
Lecture 15. de Rham cohomology

In this lecture we will show how differential forms can be used to define topo-
logical invariants of manifolds. This is closely related to other constructions
in algebraic topology such as simplicial homology and cohomology, singular
homology and cohomology, and Čech cohomology.

15.1 Cocycles and coboundaries

Let us first note some applications of Stokes’ theorem: Let ω be a k-form on
a differentiable manifold M . For any oriented k-dimensional compact sub-
manifold Σ of M , this gives us a real number by integration:

ω : Σ 
→
∫

Σ

ω.

(Here we really mean the integral over Σ of the form obtained by pulling
back ω under the inclusion map).

Now suppose we have two such submanifolds, Σ0 and Σ1, which are
(smoothly) homotopic. That is, we have a smooth map F : Σ × [0, 1] → M
with F |Σ×{i} an immersion describing Σi for i = 0, 1. Then d(F∗ω) is a
(k + 1)-form on the (k + 1)-dimensional oriented manifold with boundary
Σ × [0, 1], and Stokes’ theorem gives

∫

Σ×[0,1]

d(F∗ω) =
∫

Σ1

ω −
∫

Σ1

ω.

In particular, if dω = 0, then d(F∗ω) = F∗(dω) = 0, and we deduce that∫
Σ1
ω =

∫
Σ0
ω.

This says that k-forms with exterior derivative zero give a well-defined
functional on homotopy classes of compact oriented k-dimensional submani-
folds of M .

We know some examples of k-forms with exterior derivative zero, namely
those of the form ω = dη for some (k − 1)-form η. But Stokes’ theorem then
gives that

∫
Σ
ω =

∫
Σ
dη = 0, so in these cases the functional we defined on

homotopy classes of submanifolds is trivial.
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This leads us to consider the space of ‘non-trivial’ functionals on homotopy
classes of submanifolds: Each of these is defined by a k-form ω with exterior
derivative zero, but is unchanged if we add the exterior derivative of an
arbitrary (k − 1)-form to ω.

We call a k-form with exterior derivative zero a k-cocycle, and a k-form
which is an exterior derivative of a form is called a k-coboundary. The space
of k-cocycles on M is a vector space, denoted Zk(M), and the space of k-
coboundaries is then dΩk−1(M), which is contained in Zk(M).

15.2 Cohomology groups and Betti numbers

We define the k-th de Rham cohomology group of M , denoted Hk(M), to be

Hk(M) =
Zk(M)

dΩk−1(M)
.

Thus an element of Hk(M) is defined by any k-cocycle ω, but is unchanged
by changing ω to ω + dη for any (k − 1)-form η, which agrees with the
notion we produced before of a ‘nontrivial’ functional on homotopy classes of
submanifolds.

An element of Hk(M) is called a cohomology class, and the cohomology
class containing a k-cocycle ω is denoted [ω]. Thus

[ω] = {ω + dη : η ∈ Ωk−1(M)}.

Since the exterior derivative and Stokes’ theorem do not depend in any
way on the presence of a Riemannian metric on M , the cohomology groups
of M depend only on the differentiable structure on M . It turns out that
they in fact depend only on the topological structure of M , and not on
the differentiable structure at all — any two homeomorphic manifolds have
the same cohomology groups5. The groups Hk(M) are therefore topological
invariants, which can be used to distinguish manifolds from each other: If two
manifolds have different cohomology groups, they cannot be homeomorphic
(let alone diffeomorphic).

The k-the cohomology groupHk(M) is a real vector space. The dimension
of this vector space is called the kth Betti number of M , and denoted bk(M).

5 The de Rham theorem states that the de Rham cohomology groups are isomorphic
to the singular or Čech cohomology groups with real coefficients, and these are
defined in purely topological terms. It is also a consequence of this theorem that
the cohomology groups are finite dimensional.
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15.3 The group H0(M)

The group H0(M) is relatively easy to understand: The space Z0(M) is just
the space of functions onM with derivative zero, which is the space of locally
constant functions. We interpret Ω−1 as the trivial vector space. Therefore
H0(M) 
 Z0(M) = R

N where N is the number of connected components of
M . Thefore b0(M) is equal to the number of connected components of M .

