, 1] — ‘DIS satisfying certain
conditions, we shall show that there exists sawe[0, 1] such that, fou(0, t) =

y(s), the flow has a global solution converging to a solution of (1.1). For this
purpose we need to establish the corresponding a priori estimates for the parabolic
equations.

This paper is arranged as follows: In Section 2 we derive a uniform estimate
for solutions of (1.1). In Section 3 we derive an interior gradient estimate. A by-
product of this estimate is a Liouville theorem for entire solutions of (1.1) when
¥ = 0. Interior second-order estimates will be discussed in Section 4. The main
result, Theorem 4.1, contains Theorem 1.5 as its special case. We begin the study
of the parabolic Hessian equation in Section 5 and apply it to prove Theorem 1.3
in Section 6. Finally, in Section 7 we prove Theorem 1.2.

A draft of this paper was completed in 1996. After that we learned that some
estimates in this paper, including the uniform estimate in Section 2 and the interior
gradient estimate in Section 3, were also proven by Trudinger [20, 21]. However,
the proofs are different and the estimates are not completely the same. Since they
are of independent interest, we decided to keep them. For further development,
one may consult [23]. Finally, we would like to thank the referee for a careful
reading of an earlier version of the paper. His/her comments have been very useful
in improving the presentation.
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2 Uniform Estimates
In this section we derive a uniform estimate for the solution of (1.1).

THEOREM 2.1 Consider(1.1)for 1 < k < n/2 wherey is independent of z,
¥ e LP(Q) for some p> n/2k, and< is of class C. Then there exists a positive
constant C> 0 depending only n, k, p, and the volunse| such that for any

admissible solution u,

(2.1) UllLg < CIY e, -

PrROOF. There is no loss of generality in assuming tfaf = 1 and||y||Lr <
1. Then it suffices to prove that for any solutiomf
(2.2) S(D%u) = KXy (x) in €,
(2.3) lUllLe@) <1
holds provide is sufficiently small.
From equation (2.2) and by the Hessian Sobolev inequality, we have

k1 _

k k
Il = = KA llelluliie = CKTjlull g

/ K Ky (x)u(x)dx

Q

wherep andg are conjugate. By the Sobolev inequality again, we obtain
lullr < Cllullgg < CK

whereC depends only on, k, and p. Hence

(2.4) [{ux) < —3}| = CK.

By Sard’s theorem, for a.¢, 0 > t > infq u(x), the level sefu(x) < t} has
a (k — 1)—convex, smooth boundary. For simplicity we may assume that for each
positive j, the boundary ofu(x) < —>"!_, 27"} is smooth.

Taking (u, @2, ¥, K) as (ug, R0, %o, Ko), we are going to define a sequence
(uj, 25, ¥j, Kj), ] = 0, inductively as follows: LeR; be defined by

an) = [{u00 < -3}
By (2.4) we have
(2.5) R < CK/’".
Define
Q=R Hux) < -3} and uj1(x) = 2(u;(Rjx) + 3).
S0|2j 41| = 1 andu; . satisfies

S&(D2Uj11) = Kf 11100 in Q41
Uj+1=0 Onan+1,
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where nowy; 1 andK;, 1 are given by
Vi) = RYPy(Rx) and Kj1=2R""PK;, respectively.
Itis easy to see

IVitallie i < 1¥jlliee) = 1.
By (2.5) we have

(2.6) Kj+1 = K|
providedK; is sufficiently small. Hence, similar to (2.4) we have
{uj+200 < —3}| < CKjyq forall j.
Now
{200 < =3} = R {ui 00 < =5 = 3}

j
{uo(x) < - Z 2 }
i—1

]

JEN

i=1

We obtain, in view of (2.5) and (2.6),

j
{uo(x) < - Z 2 }
i—1

Hence (2.3) follows provide@ Ky < 1. This completes the proof of Theorem 2.1.
O

j
< CKj1 ][R = (CKp)'*.
i=1

2.7)

We point out that an estimate similar to (2.1) was established by Trudinger [20].
His proof is different from ours. Here the iteration argument may be useful in other
situations.

We note thatwhek = n/2 andyr € LP(Q2), p > 1, a modification of the above
argument also yields (2.1) with the const@ntlepending on dians2). Indeed, for
anyqg > 1,68 > 0, by the Hessian Sobolev inequality and the Holder inequality,
there exist€C > 0 depending only on, g, §, and|<2| such that

lullL=(@) < Cldiam()1°ull g -

The estimate (2.1) follows from the above iteration providléichosen sufficiently
small; see also (3.13) and (3.14) in [20].

3 Gradient Estimates

In this section we derive an interior gradient estimate for (admissible) solutions
of the following Hessian equation:
(3.1) S(D?u) = ¥ (X, u, Vu) in

wherey is a nonnegative Lipschitz-continuous function. The interior gradient
estimate was also proven in [21]. Here we give a different proof, following [30].
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First we introduce some inequalities for the polynomi&lé.). More inequal-
ities on (1) can be found in [8, 14]. Let's deno®(A) = 1 andS((A) = 0O for
k <0andk > n,

Sigip-i; (V) = 5<()»)|M1=M2=“.=Mj o
andS,i,.i;(A) = 0if i =isforsome 1<r <s < |.
Leth = (A1, Ao, ..., Ap) € Tkwith Aq > Ay > --- > Ap; then
S-1n(A) > Sccrn1 >0 > So1(d) > 0.
Itis proven in [14] that
Sc—1.k(A) > 01 S&—2.1k(A) for somed = 6(n, k) > 0,
from which it follows that

(3.2) S—1i(A) = Ohghp- - Ay fori >k
for some different. Using

1
(3.3) S-1(V) = n_k+1 Z S,
we have

S1(A) = Ohgho- - Ak
The following lemma will not be used until the next section. Nevertheless, it is
appropriate to place it here.

LEMMA 3.1 Supposé. € Ty andi; > A > --- > A,. Then there exist§ =
6(n, k) > 0such that

(3.4) AS-11(0) = 0&(A) .
Moreover, for any € (0, 1) there exists K> 0 such that if
S(A) <KX or A <Ky fori=k+1,2...,n,

we have
(3.5) MS-11(A) = (1 -8 SA) .
PROOF. We have
(3.6) S = Sn1M)A + SV -
By
S < Cak L5 < ChaSc1a(),
(3.4) follows.

To prove (3.5) we first consider the ca&gr) < Kk'i. We may assumg (1) =
1. If (3.5) is not true, then

S-11(h) < (- 3))‘1_1 < Kl/k;

hence
Sai) < CF¥P0) < CKYED,
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In view of (3.6), (3.5) follows.

