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Abstract. This is a brief survey of recent works by Neil Trudinger and myself on the
Bernstein and Plateau for affine maximal hypersurfaces

1. Introduction

The concept of affine maximal surface in affine geometry corresponds to that of minimal
surface in Euclidean geometry. The affine Bernstein problem and affine Plateau problem,
as proposed in [9,5,7], are two fundamental problems for affine maximal surfaces. We shall
describe some recent advances, mostly obtained by Neil Trudinger and myself [21-24], on
these two problems.

Given an immersed hypersurface M ⊂ Rn+1, one defines the affine metric (also called
the Berwald-Blaschke metric) by g = |K|−1/(n+2)II, where K is the Gauss curvature, II

is the second fundamental form of M. In order that the metric is positive definite, the
hypersurface will always be assumed to be locally uniformly convex, namely it has positive
principal curvatures. From the affine metric one has the affine area functional,

(1.1) A(M) =
∫

M
K1/(n+2),

which can also be written as

(1.2) A(u) =
∫

Ω

[detD2u]1/(n+2)

if M is given as the graph of a convex function u over a domain Ω ⊂ Rn. The affine metric
and affine surface area are invariant under unimodular affine transformations.

A locally uniformly convex hypersurface is called affine maximal if it is stationary for
the functional A under interior convex perturbation. A convex function is called an affine
maximal function if its graph is affine maximal. Traditionally such hypersurfaces were
called affine minimal [1,9]. Calabi suggested using the terminology affine maximal as the
second variation of the affine area functional is negative [5]. If the hypersurface is a graph of
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convex function u, then u satisfies the affine maximal surface equation (the Euler-Lagrange
equation of the functional A),

(1.3) L[u] := U ijwij = 0,

where [U ij ] is the cofactor of the Hessian matrix D2u,

(1.4) w = [detD2u]−(n+1)/(n+2),

and the subscripts i, j denote partial derivatives with respect to the variables xi, xj . Note
that for any given i or j, U ij , as a vector field in Ω, is divergence free. The equation (1.3)
is a nonlinear fourth order partial differential equation, which can also be written in the
short form

(1.5) ∆gh = 0,

where h = (detD2u)−1/(n+2), and ∆g denotes the Laplace-Beltrami operator with respect
to g.

The quantity

HA(M) =
−1

n + 1
L(u)

is called the affine mean curvature of M, and is also invariant under unimodular affine
transformations. In particular it is invariant if one rotates the coordinates or adds a linear
function to u. The affine mean curvature of the unit sphere is n.

The affine Bernstein problem concerns the uniqueness of entire convex solutions to the
affine maximal surface equation, and asks whether an entire convex solution of (1.3) is
a quadratic polynomial. The Chern conjecture [9] asserts this is true in dimension two.
Geometrically, and more generally, it can be stated as that a Euclidean complete, affine
maximal, locally uniformly convex surface in 3-space must be an elliptic paraboloid. Calabi
proved the assertion assuming in addition that the surface is affine complete [5], see also
[6,7]. A problem raised by Calabi, called the Calabi conjecture in [19], is whether affine
completeness alone is enough for the Bernstein theorem. The Chern conjecture was proved
true in [21] (see Theorem 3.1 below). The Calabi conjecture was resolved in [22], as a
byproduct of our fundamental result that affine completeness implies Euclidean complete-
ness for locally uniformly convex hypersurfaces of dimensions larger than one (Theorem
3.2). See also [14] for a different proof of the Calabi conjecture.

The affine Plateau problem deals with the existence and regularity of affine maximal
hypersurfaces with prescribed boundary of which the normal bundles on the boundary
coincide with that of a given locally uniformly convex hypersurface. The affine Plateau
problem, which had not been studied before, is more complicated when compared with the
affine Bernstein problem in 3-space. The first boundary value problem, namely prescribing
the solution and its gradient on the boundary, is a special case of the affine Plateau problem.
We need to impose two boundary conditions as the affine maximal surface equation is a
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fourth order equation. We will formulate the Plateau problem as a variational maximization
problem and prove the existence and regularity of maximizers to the problem in 3-space
[24] (Theorem 5.1). For the existence we need a uniform cone property of locally convex
hypersurfaces, proved in [23], which also led us to the proof of the conjecture by Spruck
in [20] (Theorem 4.1), concerning the existence of locally convex hypersurfaces of constant
Gauss curvature.