15.4 The group H1(M)

The group H1(M) is closely related to the fundamental group π1(M). We
will examine some aspects of this relationship:

Proposition 15.4.1 Suppose M is connected. If ω ∈ Z1(M) and [ω] �= 0 in
H1(M), then there exists a smooth curve γ : S1 →M such that

ω(γ) :=
∫

S1
γ∗ω �= 0.

Proof. We will prove that if ω(γ) = 0 for every smooth map γ : S1 → M ,
then [ω] = 0 in H1(M).

On each connected component of M choose a ‘base point’ x0. We define a
function f ∈ C∞(M) 
 Ω0(M) by setting f(x0) = 0 and extending to other
points of M according to

f(x) =
∫

[0,1]

γ∗ω

for any γ : [0, 1] → M with γ(0) = x0 and γ(1) = x. This is well-defined,
since if γ1 and γ2 are two such curves, then the curve γ1#(−γ2) obtained
by concatenating γ1 and −γ2 (i.e. γ2 with orientation reversed) gives a map
from S1 to M , so by assumption

0 =
∫

S1
(γ1#(−γ2))∗ω =

∫

S1
γ∗1ω −

∫

S1
γ∗2ω,

and so the value of f(x) is independent of the choice of γ. Finally, df = ω,
since in a chart ϕ about x,

df(∂i) = ∂if =
d

dt

∫ 1+t

0

γ∗ω = ω(∂i)

where γ(1 + t) = ϕ−1(ϕ(x) + tei).
This shows that ω = df , so that [ω] = 0 in H1(M). �
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Corollary 15.4.2 If M has finite fundamental group then H1(M) = 0. In
particular if M is simply connected, then H1(M) = 0.

Proof. Let ω ∈ Ω1(M) with dω = 0. Then for any closed loop γ : S1 →M , we
have [γ]n = 0 in π1(M) for some integer n. Therefore we have a homotopy
F : S1 × [0, 1] → M from γ#γ . . .#γ to the constant loop c, and Stokes’
theorem gives

0 =
∫

S1×[0,1]

F ∗dω =
∫

S1
(γ# . . .#γ)∗ω −

∫

S1
c∗ω = nω(γ).

Since this is true for all closed loops γ, Proposition 15.4.1 applies to show
[ω] = 0 in H1(M), and so H1(M) = 0. �

The same argument tells us something more: In fact H1(M) is a subspace
of the dual space of the vector space G⊗R, where G is the abelianisation of
π1(M), which is the abelian group given by taking π1(M) and imposing the
extra relations aba−1b−1 = 1 for all elements a and b. In particular, b1(M)
is no greater than the smallest number of generators of π1(M). In fact it
turns out (at least for compact manifolds) that H1(M) is isomorphic to the
torsion-free part of the abelianisation of π1(M), as described above. We will
not prove this here.

15.5 Homotopy invariance

In this section we will prove a remarkable topological invariance property
of cohomology groups: They do not change when the space is continuously
deformed.

More precisely, suppose M and N are two manifolds, and F is a smooth
map from M to N . Then the pullback of forms induces a homomorphism of
cohomology groups: If ω ∈ Ωk(N) is a cocycle, then so is F ∗ω ∈ Ωk(M),
since d(F ∗ω) = F ∗(dω). Also, is ω = dη then F ∗ω = F ∗dη = d(F ∗η), so this
map is well-defined on cohomology.

Proposition 15.5.1 Let F : M × [0, 1] → N be a smooth map, and set
ft(x) = F (x, t) for each t ∈ [0, 1]. Then f∗t is independent of t.

Proof. Let ω ∈ Ωk(N) be a cocycle. Then we can write

F ∗ω = ω0 + dt ∧ ω1

where ω0 ∈ Ωk(M) and ω1 ∈ Ωk−1(M) for each t. Then f∗t ω = ω0 for each
t. Since F ∗ω is a cocycle, we have

0 = dF ∗ω = dt ∧
(
∂ω0

∂t
− dMω1

)
+ . . .



15.6 The Poincaré Lemma 141

and therefore

f∗1ω − f∗0ω = ω0(1) − ω0(0) =
∫ 1

0

∂ω0

∂t
dt =

∫ 1

0

dMω1dt = dM

∫ 1

0

ω1dt.

Therefore f∗1ω and f∗0ω represent the same cohomology class. �

Corollary 15.5.2 If the smooth map f : M → N is a homotopy equivalence
(that is, there exists a continuous map g : N →M such that f ◦ g and g ◦ f
are both homotopic to the identity) then f∗ is an isomorphism.

