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Introduction

The Schauder estimate for the Laplace equation was traditionally built upon the New-
ton potential theory. Different proofs were found later by Campanato [Cal, in which he
introduced the Campanato space; Peetre [P], who used the convolution of functions;
Trudinger [T], who used the mollification of functions; and Simon [Si], who used a blow-
up argument. Also a perturbation argument was found by Safonov [S1,52] and Caffarelli
[C1, CC] for fully nonlinear uniformly elliptic equations, which also applies to the Laplace
equation.

In this note we give an elementary and simple proof for the Schauder estimates for el-
liptic and parabolic equations. Our proof allows the right hand side to be Dini continuous
and also give a sharp estimate for the modulus of continuity of the second derivatives. It
also yields the log-Lipschitz continuity of the gradient for equations with bounded right
hand side. Moreover, it also applies to nonlinear equations.

1. The Laplace equation
Consider the Laplace equation
Au=f in B;(0), (1.1)

where Bj(0) is the unit ball in the Euclidean space R™. Suppose f is Dini continu-
ous, namely fol @dr < 00, where w(r) = supj,_, <, |f(z) — f(y)|. Then we have the
following estimate for the modulus of continuity of D?u.

Theorem 1. Let u € C? be a solution of (1.1). Then ¥ x,y € By,2(0),

d 1
IDu(e) - Duly)] < Culdswplul + [ a [T, (12)
B, 0 r a T
where d = |z —y|, C,, > 0 depends only on n. It follows that if f € C*(B), then
1fllcam)y
o3, z) < Cu[sup lul + A=0]if a € (0,1), (13)
|D?u(x) — D*u(y)| < Cnd(sgp jul + [ fllcoa[logd]) if a=1. (1.4)
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Proof. We will use the following elementary estimates for harmonic functions,
[D*w(0)] < CroperMsupp, |wl, (1.5)

where C), j, depends only on n and k. Simple proofs of (1.5) can be found in [E2].
Denote By, = B,«(0) (p=3). For k=0,1,---, let u;, be the solution of

Aup = f(0) in Bk, ux=u on 0Bj.
Then A(ur —u) = f(0) — f. By the maximum principle,
ik — ull = (5,) < Cp™ ("), (16)
Hence
Huk - uk+1HL°°(Bk+1) < C:O2kw(pk)' (17)
Since u41 — uy is harmonic, by (1.5) we have
||D(’U,]€ - uk+1)||L°C(Bk+2) < Cpkw(pk)7
D2 (= 1)l 312y < Cl). (18)

Since u € C?, by (1.6), ux minus the quadratic part of u is harmonic and is equal to
o(p**) in By. Hence by (1.5),

Du(0) = limg_, 0o Dug (0),
D?u(0) = limy_, oo D?uy(0). (1.9)
For any given point z near the origin, we have
|D?u(2) — D*u(0)| < I + I + I3 =: (1.10)
|D?up(2) — D?up(0)] 4 | D?*ug(0) — D*u(0)| 4 |D?*u(z) — D?*up(2)].
Let k > 1 such that p*** < |z| < p**3. Then by (1.8), we have

EI
IQ<CZ <C/

Similarly we can estimate Is, through the solutions of Av = f(z) in B;(z) and v = v on
0Bj(z) for j = k,k+1,---. To estimate I, denote h; = u; —u;_1. By (1.5) and (1.7)
we have

(1.11)

|D?hj(z) — Dh;(0)] < CpIw(p?)]z]. (1.12)
Hence

It < |D*up-1 (2 )—Dzwc 1(0)| + |D*hs (= )—Dzhk(o)l

< D%uo(z) ~ Duo(0)] + 32 ID%hy(z) — D21y (0)
< Clal(uo o= + czp u(p))
< Clel(lul~ + € /| ). (1.13)

Combining (1.10), (1.11), and (1.13) we obtain (1.2). This completes the proof. [
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Similarly we have the estimate at the boundary.

Theorem 1'. Let u € C*(By N {x, > 0}) be a solution of Au = f and u = 0 on
{xn, = 0}. Suppose f is Dini continuous. Then ¥ x,y € Byjo N {x, > 0}, the estimate
(1.2) holds.