Next, we consider the caggj| < Kiifori = k+1,2,...,n. Observing
that if A, < A1, we haveS(L) <« A¥, and so (3.5) holds. Hence we may assume
|Ai| < A fori = k41,2, ..., n. Inthis case botlg (1) andr; S_1.1(A) are equal
toA1An - - - Ak(1 4+ 0(1)) with o(1) — 0 asK — 0. Again (3.5) holds. Il

Now, we turn to the interior gradient estimate. et C3(R2) be a solution of
(3.1) and2 = B (0). Let

G(X, §) = uz )W) p(X)

wherep(x) = (1 — |x|?/r5)*, ¢(u) = 1/(M —uw)*2, andM = 4 sup|u|. Suppose
G attains its maximum at = Xp andé = e;. Then, atxp,

0=Gj = uipp + uli¢'p + U1pp; ,

i.e.,

uq ,
(3.7) Ui = ——(Ui¢'p + @oi)

e
and the matrix

{Gij} = {unjep + Uilij¢'p + UrUiUj@" p + Urgp)
+ (U Uj + Ugju)e'p + @(Ugi pj + U1jpi) + U1’ (Ui pj + Ujpi) }
is nonpositive. Differentiating equation (3.1) gives
Sluj1 = Vay .
Note thatS!u;; = ky. We obtain, by (3.7),
0> Sij Gij
= 0oV1¥ + k¢ p + urg” pST iy + upS! g

+ U190’ S (Ui pj + Uy i) + 28T Uy (U@ p + @p;)

(3.8)
20'%\ .
= ppViy + kKuyo'p + U1,0<¢” T )SJ Uiuj + U19S’ pij
T 2u O i
—u1¢'ST Uiy + ujp) — ——Spip;
We have )
" 2¢ < iM—S/Z
— 16 '

Multiplying (3.8) by M®*2 and noticing tht’ > 0, we have

1 CM?u; CMu? CM2u,
5/2 11,3 1
(3.9) 0= ¢ppoM C11,//-i-—16,05 Ul—/S( 2 + - + e ),

where$ = )" S' andC is independent af andM.
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Suppose now thab (xp) is so large that
M
puy > 87 atxg.

It follows from (3.7) that

¢
Upp < —Zu1 <0 atxg.
We claim
(3.10) S''> 98 forsomed =6(n, k).
In fact, we have

Sca(D?U) = S"+ unSc2a(w) — ) U5 Scaai(p) < ST
i=2

Since S._1(D?u) is invariant under rotation of coordinates, (3.9) follows from
(3.3). Multiplying (3.9) byp?, we have

M
(3.11) pu1 < C1+Co,
provided

(3.12) Vi | = oud)8 asu; — oo.

To estimate$ we rotate the axes, which doesn’t change the valug, b that
under the new coordinatgs= (y1, y», . .., Yn), D?u is diagonal, and
Uyy, = Uypy, = -0 0 = Uyy, .
Then at the point wher& reaches its maximum,

/

¢ 2
Uyayn = Uxgxg = —2_U1-

From equation (3.1) we have
¥ = Uy Scun) + Sen(A), A = A(D?).
Since
Sc1.0(A) = C[ScnMI* DX 0 < uyy, Sc1n(M) 4+ CISc 1M V&Y.
So

k-1 o\ ! k-2 Cug?
Sc-1:n(A) = Cluyy, [ > C o) U and &> - atxo,

whereC > 0is independent df1 andr. Therefore (3.12) is satisfied if there exists
a nonnegative functioh(t) with h(t)/t — 0 ast — oo such that

(3.13) [l + 12] - 1Pl + 1¥pl - P12 < h(|p/**)  as|p| — oo.
We have proven the following result:
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THEOREM 3.2 Let u be a k-admissible €solution of (3.1) wherey > 0 is
Lipschitz-continuous anf = B, (0). Under(3.13)we have

[Vu@Q)| <C,
where C depends only on n, k, r, h, asubj|u|.

Here we have automatically extended the notiok-afimissibility toC2-func-
tions with A(D?u) € Ty, the closure of",. Observe that our argument does not
requireys to be strictly positive. Moreover, an examination of the above proof
shows that one can také; = 0 in (3.11) whemy = 0. As a result, we have
the following Liouville property for entire solutions of the homogeneous Hessian
equations:

THEOREM3.3 Let ue C3(R") be a k-admissible solution of

S(D?u) =0 inR", which satisfies lim uey _ 0.

IX|—>o00 |X|

Then u is a constant.

Gradient estimates on the boundary can be obtained by a construction of bar-
riers [4, 9] whenuppg € CHY, ¢ € L>(Q), anddQ is strictly (k — 1)—convex,
as is always assumed. To get a global gradient estimate, we can use the auxiliary
function G as above, where now is replaced by the constant 1. Wh@nattains
its maximum at some point if2, at this point we have, from (3.8),
/2

2 .
14 )SUUin <0.
@

V1Y + kupyrg’ + ul(w” -
Hence we have the following global gradient estimate:

THEOREM 3.4 Consider(3.1) whereyr > 0 is Lipschitz-continuous and satisfies
(3.13) Let u be a k-admissible solution ¢8.1) with u|;o € C1. Then

IVul <C,
where C depends on n, k, $up, |ul, [[UllcL1pq), andI2.

For our problem (1.1), (3.13) is satisfied wheiix, z) is Lipschitz-continuous
atz = 0. Wheny is not Lipschitz-continuous & = 0, as may happen in the
sublinear case, we note that for amy d>‘(§ satisfying

suplul <C; and |ull iy <C>,
Q
by the subharmonicity af, for anys > 0, there exist® > 0 depending only 08,
C4, Cy, and2 such that
(3.14) Uu<—0 inQ;={xeQ:distx, Q) > §}.

Therefore, our interior estimate, Theorem 3.2, is still applicable.
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4 Second-Order Estimates

In this section we establish an interior a priori estimate for the second-order

derivatives of solutions to the problem

(4.1)

S(D?u) = ¥ (x,u) inQ
u= UO(X) onos2 ,

whereyr satisfies
(4.2) Y(X,2) > Yo >0
for some constanty andQ is a strictly(k — 1)—convex domain. Let

F(D%) = u(S(D?u)),

wherepu is a positive, monotone increasing function such thét) is concave in
r. In this section we will take

w(t) =t¥k.