15.6 The Poincaré Lemma

We will compute the cohomology groups for a simple example: A subset B
in R

n is star-shaped (with respect to the origin) if for every point y ∈ B, the
interval {ty : t ∈ [0, 1]} is in B.

Proposition 15.6.1 (The Poincaré Lemma). Let B be a star-shaped open
set in R

n. Then Hk(B) = {0} for k = 1, . . . , n.

Proof. We need to show that for k > 0 every k-cocycle is a k-coboundary.
In other words, given a k-form ω on B with dω = 0, we need to find a
(k − 1)-form η such that ω = dη. We will do this with k replaced by k + 1.

Write ω = ωi0...ik
dxi0 ∧ . . . ∧ dxik . For y ∈ B write y = yjej and define

ηi1...ik
= yj

∫ 1

0

tk(ωty)ji1...ik
dt.

This defines a k-form η on B. We compute the exterior derivative of η at y:

(dη)i1...ik
=

k∑

p=0

(−1)p∂ipηi0...îp...ik

=
k∑

p=0

(−1)p

∫ 1

0

tk(ωty)ipi0...îp...ik
dt

+
k∑

p=0

(−1)pyj

∫ 1

0

tk+1((∂ip
ω)ty)ji0...îp...ik

dt.

We rewrite the last term using the fact that dω = 0: This means

0 = (dω)ji0...ik

= ∂jωi0...ik
−

k∑

p=0

(−1)p∂ipωji0...îp...ik
.
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This gives (by the antisymmetry of the components of ω)

(dη)i1...ik
= (k + 1)

∫ 1

0

tk(ωty)i0...ik
dt

+ yj

∫ 1

0

tk+1((∂jω)ty)i0...ik
dt

= (k + 1)
∫ 1

0

tk(ωty)i0...ik
dt

+
∫ 1

0

tk+1 ∂

∂t
(ωty)i0...ik

dt

= (ωy)i0...ik

by the fundamental theorem of calculus. Thus dη = ω, and Hk+1(B) = {0}.
�

Remark. Now that we have seen the explicit proof of the Poincaré Lemma,
I remark that there is a very simple proof using the homotopy invariance
result of Proposition 15.4.1: First, the cohomology of R

0 is trivial to compute.
Second, there is a smooth homotopy equivalence f : B → R

0 = {0} defined
by f(x) = 0: If we take g : R

0 → B to be given by g(0) = 0, then we
have f ◦ g equal to the identity on R

0, and g ◦ f(x) = 0 on B. The latter is
homotopic to the identity under the homotopy F : B × [0, 1] → B given by
F (x, t) = (1 − t)x. Corollary 15.5.2 applies.

15.7 Chain complexes and exact sequences

In this section we will discuss some algebraic aspects of cohomology.
The algebraic situation we are dealing with is the following: We have a

complex Ω∗ consisting of a sequence of real vector spaces Ωk, together with
linear operators d : Ωk → Ωk+1 satisfying d2 = 0. In any such situation we
can define the cohomology groups of the complex as Hk(Ω) = kerdk/imdk−1.
We will call such a complex a co-chain complex, the elements of the complex
as co-chains, co-chains in the kernel of d as cocycles, and those in the image
of d as coboundaries.

Suppose we have two chain complexes A∗ and B∗. A chain map f from
A∗ to B∗ is given by a sequence of linear maps fk from Ak to Bk such that
dfk = fk+1d for any k.

A chain map induces a homomorphism of cohomology groups: If ω ∈ Ak

with dω = 0, then fkω ∈ Bk with dfkω = 0. If we take another representative
of the same cohomology class, say η = ω + dµ, then fkη = fkω + dfk−1µ
is in the same cohomology class as fkω. Therefore we have a well-defined
homomorphism of cohomology groups, which we also denote by f .
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Of particular interest here is the situation where we have three chain
complexes, say A∗, B∗ and C∗, with chain maps f : A∗ → B∗ and g : B∗ →
C∗ forming a short exact sequence — that is, for each k, fk is injective, gk is
surjective, and the kernel of the map gk coincides with the image of the map
fk.