Equation (1.3) can be decomposed as a system of two second order partial differential
equations, one of which is a linearized Monge-Ampère equation and the other is a Monge-
Ampère equation, see (2.6) and (2.7) below. This formulation enables us to establish
the regularity for equation (1.3) (Theorem 2.1), using the regularity theory for Monge-
Ampère type equations [2,3]. A crucial assumption in Theorem 2.1 is the strict convexity
of solutions, which is the key issue for both the affine Bernstein and affine Plateau problems.
We succeeded in proving the necessary convexity estimates only in dimension two.

2. A priori estimates

Instead of the homogeneous equation (1.3), we consider here the non-homogeneous (pre-
scribed affine mean curvature) equation

(2.1) L(u) = f in Ω,

where f is a bounded measurable function, and Ω is a normalized convex domain in Rn.
A convex domain is called normalized if its minimum ellipsoid, that is the ellipsoid with
minimum volume among all ellipsoids containing the domain, is a unit ball.

Let u be a smooth, locally uniformly convex solution of (2.1) which vanishes on ∂Ω. First
we need positive upper and lower bounds for the determinant detD2u. For the upper bound
we have, by constructing appropriate auxiliary function, for any subdomain Ω′ ⊂⊂ Ω, the
estimate

(2.2) sup
x∈Ω′

detD2u(x) ≤ C,

where C depends only on n, dist(Ω′, ∂Ω), supΩ |Du|, supΩ f , and supΩ |u|.
For the lower bound we need a key assumption, namely a control on the strict convexity

of solutions, which can be measured by introducing the modulus of convexity. Let v be a
convex function in Ω. For any y ∈ Ω, h > 0, denote

Sh,v(y) = {x ∈ Ω
∣∣ v(x) = v(y) + Dv(y)(x− y) + h}.

The modulus of convexity of v is a nonnegative function, defined by

ρv(r) = inf
y∈Ω

ρv,y(r), r > 0,

where
ρv,y(r) = sup{h ≥ 0

∣∣ Sh,v(y) ⊂ Br(y)}
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if there exists h ≥ 0 such that Sh,v(y) ⊂ Br(y), otherwise we define ρv,y(r) = 0. We have
ρv(r) > 0 for all r > 0 if v is strictly convex.

Let u be a smooth, locally uniformly convex solution of (2.1). Then we have the following
lower bound estimate, for any Ω′ ⊂⊂ Ω,

(2.3) inf
x∈Ω′

detD2u(x) ≥ C,

where C depends on n, dist(Ω′, ∂Ω), supΩ |Du|, infΩ f , and ρu. The proof again can be
achieved by introducing an appropriate auxiliary function.

From the a priori estimates (2.2) and (2.3) we then have

Theorem 2.1. Let u ∈ C4(Ω) ∩ C0(Ω) be a locally uniformly convex solution of (2.1).
Then for any subdomain Ω′ ⊂⊂ Ω, we have:
(i) W 4,p estimate,

(2.4) ‖u‖W 4,p(Ω′) ≤ C,

where p ∈ [1,∞), C depends on n, p, supΩ |f |, dist(Ω′, ∂Ω), supΩ |u|, and ρu.
(ii) Schauder estimate,

(2.5) ‖u‖C4,α(Ω′) ≤ C,

where α ∈ (0, 1), C depends on n, α, ‖f‖Cα(Ω), dist(Ω′, ∂Ω), supΩ |u|, and ρu.

Note that the gradient of u is locally controlled by ρu, the modulus of convexity of u.
To prove Theorem 2.1, we write (2.1) as a second order partial differential system

U ijwij = f in Ω,(2.6)

detD2u = w−(n+2)/(n+1) in Ω,(2.7)

where (2.6) is regarded as a second order elliptic equation for w. By (2.2) and (2.3),
and the Hölder continuity of linearized Monge-Ampère equation [3], we have the interior
a priori Hölder estimate for w. We note that the Hölder continuity in [3] is proved for
the homogeneous equation, but the argument there can be easily carried over to the non-
homogeneous case under (2.2) and (2.3). By the interior Schauder estimate for the Monge-
Ampère equation [2], we obtain the interior a priori C2,α estimate for u. It follows that
(2.6) is a linear uniformly elliptic equation with Hölder coefficients. Hence Theorem 2.1
follows.

The control on strict convexity is a key condition in Theorem 2.1. One cannot expect
the strict convexity of solutions when n ≥ 3. Indeed, there are convex solutions to the
Monge-Ampère equation

(2.8) detD2u = 1
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which are not strictly convex, and so not smooth [17]. Note that any non-smooth convex
solution of (2.8) can be approximated by smooth ones, and a smooth solution of (2.8) is
obviously a solution of (2.1), with f = 0.

