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Introduction

The Schauder estimate for the Laplace equation was traditionally built upon the New-
ton potential theory. Different proofs were found later by Campanato [Ca], in which he
introduced the Campanato space; Peetre [P], who used the convolution of functions;
Trudinger [T], who used the mollification of functions; and Simon [Si], who used a blow-
up argument. Also a perturbation argument was found by Safonov [S1,S2] and Caffarelli
[C1, CC] for fully nonlinear uniformly elliptic equations, which also applies to the Laplace
equation.

In this note we give an elementary and simple proof for the Schauder estimates for el-
liptic and parabolic equations. Our proof allows the right hand side to be Dini continuous
and also give a sharp estimate for the modulus of continuity of the second derivatives. It
also yields the log-Lipschitz continuity of the gradient for equations with bounded right
hand side. Moreover, it also applies to nonlinear equations.

1. The Laplace equation

Consider the Laplace equation

∆u = f in B1(0), (1.1)

where B1(0) is the unit ball in the Euclidean space Rn. Suppose f is Dini continu-
ous, namely

∫ 1

0
ω(r)

r dr < ∞, where ω(r) = sup|x−y|<r |f(x) − f(y)|. Then we have the
following estimate for the modulus of continuity of D2u.

Theorem 1. Let u ∈ C2 be a solution of (1.1). Then ∀ x, y ∈ B1/2(0),

|D2u(x)−D2u(y)| ≤ Cn

[
d sup

B1

|u|+
∫ d

0

ω(r)
r

+ d

∫ 1

d

ω(r)
r2

]
, (1.2)

where d = |x− y|, Cn > 0 depends only on n. It follows that if f ∈ Cα(B1), then

‖u‖C2,α(B1/2) ≤ Cn

[
sup
B1

|u|+ ‖f‖Cα(B1)

α(1− α)
]

if α ∈ (0, 1), (1.3)

|D2u(x)−D2u(y)| ≤ Cnd (sup
B1

|u|+ ‖f‖C0,1 | log d| ) if α = 1. (1.4)
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Proof. We will use the following elementary estimates for harmonic functions,

|Dkw(0)| ≤ Cn,kr−|k|supBr
|w|, (1.5)

where Cn,k depends only on n and k. Simple proofs of (1.5) can be found in [E2].
Denote Bk = Bρk(0) (ρ = 1

2 ). For k = 0, 1, · · · , let uk be the solution of

∆uk = f(0) in Bk, uk = u on ∂Bk.

Then ∆(uk − u) = f(0)− f . By the maximum principle,

‖uk − u‖L∞(Bk) ≤ Cρ2kω(ρk). (1.6)

Hence
‖uk − uk+1‖L∞(Bk+1) ≤ Cρ2kω(ρk). (1.7)

Since uk+1 − uk is harmonic, by (1.5) we have

‖D(uk − uk+1)‖L∞(Bk+2) ≤ Cρkω(ρk),

‖D2(uk − uk+1)‖L∞(Bk+2) ≤ Cω(ρk). (1.8)

Since u ∈ C2, by (1.6), uk minus the quadratic part of u is harmonic and is equal to
o(ρ2k) in Bk. Hence by (1.5),

Du(0) = limk→∞Duk(0),

D2u(0) = limk→∞D2uk(0). (1.9)

For any given point z near the origin, we have

|D2u(z)−D2u(0)| ≤ I1 + I2 + I3 =: (1.10)

|D2uk(z)−D2uk(0)|+ |D2uk(0)−D2u(0)|+ |D2u(z)−D2uk(z)|.
Let k ≥ 1 such that ρk+4 ≤ |z| ≤ ρk+3. Then by (1.8), we have

I2 ≤ C

∞∑

j=k

ω(ρk) ≤ C

∫ |z|

0

ω(r)
r

. (1.11)

Similarly we can estimate I3, through the solutions of ∆v = f(z) in Bj(z) and v = u on
∂Bj(z) for j = k, k + 1, · · · . To estimate I1, denote hj = uj − uj−1. By (1.5) and (1.7)
we have

|D2hj(z)−D2hj(0)| ≤ Cρ−jω(ρj)|z|. (1.12)

Hence

I1 ≤ |D2uk−1(z)−D2uk−1(0)|+ |D2hk(z)−D2hk(0)|
≤ |D2u0(z)−D2u0(0)|+

∑k

j=1
|D2hj(z)−D2hj(0)|

≤ C|z|(‖u0‖L∞ + C
∑

ρ−jω(ρj)
)

≤ C|z|(‖u‖L∞ + C

∫ 1

|z|

ω(r)
r2

)
. (1.13)

Combining (1.10), (1.11), and (1.13) we obtain (1.2). This completes the proof. ¤
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Similarly we have the estimate at the boundary.