It follows that we have a sequence of maps f from Hk(A) to Hk(B) and
g from Hk(B) to Hk(C), and that the kernel of g coincides with the image of
f . Let us consider those cohomology classes in Hk(C) which are in the image
of g. If ω is a C-cocycle, then we know that ω = gη for some cochain η in
Bk, by the assumption of surjectivity of g. However, we cannot deduce that
η is a cocycle. However we can deduce that gdη = dfη = dω = 0, and since
the kernel of g coincides with the image of f it follows that dη = fµ for some
cochain µ ∈ Ak+1. Then we have fdµ = dfµ = ddη = 0, and the injectivity
of f implies dµ = 0. Therefore µ represents a cohomology class in Hk+1(A).
In the case where ω is the image of a cocycle in B under g, we have dη = 0
and hence µ = 0. Conversely, if [µ] = 0 then µ = dσ, hence d(η − fσ) = 0,
and ω = g(η − fσ), so [ω] = g[η − fσ] is in the image of g.

This suggests that we have a homomorphism from Hk(C) to Hk+1(A)
with kernel coinciding with the image of g. To verify this we need to show
that the cohomology class of µ does not depend on our choice of η or on our
choice of representative of the cohomology class of ω.

Independence of the choice of η is easy to check: η can be replaced by
η+fσ for arbitrary σ ∈ Ak. Therefore dη is replaced by dη+dfσ = dη+fdσ,
and µ is placed by µ+ dσ which is in the same cohomology class as µ.

Independence of the choice of representative in the cohomology class of ω
also follows easily: If we replace ω by ω + dα, then η is replaced by η + dβ,
and dη is unchanged, so µ is unchanged.

The homomorphism we have constructed is called the connecting homo-
morphism. Finally, we note that the image of the connecting homomorphism
coincides with the kernel of f : If µ arises from some cohomology class ω,
then we have by construction fµ = dη, so [fµ] = 0 in Hk+1(B). Conversely,
if [fµ] = 0, then fµ = dη for some η, and then µ is given by applying the
connecting homomorphism to [gη] (note that dgη = gdη = gfµ = 0, so gη
does represent a cohomology class).

We have therefore produced from the short exact sequence of chain com-
plexes a long exact sequence of cohomology groups:

. . .→ Hk(A) → Hk(B) → Hk(C) → Hk+1(A) → . . .

In the next few sections we will see some example of these long exact
sequences in cohomology and their applications.
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15.8 The Meyer-Vietoris sequence

Next we want to discuss a way to compute the cohomology of complicated
manifolds by cutting them up into simpler pieces. Suppose M is a manifold
which is the union of two open subsets U and V , and suppose that we know
the cohomology groups of U , V and the intersection U ∩ V . We want to
relate the cohomology groups of M to these. We will do this by constructing
an exact sequence relating the cohomology groups of M , U , V and U ∩ V .

Let ω be a k-cochain on M . Then the restriction of ω to U and to V are
also k-cochains. This defines a chain map i from Ωk(M) to Ωk(U)⊕Ωk(V ),
given by

i(ω) = (ω|U , ω|V ).

Similarly, if α and β are k-cochains on U and V respectively, then we
can consider their restrictions to the intersection U ∩ V , and these are again
k-cocycles. We consider the map j from Ωk(U)⊕Ωk(V ) → Ωk(U ∩V ) given
by

(α, β) 
→ α|U∩V − β|U∩V .

This is again a chain map.
These two chain maps define a short exact sequence: The map i is injec-

tive, j is surjective, and the image of i coincides with the kernel of j.
By the argument of the previous section, this short exact sequence of

cochain complexes gives rise to a long exact sequence of cohomology groups.
This long exact sequence of cohomology groups is called the Meyer-Vietoris
sequence for de Rham cohomology:

H0(M) i→H0(U) ⊕H0(V )
j→H0(U ∩ V )

η→H1(M) i→ . . .

. . . Hk(M) i→Hk(U) ⊕Hk(V )
j→Hk(U ∩ V )

η→Hk+1(M) i→ . . .