Itis proven in [4] that this choice qi fulfills our requirement. We may rewrite the
equation in (4.2) as

F(D%u) = f(x,u),

wheref (x, z) = u(y (X, 2)). Differentiating this equation with respectxp gives

Fijuij, = f, . Fjuij,, + (FijrsUij, Ursy = f,

where

aF y
Fij = aT(Dzu) = /'S (D).
1]

When(D?u) is diagonal at a given point, we have

M/S<—2;ir ()\) + M//S&—l;i S(—l;r ifi = ja r=s
(Fijrs = § =1/ S—2iij (1) ifi £ j,r=1j, ands=i
0 otherwise

at this point. Hence

n
Z FiiUii,, = f,, + ZM/S(—Z:iJuizjy
i ij=1
n
(4.3) — Z[M”&—Li&—l;j + 1’ Sc—2:ij Ui Ujj 5
i j=1
> f,,.

As contrast to linear elliptic equations, it is well-known that in general there is

no interiorC*-regularity for solutions of (4.1) even whehis analytic [16, 27].
Nevertheless, under the additional assumption thiat strictly k-convex, i.e., if
there exists an admissible functiensuch thatu < w in Q andw = u on 9€,
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we will derive an interioiC-estimate fou. Our derivation is similar to those in
[7, 16] where the Monge-Ampére equation is considered.
Consider the auxiliary function

1
G(x) = pB(X)w(EIDUIZ)Uss,

whereg =4, ¢(t) = (1— 4)7Y/8, M = 2sup, |IDul?, and
p=w-—Uu.

Suppose thaG attains its maximum atg and in the directiorf = (1,0, ..., 0).
Assume thaD?u is already diagonal ad with uy1 > U > - - - > Upn. Then atxo,

4.4) 0=(ogGy =p2 + & 4% i _12 ..
1Y @ Uqq

(4.5) 0> Z Fii (log G);i

[z -] wnl2 2] wn -]

U1 u]_]_

We consider two cases separately.

Casel. uk > Kuig, whereK is a small positive constant to be determined.
By (4.4) we have

(4.6) b _ —(ﬂ n ﬁﬁ) .
U1 ® p
Putting (4.6) into (4.5) yields

2
@47) 0= BF [ﬂ—(1+2ﬁ) }+Fn [ﬂ—s }JFF.. i
P % @? U1z

Here and below, summations inin these inequalities are understood. First, by
equation (4.3),
Fiuigi > f11> —C(1+u1).

Next, we have

Gii

2 (p// (p/z
Fi [_ =3, 2] N (_ - 3—2) Fiu2u? + - uJ it + = Fn i
(4.8) (Y % @ @ ¢

> gFiiuﬁ + %0,
% ®
which, after using (3.2),

2 2 2
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whereF = Y ', Fi andd = 6(n, k, K). Therefore, we have

Fi [@—3 }zes«ruil—c.

% @2
Finally, by our special choice af,
(4.9) Fiipi > —Fiiui = —u/'S'uji = —ku'y.
Putting these inequalities together, we obtain
2 kBu
(4.10) 0= 6Fu2, —CF o - LY ¢
P P

Note that whenu,, > Kuqq, we have
F > Fon > 0p'ugalog - - - U k1 > 91U|ﬁl-
Multiplying (4.10) by p?#¢?, we deducés(xg) < C.

Case2. u < Kuzz (and soujj < Kuggfor j =k, k+1,...,n). Inthis case
we have, by (4.4),
(4.11) &z——<ﬁ+ﬂ>, i=23...n.
1Y B\¢ Uiz

Putting (4.6) fori = 1 and (4.11) foi = 2,3, ..., ninto (4.5), we obtain

y 2 2
0> {Z[ﬂﬁ. ; +F..(%—3%)} —ﬂ(1+2ﬂ)Fn%}

i=1

(4.12) u 2\ U3
{ZFII L (1+—>ZFH%}
p i=2 U1
=11+ 1.
By (4.8) and (4.9) we have
F kBu' 1 kB
|129Fiiu Ci— ﬂ/:w—CZEQFlluil_ 'BMI//—C
providedp?u?, is sufﬁaently large. By (3.4)
k !/
Iy > 01/ YUy — Puv _ C.
Next we claim
f
(4.13) I, > L.
Uil
Granted the validity of (4.13), (4.12) reduces to
f kB
0> 61/ Yly 1+E—M—c.
Ui P

Multiplying the above inequality by?¢ we obtainG(xp) < C.
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To prove (4.13) we first note that by the concavityrgf

2

0 O

n
- Z (" Sc-1i Sc—1j + ' Sc—2j Ui 1Ujj1 = — Z

ij=1

Hence by (4.3),

n n
2 u?,.
Unlo > fi1+ E M/SKfZ;ijuizjl — (1+ E) Fi —&
i j=1 i

° 2\ S 1
(o35
i=2

Sincep = 4, we only need to show

u(S(A)Uji1Ujj1 > 0.

3 S 1
S2.1i — 2 L
U11

> 0.

But this follows from (3.5) wherK is sufficiently small. Hence (4.13) holds. We
have thus proven the following result:

THEOREM 4.1 Consider(4.1) whereys € CH(Q x R) satisfies(4.2). Let u e
C3>L() N C%L(Q) be a k-admissible solution d#.1). Suppose that there is an
admissible functiomw such thatw > u in @ andw = ug on 9. Then

(4.14) (w — w*x)|D?uX)| < C,
where C depends only on n,dup, |Du(x)|, andy.

Now Theorem 1.5 follows from this theorem since we can take= 0 when
Upg = 0.

We point out two facts. First, the power 4 in (4.14) can be improved to any
constant larger than 1. Indeed, for afly> 1, let 0 < § < B — 1. Following the
above derivation, we have, instead of (4.12),

n y " 2 2
0 > {Z |:,3Fii % + Fii (% - Ca%)} — ,3(1+2,3)F11%}

i=1

n U1 1ii ( 1+ 5) d u%li }

+ Fi— -1+ — Fi—=t.
So the above argument is still valid, so long as we chapse ¢(t) such that
¢"¢ — Csp'? > 0fort < |jufL~. For the Monge-Ampére equatigk = n), due
to its special structure the power in (4.14) can be made to 1. Second, Theorem 4.1,
whose validity relies on (4.2), cannot be applied to prove Theorems 1.2 and 1.3
directly. Instead, we apply it to the subdomaipin (3.14). An examination of the
proof of Theorem 4.1 shows that the following result holds:
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THEOREM 4.2 Consider(1.1) whereys € C11(Q x R~). Suppose there exists a
nonincreasing function h satisfying® = 0 and h(z) > 0 for z < 0 such that
¥ (X,2) > h(z) forall z < 0. Then for anys > 0, there is a constant C> 0
depending on n, k§, h, M = sup, |u], [V llc1i@x(—m.—s/2)), andsug|Du(x)| :
u(x) < —4/2} such that

(4.15) sup|D?u(x)| : u(x) < -8} < C.

