
Lecture 1. Introduction

In Differential Geometry we study spaces which are smooth enough to do
calculus. These include such familiar objects as curves and surfaces in space.

In its earliest manifestation, differential geometry consisted of the study
of curves and surfaces in the plane and in space — this goes back at least
as far as Newton and Leibniz who applied calculus to the study of curves in
the plane, and to Monge and Euler who gave analytic treatments of surfaces.
This concentration on geometry in Euclidean space seems quite natural, since
curves and surfaces arise very naturally as trajectories or as level sets of
functions — for example, in mechanics it is common to consider phase spaces,
and within them surfaces on which some preserved quantity (such as energy)
is constant. A very substantial body of results was developed in what is now
often called ‘classical differential geometry’, covering such topics as evolutes
and involutes, developable surfaces and ruled surfaces, envelopes, minimal
surfaces, parallel surfaces, and so on. None of these will feature very much in
this course, though there are many fascinating aspects to all of this.

The material covered in this course is almost all of much more recent
vintage, but serves as an excellent basis for the treatment of all the subjects
mentioned above. The notion of differentiable manifold unifies and simpli-
fies most of the computations involved in these more classical subjects, so
that they are now more sensibly treated in a second course, applying the
fundamental ideas developed here.

Hermann Weyl Hassler Whitney Carl Friedrich Gauss

The notion of a differentiable manifold was not clearly formulated until
relatively recently: Hermann Weyl first gave a concise definition in 1912 (in
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his work making rigorous the theory of Riemann surfaces), but this did not
really come into common use until much later, after a series of papers by Has-
sler Whitney around 1936. However the idea has its roots much earlier. Gauss
had a major interest in differential geometry, and published many papers on
the subject. His most renowned work in the area was Disquisitiones generales
circa superficies curva (1828). This paper contained extensive discussion on
geodesics and what are now called ‘Gaussian coordinates’ and ‘Gauss curva-
ture’, which he called the ‘measure of curvature’. The paper also includes the
famous theorema egregium:

“If a curved surface can be developed (i.e. mapped isometrically) upon
another surface, the measure of curvature at every point remains un-
changed after the development.”

This result led Gauss to a fundamental insight:
“These theorems lead to the consideration of curved surfaces from a
new point of view ... where the very nature of the curved surface is
given by means of the expression of any linear element in the form√
Edp2 + 2Fdpdq +Gdq2.”

In other words, he saw that it is posible to consider the geometry of a
surface as defined by a metric (here he is locally parametrizing the surface
with coordinates p and q), without reference to the way the surface lies in
space.

In 1854 Riemann worked with locally defined metrics (now of course
known as Riemannian metrics) in any number of dimensions, and defined
the object we now call the Riemann curvature. These computations were lo-
cal, and Riemann only gave a rather imprecise notion of how a curved space
can be defined globally.

Bernhard Riemann G. Ricci-Curbastro T. Levi-Civita

Despite the lack of a precise notion of how a manifold should be defined,
significant advances were made in differential geometry, particularly in de-
veloping the local machinery for computing curvatures — Christoffel and
Levi-Civita introduced connections (not precisely in the sense we will define
them in this course), and Ricci and Schouten developed the use of tensor
calculus in geometric computations. Henri Poincaré worked with manifolds,
but never precisely defined them.
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Riemann’s work surfaced again in spectacular fashion in Einstein’s for-
mulation of the theory of general relativity – Einstein had been trying for
several years to find a way of expressing mathematically his principle of
equivalence, and had attempted to use Gauss’s ideas to encapsulate this.
In 1912 he learned from his friend Marcel Grossman about Riemann’s work
and its mathematical development using tensors by Christoffel, Ricci and
Levi-Civita, and succeeded in adapting it to his requirements after a further
three years of struggle. This development certainly gave great impetus to the
further development of the field, but Einstein still worked entirely on the
local problem of interpreting the equivalence principle, and never worked in
any systematic way on the global spacetime manifold.

E. Christoffel Albert Einstein

The definition of a manifold encapsulates the idea that there are no pre-
ferred coordinates, and therefore that geometric computations must be in-
variant under coordinate change. Since this is built automatically into our
framework, we never have to spend much time checking that things are geo-
metrically well-defined, or invariant under changes of coordinates. In contrast,
in the works of Riemann, Ricci and Levi-Civita these computations take some
considerable effort.