An interesting problem is to find appropriate conditions to estimate the strict convexity
of solutions of (2.1). For the affine Bernstein problem it suffices to prove convexity estimate
for solutions vanishing on the boundary. We succeeded only in dimension two, see §5.

3. The affine Bernstein problem

We say a hypersurface M, immersed in Rn+1, is Euclidean complete if it is complete
under the metric induced from the standard Euclidean metric.

Theorem 3.1. A Euclidean complete, affine maximal, locally uniformly convex surface in
R3 is an elliptic paraboloid.

Theorem 3.1 extends Jorgens’ theorem [11], which asserts that an entire convex solution
of (2.8) in R2 must be a quadratic function. Jorgens’ theorem also leads to the Bernstein
theorem for minimal surfaces in dimension two [11]. Jorgens’ theorem was extended to
higher dimensions by Calabi [4] for 2 ≤ n ≤ 5 and Pogorelov [17] for n ≥ 2. See also [8].
Observe that the Chern conjecture follows from Theorem 3.1 immediately.

The proof of Theorem 3.1 uses the affine invariance of equation (1.3) and the a priori
estimates in §2. First note that a Euclidean complete locally uniformly convex hypersurface
must be a graph. Suppose the surface in Theorem 3.1 is the graph of a nonnegative convex
function u with u(0) = 0. For any constant h > 1, let Th be the linear transformation
which normalizes the section S0

h,u = {u < h}, and let vh(x) = h−1u(T−1
h (x)). By the

convexity estimate in dimension two, the modulus of convexity of vh is independent of h.
Hence there is a uniform positive distance from the origin to the boundary ∂Th(S0

h,u). By
Theorem 2.1, we infer that the largest eigenvalue of Th is controlled by the least one of
Th, which implies that u is defined in the entire R2. By Theorem 2.1 again, D3vh(0) is
bounded. Hence for any given x ∈ R2,

|D2u(x)−D2u(0)| ≤ Ch−1/2 → 0

as h → 0, namely D2u(x) = D2u(0).

Note that the dimension two restriction is used only for the strict convexity estimate.
The affine Bernstein problem was investigated by Calabi in a number of papers [5,6,7].
Using the result that a nonnegative harmonic function (i.e. h in (1.5)) defined on a complete
manifold with nonnegative Ricci curvature must be a constant, he proved that, among
others, the Bernstein theorem in dimension two, under the additional hypothesis that the
surface is also complete under the affine metric.

Instead of the Euclidean completeness as in the Chern conjecture, Calabi asks whether
affine completeness alone is sufficient for the Bernstein theorem. This question was recently
answered affirmatively in [22]. See also [14] for a different treatment based on the result in
[16]. In [22] we proved a much stronger result. That is
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Theorem 3.2. An affine complete, locally uniformly convex hypersurface in Rn+1, n ≥ 2,
is also Euclidean complete.

The converse of Theorem 3.2 is not true [12], nor is it for n = 1. For the proof, which
uses the Legendre transform and Lemma 4.1 below, we refer the reader to [22] for details.

4. Locally convex hypersurfaces with boundary

In this section we present some results in [23], which guarantee the sub-convergence of
bounded sequences of locally convex hypersurfaces with prescribed boundary.

Recall that a hypersurface M⊂ Rn+1 (not necessarily smooth) is called locally convex
if it is a locally convex immersion of a manifold N and there is a continuous vector field on
the convex side of M, transversal to M everywhere. Let T denote the immersion, namely
M = T (N ). For any given point x ∈ M, T−1(x) may contains more than one point. To
avoid confusion when referring to a point x ∈M we understand a pair (x, p) for some point
p ∈ N such that x = T (p). We say ωx ⊂M is a neighborhood of x ∈M if it is the image
of a neighborhood of p in N . The r-neighborhood of x, ωr(x), is the connected component
of M∩Br(x) containing the point x. In [23] we proved the following fundamental lemma
for locally convex hypersurfaces.

Lemma 4.1. Let M be a compact, locally convex hypersurface in Rn+1, n > 1. Suppose
the boundary ∂M lies in the hyperplane {xn+1 = 0}. Then any connected component of
M∩ {xn+1 < 0} is convex.

A locally convex hypersurface M is called convex if it lies on the boundary of the convex
closure of M itself. From Lemma 4.1 it follows that a (Euclidean) complete locally convex
hypersurface with at least one strictly convex point is convex, and that a closed, locally
convex hypersurface is convex. Lemma 4.1 also plays a key role in the proof of Theorem
3.2.

An application we will use here is the uniform cone property for locally convex hyper-
surfaces. Let Cx,ξ,r,α denote the cone

Cx,ξ,r,α = {y ∈ Rn+1
∣∣ |y − x| < r, 〈y − x, ξ〉 ≥ cos α |y − x|}.