Estimate (4.15) shows that equation (1.1) is uniformly elliptic in any compact
subdomain of2. If one further assumes thaf2 is C3* and strictly(k — 1)—convex,
then the following global second-order derivative estimate holds [29]:

sup|D?u(x)| < C,
XeQ
whereC depends om, K, ¥, [[U]|c1g,, and the boundar§<2.

Whenvr satisfies (4.2), first- and second-order derivative estimates have been
obtained in [4, 9]. Hence (1.1) is uniformly elliptic and further regularity follows
from Krylov’s regularity theory [12]. We state the result as follows:

THEOREM 4.3 Consider(1.1) wherey € C14(Q x R~) and  is of class C*
and strictly(k — 1)—convex. Suppose th@.2) holds. Then its solution satisfies

lullcae ) < C

for somea € (0, 1), where C depends only on n, &, sup, |u], andy up to
second order.

When 4 is further assumed to be monotone increasing, iaone may use the
method of continuity to show that (1.1) admits a unique solution.

5 Parabolic Hessian Equations

Let Q be a strictly(k — 1)—convex domain iR" with a C3>!-boundary. Let
Q =Qx (0,00 andQt = @ x (0,T]. We denote by*Qt the parabolic
boundary ofQ+. In this section we consider the parabolic equation
F(D?u) —uy = f(x,t,u) in Qg
(5.1) u=20 ono2 x [0, T]
u=ug on{t =0}
whereup € ®K(Q), f € C3(Qr x R), andF (D?u) = u(S(D?u)). The function
wu is chosen to satisfy’ > 0, u” < 0,
(5.2) tIim u(t) = +o0,
(5.3) im p(t) = —o0,
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and such thaF is concave with respect to its arguments. Moreover, we require

(5.4) =" =1 K
: = or some .
H logt tsmall P>

For the parabolic equation (5.1), a functioim CZ{ (Qr) is said to bé-admissible
if u(-, t) is k-admissible for eache [0, T].

In this section we will just prove some results that are needed for the proof
of Theorems 1.2 and 1.3. We refer the reader to [11, 22, 29] for discussions on
various parabolic Hessian equations. First we establish a gradient estimate for
solutions of (5.1).

THEOREM 5.1 Consider(5.1) where Hr) = w(&(r)), u is specified as above,
Up € ®§(Q), and f € COL(Qr x R). Suppose further that the compatibility
condition F(D?ug) = f (X, t, ug) ondQ N {t = 0} holds, and

[f(X, 1,2 <Co(1+12)) V(X,t,2) € Qr xR.

Then for any k-admissible solutions u it&Q), we have, fob <t < T,

(5.5) u(x, t) > —e“! sup|ug(x)|,
Q
1
(5.6) [Viu(x,t)] < C2(1_|_ r_Mt(p-i-k)/Zk) ,
(5.7) lu (X, t)] < Ca(1+ My),

where M = SUpy, ul, r = min{1, dist(x, 02)}. Here G depends only on n, k, p,
and G; and G and G depend additionally ongiand the gradient of f.

ProoF. (5.5) is obvious as the right-hand side is a lower barrier. To prove (5.6)
and (5.7) we assume for simplicity thist; > 1. First we prove (5.7). Let
Ut
M—-u’
whereM = 2M,. If G attains its minimum at the parabolic boundaryQ;, we
haveu; > —C for someC > 0 depending on the initial valug. Hence we may
assumes attains its minimum at some point {@;. At this point we have

G8) U +(M—uwu?<0, upr+M-wltuwuy =0, j=12...,n,

and the matrix

G =

(5.9) {uij + (M — u) " (UirUj + Ujel; + Ugli) + 2(M — u) U ujug )
= {uiji + (M —uw)tu;; } > 0.
Differentiating equation (5.1) gives

(5.10) Fijuijt —ux = fr + fuur,  Fjui; —ue = f 4+ fuur.
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We may assuma, < 0 at this point. From (5.8), (5.9), and (5.10), we have

M —wuf < —Fjuij + f+ foue < (M — ) tugFjug + fi+ fu
< fi + fuuy.
Henceu; > —CM.
Similarly, let
u
G=—1—.
M+u

If G attains its maximum o0@*Qy, we haveu; < C. So, assume it attains its
minimum at some point ilQ;. At this point we have

U — M +uwtu2>0, upy—M+uwtuwu =0, forj=12...,n,
and
{uijg — M+ uu;} < 0.
Hence we have
M+ w2 < Fjuje — fr — fuuy
(5.11) <M +u tuFRjui; — fr — fuu
= (M + u) *kup' S(D?u) — fr — fuug.
In caseS(D?u) < 1, by (5.1) we have
ur = F(D?u)y— f <1—f.

In caseS(D?%u) > 1,
1 1
M%D%=EM&®%D=ﬁw+U.

It follows from (5.11) that
p—k u? _ kfuw
p M+u™ p(M+u
Hence in both casas < CM holds.
Next we prove (5.6). For simplicity let’'s take= T. Our proof is somewhat

parallel to the proof in the elliptic case in Section 3. Let us assBp@) is a ball
inside2 and consider

ft — fuut .

wherep(x) = (1—|x|2/r?), (u) = (M —u)~%, andx € (0, 1) is a small constant
to be chosen later. Suppose that
sup{G(x,t,&) : (x,t) € B (0) x [0, T], |&] = 1}

is attained atxg, tg) andéy = (1, 0, .. ., 0). Then at(xg, tg) we have

(5.12) 0= (logG) = 2 + & L 41
P @ Uz
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and

0> Fij(logG)ij — (log G);
:Fij(ﬂ_pi_g>+ﬁj<@_¢i_<g>_ﬁ
P P @ 2 4

By (5.12) we obtain
(Pii LPiIP (G S99 o 1
OZ FIJ(F_ 7)+F|J<?_37)_m+u_l(lzljullj _ult)

C " /2 / f
Z——2T+<¢——C(p—2 F11U%+g(|:ijuij —u) A+ .
P ® Uz

% %
Choosingx € (0, 1) so small that

- -C > >0,
@ @
and noticing thaf;;u;; > 0 andy’ > 0, we have
0 C gﬂ/ fl
0> —Fpu?— —F — Zu 4+ —.
VAR o t+ ™
Therefore, we have either
CM?
(5.13) Fuuf < —F
or
2 2 ¢ f1 2
(5.14) Fluui <CM9l —uy — — | <CM~-.
@ uz
By (5.12) we have
Up; = —U1<ﬂ + gu1> .
1Y @
We may assume
C 2
Uip < _Mul’

for otherwiseu;p < 2|p1¢/¢’| would hold and (5.6) would follow. By a rotation
of coordinates we may supposg = 0 at(Xo, o) fori # j andi, j > 2, and

Upp < U3z < --- < Upp. Let'swrite Aj = ujj. Theni = (A1, Ao, ..., An) € Tk
since forj <k,
(5.15) S = §(D%u) + §-213 (Wuf = §(D?) > 0.