The abstract notion of a manifold, without reference to any ‘background’
Euclidean spaces, also arises naturally from several directions. One of these
is of course general relativity, where we do not want the unnecessary baggage
associated with postulating a larger space in which the physical spacetime
should lie. Another comes from the work of Riemann in complex analysis,
in what is now called the theory of Riemann surfaces. Consider an ana-
lytic function f on a region of the complex plane. This can be defined in a
neighbourhood of a point z0 by a convergent power series. This power series
converges in some disk of radius r0 about z0. If we now move to some other
point z1 in this disk, we can look at the power series for f about z1, and
this in general converges on a different region, and can be used to extend
f beyond the original disk. Using analytic extensions in this way, we can
move around the complex plane as long as we avoid poles and singularities
of f . However, it may happen that the value of the function that we obtain
depends on the path we took to get there, as in the case f(z) = z1/2. In this
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case we can think of the function as defined not on the plane, but instead on
an abstract surface which projects onto the plane (if f(z) = z1/2, this surface
covers C\{0} twice). Another place where it is natural to work with abstract
manifolds is in the theory of Lie groups, which are groups with a manifold
structure.

1.1 Differentiable Manifolds

Definition 1.1.1 (Manifolds and atlases)
A manifold M of dimension n is a (Hausdorff, paracompact) topologi-

cal space1 M , such that every point x ∈ M has a neighbourhood which is
homeomorphic to an open set in Euclidean space R

n.
A chart for M is a homeomorphism ϕ : U → V where U is open in M

and V is open in R
n.

A collection of charts A = {ϕα : Uα → Vα| α ∈ I} is called an atlas for
M if ∪α∈I = M .

Next we want to impose some ‘smooth’ structure:

Definition 1.1.2 (Differentiable structures) LetM be an n-dimensional
manifold. An atlas A = {ϕα : Uα → Vα| α ∈ I} for M is differentiable if for
every α and β in I, the map ϕβ ◦ ϕ−1

α is differentiable2 (as a map between
open subsets of R

n).
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1 If you are not familiar with these topological notions, it is sufficient to consider
metric spaces, or even subsets of Euclidean spaces. If you want to know more, see
Appendix A.

2 I will use the terms ‘differentiable’ and ‘smooth’ interchangeably, and both will
mean ‘infinitely many times differentiable’.
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Two differentiable atlases A and B are compatible if their union is also a
differentiable atlas — equivalently, for every chart φ in A and η in B, φ ◦ η−1

and η ◦ φ−1 are smooth.
A differentiable structure on a manifold M is an equivalence class of dif-

ferentiable atlases, where two atlases are deemed equivalent if they are com-
patible.

A differentiable manifold is a manifold M together with a differentiable
structure on M .

We will usually abuse notation by simply referring to a ‘differentiable
manifold M ’ without referring to a differentiable atlas. This is slightly dan-
gerous, because the same manifold can carry many inequivalent differentiable
atlases, and each of these defines a different differentiable manifold.

Example 1.1.1 Consider the set M = R (with the usual topology). This can be
made a manifold is many different ways: The obvious way is to take the atlas
A = {Id : R → R}. Another way is to take the atlas B = {x �→ x3 : R → R}. More
generally, any homeomorphism of R to itself (or to an open subset of itself) can be
used to define an atlas. The atlases A and B are incompatible because the union is
{x �→ x, x �→ x3}, which is not an atlas because the first map composed with the

inverse of the second is the map x �→ x1/3, which is not smooth. This example can
be extended to show there are infinitely many different differentiable structures on
the real line. This seems ridiculously complicated, but it will turn out that these
differentiable structures are all equivalent in a sense to be defined later.

Remark. Given a differentiable structure on a manifoldM , we can in principle
choose a canonical atlas on M , namely the maximal atlas consisting of all
those charts which are compatible with some differentiable atlas representing
the differentiable structure. This is occasionally useful as a theoretical device
but is completely unworkable in practice, as such a maximal atlas necessarily
contains uncountable many charts.

Example 1.1.2: Euclidean space. A trivial example of a differentiable manifold
is the Euclidean space R

n, equipped with the atlas consisting only of the
identity map.