We say that Cx,ξ,r,α is an inner contact cone of M at x if this cone lies on the concave side
of ωr(x). We say M satisfies the uniform cone condition with radius r and aperture α if
M has an inner contact cone at all points with the same r and α.

Lemma 4.2. LetM⊂ BR(0) be a locally convex hypersurface with boundary ∂M. Suppose
M can be extended to M̃ such that ∂M lies in the interior of M̃ and M̃ −M is locally
strictly convex. Then there exist r, α > 0 depending only on n, R, and the extended part
M̃−M, such that the r-neighborhood ωr(x) is convex for any x ∈M, and M satisfies the
uniform cone condition with radius r and aperture α.

In [23] we have shown that if ∂M is smooth and M is smooth and locally uniformly
convex near ∂M, then M can be extended to M̃ as required in Lemma 4.2. The main

6



point of Lemma 4.2 is that r and α depend only on n, R and the extended part M̃ −M.
Therefore it holds with the same r and α for a family of locally convex hypersurfaces,
which includes all locally uniformly convex hypersurfaces with boundary ∂M, contained
in BR(0), such that its Gauss mapping image coincides with that ofM. For any sequence of
locally convex hypersurfaces in this family, the uniform cone property implies the sequence
converges subsequently and no singularity develops in the limit hypersurface. This property
is the key for the existence proof of maximizers to the affine Plateau problem. It also plays
a key role for our resolution of the Plateau problem for prescribed constant Gauss curvature
(as conjectured in [20]), see [23]. We state the result as follows.

Theorem 4.1. Let Γ = (Γ1, · · · , Γn) ⊂ Rn+1 be a smooth disjoint collection of closed
co-dimension two embedded submanifolds. Suppose Γ bounds a locally strictly convex hy-
persurface S with Gauss curvature K(S) > K0 > 0. Then Γ bounds a smooth, locally
uniformly convex hypersurface of Gauss curvature K0.

If S is a (multi-valued) radial graph over a domain in Sn which does not contain any
hemi-spheres, Theorem 4.1 was established in [10]. Theorem 4.1 has been extended to
more general curvature functions in [18].

5. The affine Plateau problem

First we formulate the affine Plateau problem as a variational maximization problem.
Let M0 be a compact, connected, locally uniformly convex hypersurface in Rn+1 with
smooth boundary Γ = ∂M0. Let S[M0] denote the set of locally uniformly convex hyper-
surfaces M with boundary Γ such that the image of the Gauss mapping of M coincides
with that of M0. Then any two hypersurfaces in S[M] are diffeomorphic. Let S[M0]
denote the set of locally convex hypersurfaces which can be approximated by smooth ones
in S[M0]. Our variational affine Plateau problem is to find a smooth maximizer to

(5.1) sup
M∈S[M0]

A(M).

To study (5.1) we need to extend the definition of the affine area functional to non-
smooth convex hypersurfaces. Different but equivalent definitions can be found in [13].
Here we adopt a new definition introduced in [21, 24], which is also more straightforward.
Observe that the Gauss curvature K can be extended to a measure on a non-smooth
convex hypersurface, and the measure can be decomposed as the sum of a singular part
and a regular part, K = Ks +Kr, where the singular part Ks is a measure supported on a
set of Lebesgue measure zero, and the regular part Kr can be represented by an integrable
function. We extend the definition of affine area functional (1.1) to

(5.2) A(M) =
∫

M
K1/(n+2)

r .

The affine area functional is upper semi-continuous [13,15]. See also [21,24] for different
proofs.
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A necessary condition for the affine Plateau problem is that the Gauss mapping image
of M0 cannot contain any semi-spheres. Indeed if M is affine maximal such that its Gauss
mapping image contains, say, the south hemi-sphere, then the pre-image of the south
hemi-sphere is a graph of a convex function u over a domain Ω such that |Du(x)| → ∞ as
x → ∂Ω. Then necessarily detD2u = ∞ and so w = 0 on ∂Ω. It follows that w ≡ 0 in Ω,
a contradiction.

Theorem 5.1. Let M0 be a compact, connected, locally uniformly convex hypersurface in
R3 with smooth boundary Γ = ∂M0. Suppose the image of the Gauss mapping of M0 does
not contain any semi-spheres. Then there is a smooth maximizer to (5.1).

To prove the existence we observe that by the necessary condition, there exists a positive
constant R such that M ⊂ BR(0) for any M ∈ S[M0]. Hence by the uniform cone
property, Lemma 4.2, any maximizing sequence in S[M0] is sub-convergent. The existence
of maximizers then follows from the upper semi-continuity of the affine area functional.
Note that the existence is true for all dimensions.