It follows that
Sc-1(D?u) = SH(D?u) + up S (D%U) — uf Sca1i (M) < SH(D?)
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and
1 -
S*(D%u) > S_1(D%) = e Z S (D%).

SoF;; > ChkF holds. Putting this into (5.13), we see that (5.6) is valid.
Next, observe that by (5.15)

0< &M = MSc11() + Se1®) < 1S + VW)
As a result,
Sc11(h) = Clag*
that is,
Cu2k—2
11 2 1
(5.16) SH(D*u) =~ -

From (5.7) and equation (5.1), we have

S(D?u) < CMP at(xo,t)) andso u'(S(D%u)) > at (Xo, to)

C
Mp-1
by our choice ofx. Consequently, by (5.16),

2k—2
Fi1 > % .
Putting this inequality into (5.14) yields the desired estimate
U; < CMPHO/Z gt (x40, to) .

SinceG attains its maximum atxg, to),
P9 (Xo, to)
pp(X, t)
So (5.6) holds. The proof of Theorem 5.1 is complete. O

C
ug (X, t)| < Uz (Xo, to) < ?M“’*k)/”.

Theorem 5.1 gives an interior estimate for the spatial derivatives of the solu-
tions. A global gradient estimate can be obtained by modifying our proof. In view
of (5.7), we can write (5.1) as an elliptic equation with bounded right-hand side.
By constructing barriers, one can show that

IVxu(x, )l < C(1+ MPY),  xeaq.
Now, the global gradient estimate at interior points follows by the above argument,

where we now take = 1 in the definition ofG.
We state a global existence and regularity result for (5.1) for later use.

THEOREM5.2 In addition to the hypotheses in Theorém, let's assume further
that iy € C>1(Q) and f € C*1(Q1 x R). Then for any T> 0, there is a unique
k-admissible solution & C31****/(Qr), « € (0, 1), of (5.1)that satisfies the a
priori estimate

<
lUllggmasarzgry < C.
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where C depends on n, k&, T, ||ullL~(qr), Uo, @and f. The constant C can be
chosen independently of T if f and its derivatives up to second order are uniformly
bounded.

Theorem 5.2, whose proof is omitted, can be proven in the same way as
theorem A.1in [25, 29], where the special casé) = logt is considered. Similar
results can also be found in [11, 22]. Note that we do not require the right-hand
side to be nonnegative, due to the conditiofh) - —oo ast — 0.

6 The Sublinear Case

In this section we prove Theorem 6.3, which contains Theorem 1.3. As we
stated in the introduction, for any strictiix — 1)—convex domair2, there exists a
uniquei; > 0 such that the problem

S(D2u) = Aqul® inQ
u=20 ono

has a nonzero admissible solutign called the eigenfunction of thie-Hessian
operator, which is unique up to the multiplication of a positive number. In fact, the
(first) eigenvaluée.; has the following variational characterization:

A= inf {Ex(u) : ull kg = 1, u € OF}.

Recall that

— 1 2
Ju) = m/u&(D u)dx—/\IJ(x, uwdax,
Q Q

whereW (x, z) = fzo ¥ (X, s)ds. Letu(x, t) be a solution of
F(D?u) —uy = f(x,u) in x (0,c0)

(6.1) u=20 onad2 x [0, co)
u=up on{t =0},

whereF (r) = w(&(T)), f(x,2 = u( (X, 2)), andu has been specified in Sec-
tion 5. We have

d

SIC ) = - f U (S((D2U) — v (x, U))dx

Q

(6.2) __ / (S(D2W) — P (x, ) (1(S(DW) — (. u)))dx
Q

<0

Hence (6.1) is a negative gradient flow of the functiodal
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In this section we consider the sublinear case (1.7), that is,
, X, Z
lim Y (X, 2)

z——00 |Z|k

< A1 uniformly forx € Q.

Under this assumption, we have

A-0r1 i1
. N7 Al
(6.3) (X,2) <Cy+ K1 |z|

By the variational characterization of the eigenvalue, we have
—0 5
Ju) > —— | ug(D“u) — Cs.

“k+1
Q

for somed > 0.

Henceld is bounded from below and(u) — oo as||u||q,(k) — oo in the sublinear
case.

LEMMA 6.1 Consider(1.1)where(1.7) holds. There exists G 0 depending only
onn,k, G, @ (in (6.3)), and2 such that for any admissible solution @f.1),
suplux)| = C.

XeR
PrROOF By (1.7) we have
Y(x,2) < (K- (1 —0)2*, z<0,

for some constark = K (@, C;) > 0. If the lemma is not true, there is a sequence
{ym]} satisfying the inequality above such that the equation (1.1yfer ¢, has a
solutionu, € ®f with

Mm = sup|um| > co  asm — oo.
Q

Let vy = Um/Mpy. We havev,, — v by (1.10), and by the weak convergence
of the Hessian measures [23]is a subsolution of

(6.4) S(D?u) = (A — O)ul*.

By constructing appropriate barriers, one infers from the comparison principle [21,
23] thatv is Lipschitz-continuous 08$2. Leta > 1 be sufficiently large such that

w = ap < vin Q, wherey is the eigenfunction of the Hessian operator. Then
andw are, respectively, a supersolution and a subsolution of (6.4). It follows that
there is a solutiorp; € d>('§(§2) of (6.4) satisfyingy > ¢; > w. However, this

is in conflict with the uniqueness of the first eigenvalue [29]. So the lemma must
hold. O

First we prove an existence result assumjing strictly positive.