Example 1.1.3: An atlas for Sn. The sphere Sn is the set {x ∈ R
n+1 : |x| =

1}. Since this is a closed subset of Euclidean space, the topological require-
ments are satisfied. Define maps ϕ+ : Sn\{N} → R

n and ϕ− : Sn\{S} → R
n

as follows, where N is the “north pole“ (0, . . . , 0, 1) and S the “south pole”
(0, . . . , 0,−1): Writing x ∈ R

n+1 as (y, z) where y ∈ R
n and z ∈ R, we take

ϕ+(y, z) = y
1−z and ϕ−(y, z) = y

1+z . Then we have ϕ−1
+ (w) = (2w,|w|2−1)

|w|2+1 and

ϕ−1
− (w) = (2w,1−|w|2)

|w|2+1 . It follows that ϕ± is a homeomorphism, since clearly
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ϕ−1
± is continuous, and ϕ± is the restriction to Sn of a continuous map de-

fined on all of R
n+1. Also ϕ+ ◦ ϕ−1

− (w) = w
|w|2 and ϕ− ◦ ϕ−1

+ (w) = w
|w|2 for

all w ∈ R
n\{0}. Since these maps are differentiable, the two charts ϕ± form

a differentiable atlas, and so define a differentiable manifold.
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The maps ϕ± in the last example are the stereographic projections from
the north and south poles. Next we consider an example which does not come
from a subset of R

n+1:

Example 1.1.4: The real projective spaces. The n-dimensional real projective
space RPn is the set of lines through the origin in R

n+1 (an observer at the
origin sees anything along such a line as being at the same position in the
field of view – thus real projective space captures the geometry of perspective
drawing). Equivalently, RPn = (Rn+1\{0})/ ∼ where x ∼ y ⇐⇒ x = λy for
some λ ∈ R\{0}. A point in RPn is denoted [x1, x2, . . . , xn+1], meaning the
equivalence class under ∼ of the point (x1, . . . , xn+1) ∈ R

n+1. We place a
topology on RPn by taking the open sets to be images of open sets in R

n+1

under the projection onto RPn. This topology is Hausdorff: Take any two non-
zero points x and y in R

n+1 not lying on the same line. Choose an open set U
about x which is disjoint from the line through y and the origin. Then choose
an open set V about y which is disjoint from the set {λz : z ∈ U, λ ∈ R}.
Then U/ ∼ and V/ ∼ are disjoint open sets in RPn with [x] ∈ U/ ∼ and [y] ∈
V/ ∼. Define subsets Vi of RPn for i = 1, . . . , n+ 1 by Vi = {[x1, . . . , xn+1] :
xi �= 0}. Note that Vi is well-defined. Define maps ϕi : Vi → R

n for i =
1, . . . , n + 1 by ϕi([x1, . . . , xn+1]) =

(
x1
xi
, x2

xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn+1

xi

)
. This

has the inverse ϕ−1
i (x1, . . . , xn) = [x1, x2, . . . , xi−1, 1, xi, . . . , xn]. The maps

ϕ and their inverses are continuous; the open sets Vi cover RPn; and (for
i < j)

ϕi ◦ ϕ−1
j (x1, . . . , xn) =

(
x1

xi
,
x2
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, . . . ,

xi−1
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)
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which is smooth on the set ϕj(Vi ∩ Vj) = {(x1, . . . , xn) : xi �= 0}. The case
i > j is similar. Therefore the maps ϕi form an atlas for RPn.

Exercise 1.1.1 Define CPn to be
(
C

n+1\{0}
)
/ ∼, where x ∼ y if and only

if x = λy for some λ ∈ C\{0}. Find a differentiable atlas which makes CPn

a 2n-dimensional smooth manifold.

Example 1.1.5: Open subsets. Let M be a differentiable manifold, with atlas
A. Let U be any open subset of M . Then U is a differentiable manifold with
the atlas AU = {ϕ

∣
∣
∣
U

: ϕ ∈ A}. Any open set in a Euclidean space is trivially
a manifold. Other examples of manifolds obtained in this way are:
i). The general linear group GL(n,R) (the set of non-singular n×n matri-

ces) – this is an open set of the set of n×n matrices, which is naturally
identified with R

n2
;

ii). The multiplicative group C\{0}, clearly open in C 
 R
2;

iii). The complement of a Cantor set (i.e. The set of real numbers which do
not have a base 3 expansion consisting only of the digits 0 and 2).

Usually we will find ways to avoid things like the last example — by con-
sidering manifolds which are connected, or which satisfy some topological or
geometric condition (such as compactness).

Example 1.1.6: Product manifolds. Let (Mn,A) and (Nk,B) be two mani-
folds. Then the topological product M ×N can be made a manifold with the
atlas A#B = {(ϕ, η) : ϕ ∈ A, η ∈ B}. Here (ϕ, η)(x, y) = (ϕ(x), η(y)) ∈
R

n+k for each (x, y) ∈ U ×W , where ϕ : U → V is in A and η : W → Z is
in B.




