
The Monge-Ampère equation

The Monge-Ampère equation is the most important fully nonlinear partial differen-
tial equation, with various applications in geometry and physics. Many people made
important contributions to the equation. We studied the Dirichlet problem of the
real Monge-Ampère equation

det D2u = f(x) in Ω,(0.1)

u = φ on ∂Ω.

One of our main results is

Theorem (global regularity [ma2]). Let Ω be a uniformly convex domain in Rn,
with boundary ∂Ω ∈ C3. Suppose φ ∈ C3(Ω̄), inf f > 0, and f ∈ Cα(Ω̄) for some
α ∈ (0, 1). Then (0.1) has a convex solution u which satisfies the a priori estimate

‖u‖C2,α(Ω̄) ≤ C,

where C depends only on n, α, Ω, inf f , ‖f‖Cα(Ω̄), and ‖φ‖C3.

Using this theorem, we proved the global regularity for the second boundary value
problem of the affine maximal surface equation [ma2].

All conditions in the theorem are sharp. In particular, the assumptions ∂Ω, φ ∈ C3

are optimal, they cannot be weakened to ∂Ω ∈ C2,1 or φ ∈ C2,1 [ma6]. Under
sufficiently smooth conditions on f, φ and ∂Ω, this theorem was previously obtained
independently by Caffarelli, Nirenberg, and Spruck, and by Krylov. Our proof used
a key lemma in Caffarelli-Nirenberg-Spruck’s paper. The interior C2,α-estimate for
Hölder continuous f and W 2,p-estimate for continuous f were obtained by Caffarelli;
see [ma3] for a detailed proof of the C2,α-estimate, where we also proved the continuity
of D2u for Dini continuous f .

• In [ma4] we established the global second derivative estimate for solutions to the
Dirichlet problem of degenerate Monge-Ampère equations (i.e. f ≥ 0), under the
assumptions that ∂Ω, φ ∈ C3,1 and f 1/(n−1) ∈ C1,1. By an example in [ma7], the
condition f 1/(n−1) ∈ C1,1 is optimal. The assumptions ∂Ω, φ ∈ C3,1 are also optimal.
This estimate was previously proved by Krylov under the assumption f 1/n ∈ C1,1.

• In [ma5] we proved the existence of infinitely many entire convex solutions to the
Monge-Ampère equation (0.1) in Rn, under the assumption c1 ≤ f ≤ c2 for positive
constants c2 ≥ c1. This assumption can be relaxed a little bit, but whether there
exists an entire convex solution to (0.1) for any given positive function f is still an
open problem. The result implies the existence of complete, noncompact solutions
to the Minkowski problem and to the Gauss curvature flow. When f ≡ 1, an entire
convex solution must be a quadratic polynomial (by Jörgens for n = 2, Calabi for
n ≤ 5, and Pogorelov for all n).
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