THEOREM 6.2 Let Q2 be of class &%, y € C*Y(Q xR™), ¥ > ¥ > 0, and
(1.7) holds. Then(1.1) has a k-solution ue C3%(Q) that is a minimizer of the
functional J in®¥.
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PROOF. We choose a sequence of positive functipiig (x, 2)} in Ct1(Q x R)
such that/m < ¥, ¥m(X, 2) = ¥ (X, 2) when|z| < m, andy, (X, 2) is independent
of zwhen|z| > 2m. Let

In(U) = ﬁ/u&‘k(Dzu)dx—/\IJm(x, uydx
Q Q
where¥n (X, 2) = fzo Ym(X, s)ds. Let R > 0 be so large that
(6.5) inf{Jn(u) : u € @, Iullgk = R} > 1+inf {In(u) : u e ok} .

For K > 0 small, we choosgg € <I>'c‘, such thatd,(ug) < K + infq,lé Jm(u). By
Theorem 5.2 there is a solutien= um k of the problem

F(D?%u) — u; = fm(X,u) in 2 x (0, 00)
u=20 onod2 x [0, 00)
u=ug on{t =0}

where f (X, U) = u(¥m(X, u)).

We point out that all hypotheses in Theorem 5.2 can be verified easily except
the compatibility condition. This condition can be satisfied by a slight modification
of the initial function [29]. Indeed, for any initial functionp € ®§(2) N C31(Q)
such thatS(D?up) > 0 onQ. Letg e CY1(Q) such thaty = S(D?up) in Qs
(for somes > O sufficiently small) andy = f,(x,0) = f(x,0) on <, and let
Up € d>('§(£2) be the solution o5 (D?u) = g. Then satisfies the compatibility
condition ond2 x {t = 0}, and we also havén(Uy) < K + infq,g Jn(u). Hence,
we may replacel by Uy, if necessary, and then apply Theorem 5.2.

By (6.2) and (6.5)]u(-, t)||q,5 < Rforallt > 0. Since for each fixeth, ¥y, is
uniformly bounded, by Theorem 5.2 we have

“u”C%tl(QXR) <C.

It implies that

d

&Jm(u(-,t)) — 0 ast — oo.

Hence we can select a sequerit¢ — oo such that{u(x, t;)} converges to a
solutionw = wm k € ®K(Q) of S(D?U) = Ym.

By Lemma 6.1{wm « } is uniformly bounded for all sufficiently smak > 0.
Hence form sufficiently large,wnm k is indeed a solution of (1.1), sinag, =
when|z] < m. Theorem 6.2 follows by sending — O by using the a priori
estimate in Theorem 4.3. O

The strict positivity condition in Theorem 6.2 can be relaxed to (1.8), namely,

. X, 2)
lim v "
z—0~ |Z|

>)Ll
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uniformly for x € Q. Itimplies

mf Ju) <0

uefb

sinceJ(8p) < 0 whens > 0 is small andy is the eigenfunction of the Hessian
operator. We have the following precise statement of Theorem 1.3:

THEOREM 6.3 Consider(1.1)wherey € C(Q x R-) N CY(Q x R™) andQ is
of class G*. Supposar(x,z) > 0when z< 0 and it satisfieg1.7) and (1.8)
uniformly inQ. Then(1.1) has a k-admissible solution @ C*%(Q2) N C°(Q) for
somex € (0, 1) that is negative irf2. Moreover, it is a minimizer of the functional
J overdf.

ProoF. Theorem 6.3 follows from Theorem 6.2 by approximation. Indeed, let
{yn} be a sequence of positive functions@1(Q x R-) that converges tg in
C(©2 x R™). By our assumption oy we may assume eaah, > h for someh
satisfyingh(0) = 0 andh(z) > 0 for negativez. By Theorem 6.2, for each
there is a minimizeu, in <I>('§ of the corresponding functiond},. Without loss of
generality we may assume

Jn(Uup) < —C <0

for somecy independent oh. By Lemma 6.1,{u,} is uniformly bounded. By
(3.14), Theorem 3.2, and Theorem 4@,} is also uniformly bounded i€2 ().
Hence{un} subconverges to a solutienof (1.1), andu is a minimizer of the func-
tional J in CI>0 Note that by (6. 5){”Un”q>k(9)} is uniformly bounded, and the
Poincaré-type inequality (1.11) ensures that in fai continuous irc and van-
ishes ondQ2. Alternatively, one can construct a Lipschitz-continuous subsolution
ue d>5(§2) of (1.1) such that for all large, there holdsu, > u, which forces
u=00nodL. O

We remark that the strict positivity conditiofi(x, z) > 0 in Theorem 6.3 can
be replaced by (x,z) > 0. Indeed, by Lemma 6.1, the sequence of solutions,
{un}, is uniformly bounded. By (1.10) we may assume, by passing to a subse-
guenceu, — u. Thenu is a weak solution of (1.1) [21, 23].

7 The Superlinear Case

In this section we finally prove Theorem 1.2. We will use the idea in the proof
of the mountain pass lemma, making use of the gradient flow generated by the
parabolic Hessian equation (6.1) to prove Theorem 1.2. Because the right-hand
sidey of (1.1) equals zero on the boundary, we need to approxighdig positive
functions so that Theorem 5.2 is applicable.

The proof of the theorem is quite long. We divide it into six steps.
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Step 1
In the first step we show thaj, obtained by the min-max principle (7.5), is
positive for sufficiently smals > 0.
First, let's assume that satisfies a growth condition stronger than (1.5),
(7.1) jim V(%2

Z——00 |Z|p

=0 uniformly forx € Q,

wherep < k* — 1 and is sufficiently close tk* — 1 whenn > 2k andp > kis a
large positive number wheam < 2k.

For smalls > 0, letn; € C?(Q) be a nonnegative function satisfying ©
ns(X) < 1, ns(X) = 0 when distx, Q) < §, andns;(X) = 1 when distx, 02) >
25. We defineng(x) = 1if § = 0. Let
(7.2) Ys (X, 1) = ms (0P (X, 1) + 8%

Let’s first consider the following modification of (1.1):

o .
(7.3) S(D4U) = ¢¥s(x,u)  in
u=20 onoc2.