15.9 Compactly supported cohomology

The algebraic discussions of section 15.7 allow us to extend our notion of
cohomology to more general situations where we have chain complexes. Here
we introduce the notion of compactly supported cohomology:

Let M be a smooth manifold. Then we denote by Ωk
c (M) the space of

differential k-forms onM with compact support. This is a subspace of Ωk(M)
which is closed under exterior differentiation, and hence forms a cochain
complex. The cohomology of this complex is called the compactly supported
cohomology of M , and denoted Hk

c (M).
Next we will give another useful example of a long exact sequence relating

compactly supported cohomology to the usual cohomology.
SupposeM is a smooth manifold, and Σ is a submanifold withinM . Then

we have a natural chain map from H∗(M) to H∗(Σ) given by pulling back
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forms via the inclusion map i. This map is surjective. The kernel consists
of those forms ω on M which have i∗ω = 0. This is again a chain complex,
since i∗(dω) = di∗ω = 0 if i∗ω = 0. This gives us a short exact sequence
relating the cohomologies of M , Σ, and the chain complex Ωk

0 (M,Σ) = {ω ∈
Ω∗(M) : i∗ω = 0}.

We will now show that the cohomology of the latter is isomorphic to the
compactly supported cohomology of M\Σ.

To see this, we note that Ωk
c (M\Σ) ⊂ Ωk

0 (M,Σ). We denote by Ck the
quotient space Ωk

0 (M,Σ)/Ωk
c (M\Σ). We define an operator d : Ck → Ck+1

by d[ω] = [dω]. If η ∈ Ωk
c (M\Σ), then d(ω+η) = dω+dη ∈ dω+Ωk+1

c (M\Σ),
so this operator is well defined and satisfies d2 = 0. Therefore the complex C
is a cochain complex, and we have a short exact sequence of chain complexes

0 → Ω∗
c (M\Σ) → Ω∗

0(M,Σ) → C 
→ 0.

This induces a long exact sequence in cohomology:

. . .→ Hk
c (M\Σ) → Hk

0 (M,Σ) → Hk(C) → Hk+1
c (M\Σ) . . .

We will prove that Hk(C) = 0 for all k, and the long exact sequence above
then implies that Hk

c (M\Σ) 
 Hk
0 (M,Σ).

Suppose ω ∈ Ωk
0 (M,Σ) satisfies d[ω] = 0, that is,

dω = η

for some η ∈ Ωk+1
c (M\Σ). We want to show that [ω] = d[σ] for some [σ] ∈

Ck−1, which means we want to show that ω − dσ ∈ Ωk
c (M\Σ).

Since Σ is a smooth compact submanifold, the nearest-point projection
p (defined using any Riemannian metric on M) is a smooth map from a
neighbourhood T of Σ in M to Σ, and is homotopic to the identity map on
T . We can assume that du = 0 on T since du ∈ Ωk+1

c (M\Σ). Therefore by
the homotopy invariance we have

ω − p∗ω = dv

for some v ∈ Ωk−1
0 (T,Σ). But we also have p = i ◦ p and so p∗ω = p∗i∗ω = 0

since ω ∈ Ωk
0 (M,Σ), and we have ω = dv. Now let ϕ be a smooth function

onM which is identically 1 in a neighbourhood of Σ, but identically zero in a
neighbourhood ofM\T . Then ϕv ∈ Ωk−1

0 (M,Σ), and ω−d(ϕv) ∈ Ωk
c (M\Σ).

Therefore [ω] − d[ϕv] = [ω − d(ϕv)] = 0 in Ck, and Hk(C) = 0 as claimed.
Therefore we have a long exact sequence in cohomology:

. . . Hk
c (M\Σ) → Hk(M) → Hk(Σ) → Hk+1

c (M\Σ) → . . .
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15.10 Cohomology of spheres

We will use the Meyer-Vietoris sequence to deduce the cohomology groups of
the spheres Sn for any n. We start with the circle S1: We can think of this as
a union of two intervals U and V , such that U ∩ V is a union of two disjoint
intervals.

Now we can apply the Meyer-Vietoris sequence to compute the cohomol-
ogy of S1 = U ∪ V : The sequence becomes

0 
→ R 
→ R
2 
→ R

2 
→ H1(S1) 
→ 0

which implies that H1(S1) = R (this could be computed directly by seeing
what the cocycles are on S1 explicitly). Clearly Hk(S1) = {0} for k > 1
because S1 is a 1-manifold.

Now consider the cohomology of the sphere S2: We observe that S2 =
U ∪ V where U and V are diffeomorphic to disks and U ∩ V is diffeomorphic
to S1 × (0, 1). By homotopy invariance S1 × (0, 1) has the same cohomology
as S1. So the sequence in this case becomes:

0 
→ R 
→ R
2 
→ R 
→ H1(S2) 
→ 0 
→ R 
→ H2(M) 
→ 0.