Theorem 1′. Let u ∈ C2(B1 ∩ {xn ≥ 0}) be a solution of ∆u = f and u = 0 on
{xn = 0}. Suppose f is Dini continuous. Then ∀ x, y ∈ B1/2 ∩ {xn ≥ 0}, the estimate
(1.2) holds.

The proof is the same as that of Theorem 1, provided we replace Bk by Bk ∩{xn ≥ 0}
and note that if w is a harmonic function in B1 ∩ {xn ≥ 0} and w = 0 on T , then w is
harmonic in B1 after odd extension in xn.

Replacing the second derivatives in the proof of (1.4) by the first derivatives, and
letting uk be the solution of ∆uk = 0 in Bk, uk = u on ∂Bk, we also obtain the following
log-Lipschitz continuity for Du, which was used in [Y] to establish the global existence
of smooth solutions to the 2-d Euler equation.

Corollary 1. Let u ∈ C1 be a solution of (1.1). Then ∀ x, y ∈ B1/2(0),

|Du(x)−Du(y)| ≤ Cnd (sup
B1

|u|+ ‖f‖L∞ | log d| ). (1.14)

2. Linear parabolic equations

The above proof also applies to equations with variable coefficients. Let us consider
the linear parabolic equation

∑
aij(x, t)uxixj − ut = f(x, t) in Q1. (2.1)

We denote Qr = {(x, t) ∈ Rn × R1 : |x| < r,−r2 < t ≤ 0}.
Theorem 2. Let u ∈ C2,1

x,t be a solution of (2.1). Suppose f and aij are Dini continuous.
Then for any points p1 = (x1, t1), p2 = (x2, t2) ∈ Q1/2,

|∂2
xu(p1)− ∂2

xu(p2)| ≤Cn

[
d sup

Q1

|u|+
∫ d

0

ωf (r)
r

+ d

∫ 1

d

ωf (r)
r2

]

+ Cn sup
Q1

|∂2
xu|

[ ∫ d

0

ωa(r)
r

+ d

∫ 1

d

ωa(r)
r2

]
, (2.2)

where d = |p1−p2| (parabolic distance), ωf (r) = sup|p1−p2|<r |f(p1)−f(p2)|, and ωa(r) =
supi,j ωaij (r).

Note that the modulus of continuity of ∂tu follows from (2.2) and equation (2.1). If aij

and f are Hölder continuous, by the interpolation inequality [L], we obtain the Schauder
estimate for parabolic equations. That is if aij , f ∈ Cα(Q1) for some α ∈ (0, 1), then

‖u‖
C

2+α,1+α/2
x,t (Q1/2)

≤ C
[
sup
Q1

|u|+ ‖f‖Cα(Q1)

]
. (2.3)

If α = 1, we have an estimate similar to (1.4).
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Proof. Denote Qk = Qρk(0) (ρ = 1
2 ). Let uk be the solution of

∑
aij(0)uxixj

− ut = f(0) in Qk, uk = u on ∂pQk,

where ∂p denotes the parabolic boundary. Then v = u− uk satisfies

∑
aij(0)vxixj

− vt = f − f(0) +
∑

(aij(0)− aij(x))uxixj
. (2.4)

By the maximum principle,

‖uk − u‖L∞(Qk) ≤ Cρ2k[ωf (ρk) + ωa(ρk)η],

where η = sup |∂2
xu|. Hence

‖uk − uk+1‖L∞(Qk+1) ≤ Cρ2k[ωf (ρk) + ωa(ρk)η]. (2.5)

Therefore similarly as (1.8),

supQk+2
{|∂2

x(uk − uk+1)|, |∂t(uk − uk+1)|} ≤ C[ωf (ρk) + ωa(ρk)η]. (2.6)

The rest of the proof is the same as that of Theorem 1 and is omitted here. ¤

3. Fully nonlinear equations

3.1. Fully nonlinear, uniformly elliptic equations.
The argument in §1 also applies to fully nonlinear uniformly elliptic equations. For
simplicity we consider the equation

F (D2u) = f(x) in B1(0), (3.1)

where F is C1,1. The estimates can be extended to operators of the form F (D2u, x) by
the freezing coefficient method as in §2. We need an a priori estimate as (1.4).
Assumption (a). For any solution to

F (D2u + M) = c0 in Br,

where c0 is a constant and M is a symmetric constant matrix such that F (M) = c0, we
have the estimate

‖u‖C2,ᾱ(Br/2) ≤ C̄r−2−ᾱ‖u‖L∞(B1), (3.2)

where ᾱ ∈ (0, 1], C̄ is independent of M, c0 and r.
If F is concave or convex, the interior C2,ᾱ estimate for some ᾱ ∈ (0, 1] was established

independently by Evans [E1] and Krylov [Kr]. Similarly to Theorem 1 we then have
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Theorem 3. Let u ∈ C2 be a solution of (3.1). Then ∀ x, y ∈ B1/2(0),

|D2u(x)−D2u(y)| ≤ C
[
dᾱ sup

B1

|u|+
∫ d

0

ω(r)
r

+ dᾱ

∫ 1

d

ω(r)
r1+ᾱ

]
. (3.3)