The proof is the same as that of Theorem 1, provided we replace By by By N{z, > 0}
and note that if w is a harmonic function in B; N {z,, > 0} and w = 0 on 7', then w is
harmonic in B; after odd extension in x,,.

Replacing the second derivatives in the proof of (1.4) by the first derivatives, and
letting ux be the solution of Aug = 0 in By, uxp = u on 0By, we also obtain the following
log-Lipschitz continuity for Du, which was used in [Y] to establish the global existence
of smooth solutions to the 2-d Euler equation.

Corollary 1. Let u € C! be a solution of (1.1). Then ¥ z,y € B /2(0),

|Du(z) — Du(y)| < Cnd(sgp lul + || fll | logd] ). (1.14)

2. Linear parabolic equations

The above proof also applies to equations with variable coefficients. Let us consider
the linear parabolic equation

Zaij(x,t)umiwj —up = fx,t) in Q. (2.1)

We denote Q, = {(x,t) e R* x R} : |2] <r,—1? <t < 0}.

Theorem 2. Letu € Citl be a solution of (2.1). Suppose f and a;; are Dini continuous.
Then for any points p1 = (x1,t1),p2 = (%2,12) € Q1/2,

d 1
O2u(pr) — 2ulpa)| <C, | asupul + [ g [0
Q1 0 d

r

+Cnsg}>ya§uy[/odw“7m+d/dl w“(r)], (2.2)

r2

where d = |p1 —pa| (parabolic distance), wy(r) = SUP|p, —py | <r |f(p1)—f(p2)|, and w,(r) =
Supi,j waij (T)

Note that the modulus of continuity of d;u follows from (2.2) and equation (2.1). If a;;
and f are Holder continuous, by the interpolation inequality [L], we obtain the Schauder
estimate for parabolic equations. That is if a;5, f € C*(Q1) for some « € (0, 1), then

lullgzsonsaraq, ,) < Clsup ful + [Iflce@n]- (2.3)

Q1

If « = 1, we have an estimate similar to (1.4).
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Proof. Denote Q = Q,«(0) (p = 1). Let uy, be the solution of

Zaij(o)umixj —uy = f(0) in Q, ur=u on 0,Q,

where 0, denotes the parabolic boundary. Then v = u — uy, satisfies

> aij(0)va,z, —ve = f = F(0) + Y (ai;(0) = aij(x))u,a; - (2.4)

By the maximum principle,

g — ull L@y < Cp* [wr(p®) + wa(p™)n],

where 1 = sup |02u|. Hence

lur — w1l oo (@upn) < Co™lwyp(p") + wa(p®))- (2.5)

Therefore similarly as (1.8),

supg, ,, {107 (we — us1); 10 (ur — wrs1)[} < Clwg (p7) + wa(p")n)- (2.6)

The rest of the proof is the same as that of Theorem 1 and is omitted here. [

3. Fully nonlinear equations

3.1. Fully nonlinear, uniformly elliptic equations.
The argument in §1 also applies to fully nonlinear uniformly elliptic equations. For
simplicity we consider the equation

F(D?u) = f(z) in B1(0), (3.1)

where F is C1'1. The estimates can be extended to operators of the form F(D?u,z) by
the freezing coefficient method as in §2. We need an a priori estimate as (1.4).

Assumption (a). For any solution to
F(D*u+ M) =c¢y in B,,

where ¢ is a constant and M is a symmetric constant matrix such that F(M) = ¢q, we
have the estimate

lulleza(z,,,) < Cr=%lull Lo m,), (3.2)

where & € (0, 1], C' is independent of M, ¢y and 7.