It follows that H1(S2) = {0} and H2(S2) = R.
Proceeding in the same way for higher dimensions, we find Hk(Sn) = R

if k = 0 or k = n and Hk(Sn) = 0 otherwise.

15.11 Compactly supported cohomology of R
n

Proposition 15.11.1

Hk
c (Rn) =

{
0, k < n

R, k = n.

Proof. For k = 0 the result is immediate because constants are not compactly
supported in R

n.
For k = 1 and n = 1 the result is also immediate: If ω = ω1dx

1, then
ω = df implies

∫
R
ω1 = 0, and conversely.

We will use the long exact sequence from section 15.9 together with the
results on cohomology groups of spheres from section 15.10: The sphere Sn

contains an equatorial Sn−1 as a submanifold, and the complement Sn\Sn−1

is diffeomorphic to two copies of R
n. Therefore the long exact sequence be-

comes (for n > 1)
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0 → R → R

→H1
c (Rn)2 → 0 → 0

. . .

→Hn−1
c (Rn)2 → 0 → R

→Hn
c (Rn)2 → R → 0

It follows that Hk
c (Rn) = 0 for k = 1, . . . , n− 1 and Hn

c (Rn) = R. �

Furthermore, it is immediate that the n-coboundaries of compactly sup-
ported cohomology are precisely those that have integral zero: This contains
the n-coboundaries (by Stokes’ theorem), and has codimension 1.

15.12 The group Hn(M)

If M is a compact manifold of dimension n, then we always know what the
nth cohomology group is:

Proposition 15.8.1 If M is a compact connected manifold of dimension
n, then Hn(M) = R if M is orientable, and Hn(M) = {0} if M is not
orientable.

Proof. First suppose M is oriented. Choose an atlas for M consisting of co-
ordinate regions Uα, α = 1, . . . , N , each of which is diffeomorphic to R

n. Let
{ρα} be a smooth partition of unity with ρα supported in Uα.

Define a map ξ : Ωn(M) → R
N by

ξ(ω) = (
∫

M

ρ1ω, . . . ,

∫

M

ρNω).

Now consider the subspace X of R
N defined by

X = {ξ(dv)| v ∈ Ωn−1(M)}.

If ω is exact, then clearly ξ(ω) ∈ X. Conversely, if ξ(ω) ∈ X then we have
v ∈ Ωn−1(M) such that

∫
M
ρα(ω− dv) = 0 for every α. Now ρα(ω− dv) is a

compactly supported form in R
n, with integral zero, and hence by Proposition

15.11.1 there exists vα ∈ Ωn−1
c (Uα) such that ρα(ω − dv) = dvα. Summing

over α, we find
ω − dv =

∑

α

ρα(ω − dv) =
∑

α

dvα

and hence
ω = d(v +

∑

α

vα)



148 Lecture 15. de Rham cohomology

and ω is exact.
The subspace X is defined by a finite collection of equations cjkxk = 0,

j = 1, . . . ,K. Therefore an n-form ω on M is exact if and only if
∫

M

(cjkρk)ω = 0

for j = 1, . . . ,K. Suppose that cjkρk is non-constant for some j. Then in
one of the regions Uα we can find an n-form ω supported in Uα with integral
zero such that

∫
Uα
cjkρkω is non-zero. But then it follows that ω is not exact,

contradicting Proposition 15.11.1. Therefore cjkρk is constant for each j, and
ω ∈ Ωn(M) is exact if and only if

∫
M
ω = 0.

Next supposeM is not orientable. Let M̃ be the double cover ofM , which
we can define as follows: Define an equivalence relation on ΛnT ∗

xM\{0} for
each x ∈ M by taking ω ∼ η iff ω = λη for some λ > 0. The quotient space
at each point consists of two points, and the quotient bundle PΛnT ∗M =
{(x, [ω]) : ω ∈ ΛnT ∗

xM} is a Z2-bundle over M . Fix x ∈ M and ω �= 0
in ΛnT ∗

xM . Then we take M̃ to be the connected component of (x, [ω]) in
PΛnT ∗M . If M is orientable then there is a global non-vanishing section of
ΛnT ∗M , so M̃ is diffeomorphic to M , while if M is not orientable then M̃
covers M twice (if M is connected), and there is a natural projection π from
M̃ to M given by π(x, [ω]) = x. M̃ is always orientable, since T(x, [ω])M̃ 

TxM , hence ΛnT ∗

(x,[ω])M̃ 
 ΛnT ∗
xM , and so [ω] ∈ PΛnT ∗

xM gives a global
section of PΛnT ∗M̃ .