If f ∈ Cα(B1), we have

‖u‖C2,α(B1/2) ≤ C
[
sup
B1

|u|+ ‖f‖Cα(B1)

]
if 0 < α < ᾱ, (3.4)

|D2u(x)−D2u(y)| ≤ Cdᾱ
[
sup
B1

|u|+ ‖f‖Cα | log d|] if α = ᾱ, (3.5)

‖u‖C2,ᾱ(B1/2) ≤ C
[
sup
B1

|u|+ ‖f‖Cα(B1)

]
if ᾱ < α ≤ 1. (3.6)

The constant C depends on n, ᾱ, C̄ in (3.2), and the ellipticity constants (least and
largest eigenvalues of { ∂

∂rij
F (r)}).

Proof. The proof is very similar to that of Theorem 1. Let uk be the solution of

F (D2uk) = f(0) in Bk, uk = u on ∂Bk. (3.7)

By Assumption (a), uk−uk+1 satisfies a linearized equation of F with coefficients in Cᾱ.
Hence by the Schauder estimate for linear elliptic equations,

‖D2(uk − uk+1)‖Bk+2 ≤ Cρ−2k‖uk − uk+1‖L∞ ≤ Cω(ρk). (3.8)

It follows that D2uk(0) is convergent if f is Dini continuous. By Assumption (a) and
since u ∈ C2, we have D2uk(0) → D2u(0). The only difference in the rest part of the
proof is that (1.12) should be replaced by

|D2hk(z)−D2hk(0)| ≤ Cρ−kᾱω(ρk)|z|ᾱ, (3.9)

where hk = uk − uk+1. ¤

3.2. The Monge-Ampère equations.
Estimate (1.2) (or (3.3) with ᾱ = 1) holds for strictly convex solutions to the Monge-
Ampère equation

detD2u = f(x) in B1, (3.10)

where C∗ ≤ f ≤ C∗ for positive constants C∗, C∗, and ω(r) = sup|x−y|<r |f(x) − f(y)|
(equivalent to sup|x−y|<r |f1/n(x) − f1/n(y)|). The constant C depends on n, C∗, C∗,
and the modulus of convexity of u.

The proof is similar to that of Theorem 1, except that we first need to normalize the
solution as follows. By subtracting a linear function, we assume u(0) = 0 and Du(0) = 0.
Denote Sh = {x ∈ B1, u(x) < h}. For a sufficiently small h > 0, first make unimodular
linear transform T such that BR ⊂ T (Sh) ⊂ BnR. Then make a dilation x → x/R and
u → u/R2 such that B1 ⊂ S1 ⊂ Bn and

∫ 1

0
ω(r)

r is small. The Monge-Ampère operator
is invariant under the changes.
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Now define uk as in (3.7) (for the Monge-Ampere equation it is more convenient to
use level sets than balls in (3.7)). We need to verify Assumption (a) (with ᾱ = 1) for
all k. It suffices to show that the set Ek = {x ∈ Rn | uk(x) < inf uk + ρ2(k+1)} has a
good shape, namely BRk

⊂ Ek ⊂ B2nRk
for concentrated balls BRk

and B2nRk
. But

this is guaranteed at k = 0 and also at k > 0 by induction, as long as ρ is chosen small
and

∫ 1

0
ω(r)

r is sufficiently small. We wish to discuss the regularity of the Monge-Ampère
equation with more details in a separate work.

3.3. Remarks.
(i) By Aleksandrov’s maximum principle [GT], we can replace ω(r) = oscBr

f by ω(r) =
r−n‖f − f(0)‖Ln(Br) in the above proofs.
(ii) By the existence and uniqueness of weak or viscosity solutions to the Dirichlet prob-
lem, the above theorems also hold for weak or viscosity solutions.
(iii) The sharp estimate (1.2) for the Laplace equation was established in [B] by delicate
singular integral estimates.
(iv) Theorem 3 with f ∈ Cα (α < ᾱ) was proved by Safonov [S1, S2] and Caffarelli [C1,
CC] by a perturbation argument, using approximation by quadratic polynomials. See
also [K] for the case when f is Dini continuous. Our proof allow the case α ≥ ᾱ in (3.5)
and (3.6) above.
(v) The C2,α estimate for strictly convex solutions to the Monge-Ampère equation (3.10)
was proved in [C2]. When the Hölder continuity of f is relaxed to Dini continuity, the
continuity of D2u was proved in [W1].
(vi) Similar estimate to (1.14) also holds for the parabolic equation (2.1) and fully non-
linear equation (3.1), but it is not true for the Monge-Ampère equation (3.10), by an
example in [W2].
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