If F is concave or convex, the interior C*¢ estimate for some & € (0, 1] was established
independently by Evans [E1] and Krylov [Kr|. Similarly to Theorem 1 we then have
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Theorem 3. Let u € C? be a solution of (3.1). ThenV z,y € B /2(0),

d 1
|D*u(z) — D*u(y)| < C[d* sup |u| +/0 @ + d‘j‘/ ﬂ] (3.3)

By d ,rler

If f € C*(By), we have

ulloz.a(B, 0 < C[SEP ul + (| fllcesy] i 0<a<a, (3.4)
ID%u(e) — DPuly)] < Ca [suplul + | flloelogd]] #f a=a.  (@5)
HUHC‘A‘@(BUQ) < C[sllalp lu| + HfHCa(Bl)} if a<a<l. (3.6)

The constant C' depends on n, a,C in (3.2), and the ellipticity constants (least and
largest eigenvalues of {%F(?‘)})

Proof. The proof is very similar to that of Theorem 1. Let ug be the solution of
F(D?uy) = f(0) in By, wur=wu on OBy. (3.7)

By Assumption (a), uy —ug41 satisfies a linearized equation of F' with coefficients in C*.
Hence by the Schauder estimate for linear elliptic equations,

ID?(ug = ups1) | Byys < Cp™ % |Jug — upsallp= < Cw(ph). (3.8)

It follows that D?u(0) is convergent if f is Dini continuous. By Assumption (a) and
since u € C?, we have D?u;(0) — D?u(0). The only difference in the rest part of the
proof is that (1.12) should be replaced by

|D?hi(z) — D2he(0)] < Cp~0w(ph)|2 %, (3.9)
where hy = up — ugy1. U

3.2. The Monge-Ampére equations.
Estimate (1.2) (or (3.3) with @ = 1) holds for strictly convex solutions to the Monge-
Ampere equation

detD?*u = f(x) in B, (3.10)

where C, < f < C* for positive constants C, C*, and w(r) = sup|,_y <, [f(z) — f(y)]
(equivalent to supj,_ <, |fY/™(x) — fY/"(y)]). The constant C' depends on n, C,,C*,
and the modulus of convexity of u.

The proof is similar to that of Theorem 1, except that we first need to normalize the
solution as follows. By subtracting a linear function, we assume «(0) = 0 and Du(0) = 0.
Denote Sy, = {x € By, u(x) < h}. For a sufficiently small ho > 0, first make unimodular
linear transform 7" such that Br C T'(Sy) C Bpr. Then make a dilation z — z/R and
u— u/ R? such that By ¢ S; C B,, and fol @ is small. The Monge-Ampere operator
is invariant under the changes.
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Now define uj as in (3.7) (for the Monge-Ampere equation it is more convenient to
use level sets than balls in (3.7)). We need to verify Assumption (a) (with & = 1) for
all k. It suffices to show that the set Ej = {x € R | u(z) < infuy + p>**Y} has a
good shape, namely Bgr, C Ej C Ba,g, for concentrated balls Br, and Bs,gr,. But
this is guaranteed at kK = 0 and also at £ > 0 by induction, as long as p is chosen small
and fol WY) is sufficiently small. We wish to discuss the regularity of the Monge-Ampere
equation with more details in a separate work.

3.3. Remarks.

(i) By Aleksandrov’s maximum principle [GT], we can replace w(r) = oscp, f by w(r) =
=" f = f(0)||z~(B,) in the above proofs.

(ii) By the existence and uniqueness of weak or viscosity solutions to the Dirichlet prob-
lem, the above theorems also hold for weak or viscosity solutions.

(iii) The sharp estimate (1.2) for the Laplace equation was established in [B] by delicate
singular integral estimates.

(iv) Theorem 3 with f € C* (a < &) was proved by Safonov [S1, S2] and Caffarelli [C1,
CC] by a perturbation argument, using approximation by quadratic polynomials. See
also [K] for the case when f is Dini continuous. Our proof allow the case a > @ in (3.5)
and (3.6) above.

(v) The C% estimate for strictly convex solutions to the Monge-Ampere equation (3.10)
was proved in [C2]. When the Holder continuity of f is relaxed to Dini continuity, the
continuity of D?u was proved in [W1].

(vi) Similar estimate to (1.14) also holds for the parabolic equation (2.1) and fully non-
linear equation (3.1), but it is not true for the Monge-Ampere equation (3.10), by an
example in [W2].
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