Let 1

Js(u) = ﬁ/u&(Dzu)dx—/%(x, u)dx

Q Q

whereWs(x, u) = juo ws(X, t)dt. Letu; = 0. By (1.4) there exists; € q>g(sz)
such thatJ;(u,) < —1 for all smalls > 0. Letl; andU, be smooth admissible
f_unctions sufficiently close ta; andusy, respectively, such th&& (D?U;) > 0 on
Q (i =1, 2), Js(Uy) is sufficiently small, and;(U,) < —1. Denote byl the set of
“admissible paths” connecting; andu,, namely,

(7.4) T ={y eC(0,1], ®§§NC>*(Q)) :

y(0) = U1, y(1) = Uz, S(D?(s)) > 0onQ}.
Let
(7.5) C; = inf sup Js(y¥(9)).

Y€l se[0,1]
It is easy to see that

Co > lim;_oCs .
Sinceys(x, t) < ¥ (X, t) + 82, we have

Co=Ilimc;.
§—0
We claimcy > 0. Indeed, by (1.3) there exists a sufficiently sndalt 0 such that

MA-0)
Ux,u) < ——u Clu|Ptt.
(X, u) < 1 [uf"* + Clu|
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Hence

1 gkt /
J(u) = mllullq)(k) W (x, uydx

Q
1 k+1 MA-0)
> — || === ClulP+ ldx .
> gt = [ [P e ot ax
Q

By (6.2) and the Hessian Sobolev inequality,

0
JU) > ——ull*tt = Clju|Pit.
W = g - Clun;

Hence for some sma#t > 0, we have

0
J(u) > kT 1)ak+1 >0 Vuedf, [ullgg=o0.
In particular, leto = 6 (if & > 0 is small); we obtain
9k+2
> .
“©Z k¥ D

We also have; > 3co > 0 for all smalls > 0.
Remark.We can choos#; such thatl;(Ti;) < 6%2/8(k 4 1) for all smalls > 0.

Step 2

In this step we show thaj is a critical value ofJs; i.e., there is a solutions of
(7.3) with Js(us) = ¢; under the boundedness assumption (7.8) below.

Lety € T satisfy

sup Js(y(s)) =G+ K
se[0,1]

where 0< K < ¢p/4. Let's consider the problem
F(D2u) — uy = u[ys(x, w)] in Q=Q x[0,00),

(79 u(x,0) = y(s), u(,t) € g,

where F(D?u) = u[S(D?u)] and i is specified in Section 5, where now the
exponentp in (5.4) is the one in (7.1). We further assume thaatisfies

(7.7) (t —s)(u(t) — n(s)) > (t —s)¥YP —s¥Py fort,s > 0.
Observe that by (7.1)
wlvs(-, 21 < C(1+2) forlargez

By Theorem 5.2, there exists a global solutioiix, t), s € [0, 1], for (7.6). We

may assume directly that functions on the patatisfy the compatibility condition

in Theorem 5.2, for otherwise we could make a modification of the functions, as
we did in the proof of Theorem 6.2.
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For any givernt > 0, y7(s) := us(-, 7) is a path ind)'(‘,(Q) but notinI". Note
that
n={wct:s=00<t=<t}, p={uct:s=10=<t=<r},

are two paths irqD'g(Q). Similar to (6.2) we have

d
aJa(US(-, t) <0.

That is,us(-, t) is a negative gradient flow for the function&l. Connecty,, y7,
andy, together to form a path ifi and denote it by".

Letl; = {s € [0,1] : J(u®(-,t)) > c; — K}. Clearlyl; is a closed subset
of [0,1], andl; C Iy foranyt > t'. Letly, = (oo lt- |l Cannot be empty,
otherwise there would exist some > 0 such thatl, = @, i.e., Js(us(-, 7)) <
cs — K for all s € [0, 1]. It would follow that supJs(u) : u € '} < cs — K, a
contradiction to the definition afs.

For any fixedsyy € 1, let us assume for a moment that
(7.8) [U2(x,t)] < Mg Vt>0.
Then by Theorem 5.2, we conclude that

%th(us‘)(-,t)) — 0 ast - oo,

since Js(u¥(-, t)) > ¢; — K. Moreover, we can select a sequefigg, t; — oo,
such thaffu®(-, t;)} converges to a solutiam; of (7.3) satisfying

(7.9) c— K < JUs) <c+K.
In particular,us # 0. By the maximum principleys is a negative solution of (7.3).

Step 3
Let )
KO=1t: —Js(u®(,t K.
{ at s(UP(-, 1) < }
Since
c;s — K < J(u®(-,1)) <c;+ K forallt >0,

we have me&k?) < 2. In this step we prove that for anyg K, the following
bounds hold:

(7.10) /(—USO)S((DZUSO)dx <C,
Q
(7.11) / U2y (x, u)|dx < C.
Q

In the following we drop the superscrigg in u® for simplicity.
For anyt ¢ K%, by (6.2) we have
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/ (S«(D?U) — (X, ) (L (S(D?U)) — p(Ps(x, u)))dx
Q

d
=~ hUen) =K.

It follows, by (7.7), that

/(sk(DZu) — (%, W)(SP(D2) — ¥, /P(x, u))dx < K.

Q

Leta = §/P(D2u) andg = v,’P(x, u). Then

f|a—ﬂ|p“dxs C/(ap—ﬁp)(a _ Bydx =< CK.
Q Q

We have

/u(ozp — BP)dx

Q

- C/ Ul -l — B - ™t + BPYdx
Q

P FETD
5C[/Wa—ﬂﬁ“d4 [/ﬂm“%ﬂ} [/ﬂmmp+ﬂ%d4
Q Q Q
p-1 b1
p p
< CKY®PH Dy vk, [(fuade) + (/IUIﬁde> } .
Q Q

By (7.2) and (1.6),

p-1
p

Wi (X, U) = —82U + W (X, u)ns(X)

, . 1-90
< &°lul + mluli/f(X, wns(x) +C

1-6 1-6
=81+ — C.
( + k+1>IUI+ k+1|uws(x, u) +
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Hence

B D) = / [%&(Dzm—%(x, u)}dx
Q

—-u 2 1-06
zf[ma(D W — g Ul u)}dx

Q

(7.12) —C<1+82/IUIdx)

Q
> _i“/u(ap _ ,Bp)dX
Q

- k+1

—c<1+52f Iuldx) .
Q

Using the Hessian Sobolev inequality, we have

0
tir / luls (X, u)
Q

fluws(x, uydx

Q
< C‘/U(O{p — BP)dx
Q

+c(1+52/ |u|dx>
Q

b1 p-1
p p
< CKY®H |tk [(/uapdx> + (fIUIﬂde) }
Q Q
+C(1+82/|u|dx>

Q

1 b1
p p
< CKY(+D |:/|u|apdx+<fUapdx> </|u|ﬁpdx> }
Q Q Q
+C(1+82f|u|dx> .
Q

Further, by the Holder inequality, we have

/|U|1/18(X, U)dXSCKl/(p“)/Iulapdx+C<l+82/|u|dx).
Q Q Q
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Another application of the Sobolev inequality gives
(7.13) / [ulyrs(X, Wdx < C[l + (52 + K1/(p+1>) / [ueeP dx} .
Q Q

Combining (7.12) and (7.13) and choosikgé > 0 small, we obtain (7.10) and
(7.11) for anyt ¢ K°.