To prove the regularity we need to show that
(i) M can be approximated by smooth affine maximal surfaces; and
(ii) M is strictly convex.
The purpose of (i) is such that the a priori estimate in Section 2 is applicable. Note that
(i) also implies the Bernstein Theorem 3.1 holds for non-smooth affine maximal surfaces.

By the penalty method we proved (i) for all dimensions, using the following classical
solvability of the second boundary value problem for the affine maximal surface equation.

Theorem 5.2. Consider the problem

L(u) = f(x, u) in Ω,(5.3)

u = ϕ on ∂Ω,

w = ψ on ∂Ω,

where w is given in (1.4), Ω is a uniformly convex domain with C4,α boundary, 0 < α < 1,
f is Hölder continuous, non-decreasing in u, ϕ,ψ ∈ C4,α(Ω), and ψ is positive. Then
there is a unique uniformly convex solution u ∈ C4,α(Ω) to the above problem.

To prove Theorem 5.2 we first prove that u satisfies (2.2) and (2.3), and that w is
Lipschitz continuous on the boundary, namely |w(x) − w(y)| ≤ C|x − y| for any x ∈ Ω,
y ∈ ∂Ω. Theorem 5.2 is then reduced to the boundary C2,α estimate for the Monge-Ampère
equation. The proof for the boundary C2,α estimate involves a delicate iteration scheme.
We refer to [24] for details.

The interior C2,α estimate for the Monge-Ampère equation was proved by Caffarelli [2],
using a perturbation argument. The boundary C2,α estimate, which also uses a similar
perturbation argument, contains substantial new difficulty, as that the sections

S0
h,v(y) = {x ∈ Ω

∣∣ v(x) < v(y) + Dv(y)(x− y) + h}
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can be normalized for the interior estimate but not for the boundary estimate. We need
to prove that S0

h,v(y) has a good shape for sufficiently small h > 0 and y ∈ ∂Ω.

Finally we would like to mention our idea of proving the strict convexity, namely (ii)
above. Note that for both the affine Bernstein and affine Plateau problem, the dimension
two assumption is only used for the proof of the strict convexity. To prove the strict
convexity we suppose to the contrary that M contains a line segment. Let P be a tangent
plane ofM which contains the line segment. Then the contact set F , namely the connected
set of P ∩M containing the line segment, is a convex set. If F has an extreme point which
is an interior point of M, by rescaling and choosing appropriate coordinates we obtain a
sequence of affine maximal functions which converges to a convex function v, such that
v(0) = 0 and v(x) > 0 for x 6= 0 in an appropriate coordinate system, and v is not C1

at the origin 0. In dimension two this means detD2v is unbounded near 0, which is in
contradiction with the estimate (2.2).

If all extreme points of F are boundary points of M, we use the Legendre transform to
get a new convex function which is a maximizer of a variational problem similar to (5.1),
and satisfies the properties as v above, which also leads to a contradiction.

6. Remarks

We proved the affine Bernstein problem in dimension two. In high dimensions (n ≥ 10)
a counter-example was given in [21], where we proved that the function

(6.1) u(x) = (|x′|9 + x2
10)

1/2

is affine maximal, where x′ = (x1, · · · , x9).

The function u in (6.1) contains a singular point, namely the origin. The graph of u is
indeed an affine cone, that is all the level sets Sh,u = {u = h} are affine self-similar, in
the sense that there is an affine transformation Th such that Th(Sh,u) = S1,u. The above
counter-example shows that there is an affine cone in dimensions n ≥ 10 which is affine
maximal but is not an elliptic paraboloid. We have not been successful in finding smooth
counter-examples. Little is known for dimensions 3 ≤ n ≤ 9.

For the affine Plateau problem, an interesting problem is whether the maximizer satisfies
the boundary conditions. If M0 is the graph of a smooth, uniformly convex function ϕ,
defined in a bounded domain Ω ⊂ Rn, the Plateau problem becomes the first boundary
value problem, that is equation (1.3) subject to the boundary conditions:

u = ϕ on ∂Ω,(6.2)

Du = Dϕ on ∂Ω.(6.3)

In this case we also proved the uniqueness of maximizers of (5.1). Obviously the maximizer
u satisfies (6.2). Whether u satisfies (6.3) is still unknown. Recall that the Dirichlet
problem of the minimal surface equation is solvable for any smooth boundary values if and
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only if the boundary is mean convex. Therefore an additional condition may be necessary
in order that (6.3) is fulfilled.
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