In the case where M is not orientable, there is a natural involution i of
M̃ induced by the map ω 
→ −ω of ΛnT ∗M , and this is orientation-reversing.
Since π ◦ i = π, a differential n-form ω̃ on M̃ arises from pull-back by π of a
differential form ω on M if and only if i∗ω̃ = ω̃. But then we have

∫

M̃

ω̃ = −
∫

M̃

i∗ω̃ = −
∫

M̃

ω̃

since i is orientation-reversing, and hence
∫

M̃
ω̃ = 0. It follows from the case

we have already considered that ω̃ = dη for some η ∈ Ωn−1(M̃). Then let
η̃ = (η+ i∗η)/2. Then we have i∗η̃ = η̃, so η̃ = π∗η′ for some η′ ∈ Ωn−1(M),
and dη̃ = (dη + di∗η)/2 = (ω̃ + i∗ω̃)/2 = ω̃. It follows that dη′ = ω, so ω is
exact. Therefore Hn(M) = 0, as claimed. �
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15.13 Cohomology of surfaces

In this section we will use the results we have developed above about coho-
mology groups to compute the cohomology of compact surfaces.

We already know the cohomology groups of S2. Next we will compute
the cohomology groups of the torus T

2 = S1 × S1. This can be written as
the union of open sets U and V , where U and V are each diffeomorphic to
S1×R, and U∩V is diffeomorphic to two copies of S1×R. We therefore know
H0(T2) = H0(U) = H0(V ) = R, H0(U ∩ V ) = R

2, H1(U) = H1(V ) = R

and H1(U ∩ V ) = R
2, and H2(U) = H2(V ) = H2(U ∩ V ) = 0, H2(T2) = R.

Thus we have the long exact sequence

0 → R → R
2 → R

2 → H1(T2) → R
2 → R

2 → R → 0 → 0

which implies that H1(T2) = R
2.

We will proceed by induction on the genus of the surface: A surface Mg+1

of genus g+1 can be written as the union of sets A and B, where A is diffeo-
morphic to T

2\{p}, B is diffeomorphic toMg\{q}, and A∩B is diffeomorphic
to S1 ×R. To use this we first need to find the cohomology groups of T

2\{p}
and Mg\{p}.

Proposition 15.13.1 Let M be a compact oriented manifold of dimension
n > 1, p ∈M . Then Hn(M\{p}) = 0.

Proof. Let ω be an n-form on M\{p}. Then we can write ω = ω0 +ω1, where
ω0 is compactly supported in M\{p} and has integral equal to zero, and ω1

is supported in a region diffeomorphic to S1 × (0, 1), and is identically zero
on S1 × (0, 1/2).
ω0 extends to a form on M with integral zero, so there exists η0 ∈

Ωn−1(M) such that ω0 = dη0.
By the proof of the Poincaré Lemma, there also exists a form η1 ∈

Ωn−1(S1 × (0, 1)), vanishing on S1 × (0, 1/2), such that ω1 = dη1.
Therefore ω = dη0 + dη1 is exact, and Hn(M\{p}) = 0. �

From this we can deduce the cohomology of Mg\{p} as follows: Mg is the
union of U and V , where U 
Mg\{p}, V 
 R

2, and U ∩ V 
 S1 × R.
From this we obtain the long exact sequence

0 → R → R
2 → R → H1(Mg) → H1(Mg\{p}) → R → R → 0

which implies that H1(Mg\{p}) 
 H1(Mg).
Finally, we can apply the Meyer-Vietoris sequence to A and B as above,

obtaining

0 → R → R
2 → R → H1(Mg+1) → H1(Mg) ⊕ R

2 → R → R → 0

which implies that H1(Mg+1) 
 H1(Mg) ⊕ R
2.

By induction, we deduce that the cohomology groups of the surface of
genus g are given by H0(Mg) = R, H1(Mg) = R

2g, and H2(Mg) = R.