Step 4

PROOF OF(7.8): LetM; = sup.q, IU(x, )| and M, = SUp.q [U(X, t)|. If
M; is not uniformly bounded, we can find a sequefigg t; — oo, such that
My — oo and

(7.14) My > M fort <t.

Sinceys = §2in Q — Qs by (7.14) and the maximum principle, we havg <
My + Cs?fort € (0, t)). By (5.5) we have

M > My e“, t <.

HenceM; > CM; fort € (t — 2, t)).

Lett € (t — 2,t)) but¢ K®andy € Qs such thau(y, r) = —M,. By the
interior gradient estimate (5.6), we have

1
ux,7) < —§Mf if x € Bk(y),

whereK = 6M#, 0 > 0 depends only on = dist(y, 32) (r > §) and the constant
C,in (5.6), and
. p+k k-—p
p=1 2k 2k
WhenM; is large,K < § andBk (y) C .

By (7.10) and the Sobolev inequality, we have

luG-, D llLagyy < UG, llLa < C,

where we can takq = k* if kK < n/2 andq arbitrarily large ifk > n/2. On the
other hand, from what we have just shown,

q n +n,
”u('vT)HLQ(BK(y)) = CK Mg = CM? ﬁ.

Whenk > n/2, we choosej large so that) + ng > 0 and reach a contradiction.
Whenk < n/2, thenq = k* andp < k* — 1; again we haveg + ng > 0 and the
same contradiction. So (7.8) must hold. O
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Step 5
We have obtained a solutian of (7.3) that satisfies (7.9). In this step we prove
(7.15) M; = sud|us ()|, X € 2}

is uniformly bounded anfu;} converges to a solution of (1.1).
Similar to (7.10) and (7.11) (notice thais independent dfin their proof), we
have

(7.16) ‘/UBS((Dzug)dx <C,
Q

(7.17) ‘/U(ﬂ/f{;(x, us)dx| <C
Q

for someC independent oé.

Whenk > n/2, we can combine (7.16) and the Sobolev inequality to obtain the
boundedness dfl;. Whenk = n/2, by the same reasoning we ha\gs ||| r) <
C for somep > 1. HenceM; is uniformly bounded. See the discussion in the last
paragraph of Section 2.

Whenk < n/2, we need a rescaling argument. Suppose on the contrary that
M; — oo (taking a subsequence if necessary). Let the supreMyie attained
atxs, and let

u(Y) = My URTY + %), Rily+x€Q,
whereR; = M™% Thenuvs(0) = —1, —1 < v5(y) < 0 in Dy, andu; satisfies
S«(DZv) = ¥s(y) =: M; Pys(Ry'y + x5)  in D;,
whereD; = {y : Ry''y + x5 € Q}. By (7.1) we have
(7.18) ¥s(y) — 0 uniformly fory € Ds ass — 0.

A direct computation shows that

/|v5<y,t>|"+1dy= M§°1flu<x,t>|p+1dx
Ds Q

where ( o
_ _np—=K
Ci=p+ 1 oK > 0.
Hence
(7.19) /Iva(y,t)lp“dyfc.
Ds
Let

E; = {yE Ds @ vs(y) < —%}
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By (7.19),
mesE;s) <C.
Applying Theorem 2.1 tes(y) + % on the domairk;, we conclude by (7.18) that

vs(y) > —2  forlargeM;.

But, on the other hands(0) = —1 by definition. We reach a contradiction. Hence
{M;} is uniformly bounded.

By (3.14) and Theorem 4.2, we can now select a subsequerjag}dhat con-
verges to a solution = u, of (1.1) such that

J(U)) = (Is|—>mo Js(Us) .

By (7.9) we havecy — K < J(uk)) < ¢ + K. SendingKk — 0 and again
employing Theorem 4.2, we conclude that (choosing a subsequence if necessary)
Uiy — U e C3%(Q), andu is a solution of (1.1) satisfying

J(u) =¢g.
By Theorem 3.4, we have € C%1(Q).

Step 6

Finally, we remove assumption (7.1). We may select a sequgice, 2)}
satisfying (1.3) through (1.6) such thaf(x, z) = ¥ (X, 2) when|z| < j and each
¥; (X, z) satisfies (7.1). By the above argument there exists a squ}i@MD'c‘, of
S(D?u) = y; such thatJ; (u;) = cj, where

1
Jj(u) =—m/u&<D2u>—/%(x, u,

Q Q

V(X,2) = fzo ¥ (X, s)ds, andg; is a critical value ofJ;, defined by a corresponding
min-max scheme such &g in (7.6). Asin to step 1 it is easy to show th@t<

¢j < ¢”for ¢’ andc” independent of . We claim||u; ||~ () is uniformly bounded.
Indeed, by

J(uj) = / [k_rjlsk(ozuj) — Wi (X, u,-)]
Q
and

0= /[_uja(DZuj>+ujwj(x,uj)],
Q
we have,

<C.

1
‘/[mujm(x, UJ)+\IJj(X,Uj)i|
Q
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By (1.6),
(7.20) quiﬁj(x, up| <C
Q
whereC is independent of. Consequently, we also have
(7.21) /(—uj)a(DZuj) <C.
Q

With (7.20) and (7.21) we can repeat the argument of step 5 to conclude the uniform
boundedness df|u; ||~ }. Similarly, by Theorem 4.2 there is a subsequence of
{u;} that converges to a solution of (1.1) such tdau) = co, i.e.,u # 0. The
regularity ofu follows from Theorems 3.4 and 4.2. This completes the proof of
Theorem 1.2.

As a final remark we point out that condition (1.6) is often referred to as the
subcritical growth condition, which is used for the uniform estimates in steps 4
and 5; see (7.8) and (7.15). Such estimates are not true if the subcritical growth
condition is violated. For the semilinear elliptic equation (1.2), one can work in
the Sobolev spac&/*?(2). Then condition (1.6) (witkk = 1) ensures that the
functional J satisfies the Palais-Smale condition [5], and there is ho need for such
uniform estimates.
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